

TEST REPORT

Applicant:	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Address:	NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City, Guangdong, China
Equipment Type:	Mobile Phone
Model Name:	CPH2385
Brand Name:	OPPO
FCC ID:	R9C-AA341
Test Standard:	47 CFR Part 15 Subpart E (refer section 3.1)
Test Date:	Apr. 15, 2022
Date of Issue:	May 13, 2022

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Yu Yingyuan

Checked by: Ye Hongji

Approved by: Liao Jianming

(Technical Director)

Yu Ying Yuan

Ye this

, In time

Version Issue Date Revisions	Revision History	Re	
	Revisions	Issue Date	Version
Rev. 01 May 13, 2022 Initial Issue	Initial Issue	<u>May 13, 2022</u>	<u>Rev. 01</u>

TABLE OF CONTENTS

1 GENE	RAL INFORMATION	
1.1	Identification of the Testing Laboratory	4
1.2	Identification of the Responsible Testing Location	4
2 PROD	OUCT INFORMATION	5
2.1	Applicant Information	5
2.2	Manufacturer Information	5
2.3	Factory Information	5
2.4	General Description for Equipment under Test (EUT)	5
2.5	Technical Information	6
3 SUMN	IARY OF TEST RESULTS	7
3.1	Test Standards	7
3.2	Test Verdict	7
3.3	Measurement Uncertainty	7
4 GENE	RAL TEST CONFIGURATIONS	8
4.1	Test Environments	
4.2	Test Equipment List	
4.3	Test Software List	9
4.4	Description of Test Setup	10
5 TEST	ITEMS	11
5.1	DFS	11
ANNEX A	TEST RESULT	21
A.1	CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME	21
A.2	NON- OCCUPANCY PERIOD	
ANNEX B	TEST SETUP PHOTOS	27

TiGroup

ANNEX C	EUT EXTERNAL PHOTOS	27
ANNEX D	EUT INTERNAL PHOTOS	27

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe West
	Road, Nanshan District, ShenZhen, GuangDong Province, China
Phone Number	+86 755 6685 0100

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe West
	Road, Nanshan District, ShenZhen, GuangDong Province, China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a
	accredited testing laboratory. The designation number is CN1196.
Description	All measurement facilities used to collect the measurement data are
	located at Block B, 1/F, Baisha Science and Technology Park, Shahe
	West Road, Nanshan District, ShenZhen, GuangDong Province,
	China

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Address	NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City,
	Guangdong, China

2.2 Manufacturer Information

Manufacturer	Guangdong OPPO Mobile Telecommunications Corp., Ltd.	
Address	NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City,	
	Guangdong, China	

2.3 Factory Information

Factory	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Address	NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City,
	Guangdong, China

2.4 General Description for Equipment under Test (EUT)

EUT Name	Mobile Phone
Model Name Under Test	CPH2385
Series Model Name	N/A
Description of Model	N/A
name differentiation	
Hardware Version	11
Software Version	ColorOS V12.1
Dimensions (Approx.)	163.74x75.03x7.99mm
Weight (Approx.)	190g(with battery)

2.5 Technical Information

	2G Network GSM/GPRS/EDGE 850/1900 MHz
	3G Network WCDMA/HSDPA/HSUPA Band 5
	4G Network FDD LTE Band 5/7
Network and Wireless	TDD LTE Band 38/41
connectivity	Bluetooth (BR+EDR+BLE)
	2.4G WIFI 802.11b, 802.11g, 802.11n(HT20/40) and VHT20/40
	5G WIFI 802.11a, 802.11n(HT20/40) and 802.11ac(VHT20/40/80)
	U-NII-1/2A/2C/3, GPS, GLONASS, BDS, Galileo, SBAS, NFC

The requirement for the following technical information of the EUT was tested in this report:

Frequency Range	5250 MHz to 5350 MHz, 5470 MHz to 5725 MHz	
Product Type	⊠ Portable	
	Fix Location	
Maximum Output Dawar	5250 MHz to 5350 MHz: 17.99 dBm	
Maximum Output Power	5470 MHz to 5725 MHz: 17.04 dBm	
Antenna Type	PIFA Antenna	
	FIFAAntenna	
Antenna Gain	5250 MHz to 5350 MHz: 1.0 dBi	
	5470 MHz to 5725 MHz: 1.0 dBi	
	(In test items related to antenna gain, the final results reflect this	
	figure. This value is provided by the applicant.)	
Note: This device (Client) is without radar detection, then the manufacturer statement		
confirming that information regarding the parameters of the detected Radar Waveforms is not		
available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band.		

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title	
1	47 CFR Part 15 Subpart E	Unlicensed National Information Infrastructure Devices	
2	KDB Publication 905462	LINIL DES Compliance Procedures New Pulse	
2	D02v02	UNII DFS Compliance Procedures New Rules	
2	KDB Publication 905462	LINIL Cliente Without Dodor Detection New Dulco	
3	D03v01r02	UNII Clients Without Radar Detection New Rules	
4	KDB Publication	Guidelines for Compliance Testing of Unlicensed National Information	
4	789033 D02v02r01	Infrastructure (U-NII) Devices Part 15, Subpart E	

3.2 Test Verdict

No.	Description	FCC Part No.	Verdict	Remark
1	Channel Move Time	15.407	Pass	Applicable
2	Channel Closing Transmission Time	15.407	Pass	Applicable
3	Non- Occupancy Period	15.407	Pass	Applicable

Note: Compared with the EUT of test report BL-SZ2230843-605, the changes of the EUT of this report as below:

1. Different model name.

2. Update camera specification is 50M+2M.

3. Add the battery cover with leather material.

Therefore, all test data please refer to report BL-SZ2230843-605, which was issued by Shenzhen BALUN Technology Co., Ltd. on May 09, 2022.

3.3 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Parameters	Uncertainty
Occupied Channel Bandwidth	2.8%
RF output power, conducted	1.28 dB
Power Spectral Density, conducted	1.30 dB
Unwanted Emissions, conducted	1.84 dB
All emissions, radiated	5.36 dB
Temperature	0.82°C
Humidity	4.1%

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

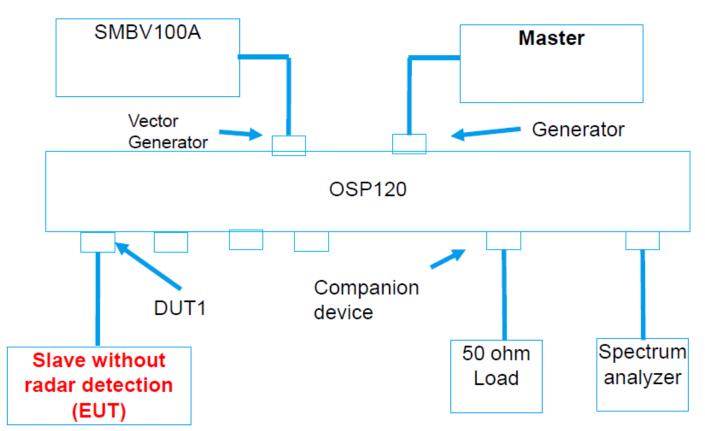
Relative Humidity	45% to 55%	
Atmospheric Pressure	100 kPa to 102 kPa	
Temperature	NT (Normal Temperature)	+22℃ to +25℃
Working Voltage of the EUT	NV (Normal Voltage)	3.87 V

4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-40	101544	2022.01.04	2023.01.03
Signaling Unit	ROHDE&SCHWARZ	CMW500	142028	2021.06.01	2022.05.31
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-30	103118	2021.08.09	2022.08.08
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	260592	2022.02.09	2023.02.08
Signal Generator	ROHDE&SCHWARZ	SMB100A	177746	2021.08.24	2022.08.23
Switch Unit with OSP- B157	ROHDE&SCHWARZ	OSP120	101270	2021.06.01	2022.05.31
Power Sensor	KEYSIGHT	U2063XA	MY58000247	2021.05.08	2022.05.07
EMI Receiver	KEYSIGHT	N9038A	MY53220118	2021.09.13	2022.09.12
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2021.10.10	2022.10.09
LISN	SCHWARZBECK	NSLK 8127	8127-687	2021.06.08	2022.06.07
Test Antenna- Loop(9 kHz-30 MHz)	SCHWARZBECK	FMZB 1519	1519-037	2021.04.16	2024.04.15
Test Antenna- Bi-Log(30 MHz-3 GHz)	SCHWARZBECK	VULB 9163	9163-624	2021.08.20	2024.08.19
Test Antenna- Horn(1-18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1917	2019.07.02	2022.07.01
Test Antenna- Horn (18-40 GHz)	A-INFO	LB- 180400KF	J211060273	2021.07.02	2024.07.01
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2022.02.19	2024.09.03
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60 *7.35m	N/A	2021.08.15	2024.08.14
Shielded Enclosure	ChangNing	CN-130701	130703		

	Access Point	Access Point		
	Brand Name	Aerohive		
	Model No.	AP230		
Master	Serial No.	AH-AP-230-AC-W		
	FCC ID	WBV-AP230		
	SPEC.	The maximum EIRP is18.5dBm, Antenna Gain is		
	SPEC.	6.57dBi		

4.3 Test Software List


Description	Manufacturer	Software Version	Serial No.	Applicable test Setup
BL410R	BALUN	V2.1.1.488	N/A	The section 4.4.1

4.4 Description of Test Setup

4.4.1 Conducted Test Setup Configuration

Client without Radar Detection Mode

The UUT is a U-NII Device operating in Client mode without radar detection. The radar test signals are injected into the Master Device.

(Diagram 1)

5 TEST ITEMS

5.1 DFS

5.1.1U-NII DFS Rule Requirements

5.1.1.1 Working Mode and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

APPLICABILITY OF DFS REQUIREMENTS PRIOR TO USE A CHANNEL

	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period	~	~	\checkmark	
DFS Detection Threshold	\checkmark	Not required	\checkmark	
Channel Availability Check Time	\checkmark	Not required	Not required	
Uniform Spreading	\checkmark	Not required	Not required	
U-NII Detection Bandwidth	\checkmark	Not required	\checkmark	

APPLICABILITY OF DFS REQUIREMENTS DURING NORMAL OPERATION

	Operational Mode				
Requirement	Master	Client without radar detection	Client with radar detection		
DFS Detection Threshold	~	Not required	\checkmark		
Channel Closing Transmission Time	✓	✓	\checkmark		
Channel Move Time	\checkmark	✓	\checkmark		
U-NII Detection Bandwidth	~	Not required	\checkmark		

5.1.2 Test Limits and Radar Signal Parameters

Detection Thereshold Values

DFS DETECTION THRESHOLDS FOR MASTER DEVICES AND CLIENT DEVICES WITH RADAR DETECTION

Maximum Transmit Power	Value (See Note ^{1 & 2})
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note ¹: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note²: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

DFS RESPONSE REQUIREMENT VALUES

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note ¹ .
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Note ^{1&2} .
U-NII Detection Bandwidth	100% of the UNII transmission power bandwidth. See Note ³ .

Note ¹: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

• For the Short Pulse Radar Test Signals this instant is the end of the Burst.

· For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.

 For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note²: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note ³: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Parameters of DFS Test Signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials			
0	1	1428	18	See Note	See Note			
		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$\left[\left(\frac{1}{360}\right)\right]$					
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup} \left\{ \begin{array}{l} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}}\right) \right\}$	60%	30			
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
	Aggregate (Radar Types 1-4) 80% 120							
	Note: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.							

SHORT PULSE RADAR TEST WAVEFORMS

LONG PULSE RADAR TEST WAVEFORM

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials		
5	50-100	5-20	1000-2000	1-3	8-20	80%	30		

FREQUENCY HOPPING RADAR TEST WAVEFORM

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop (kHz)		Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

5.1.2.1 Test Setup

See 4.4 for test setup description for the radiated test. The photo of test setup please refer to ANNEX B.

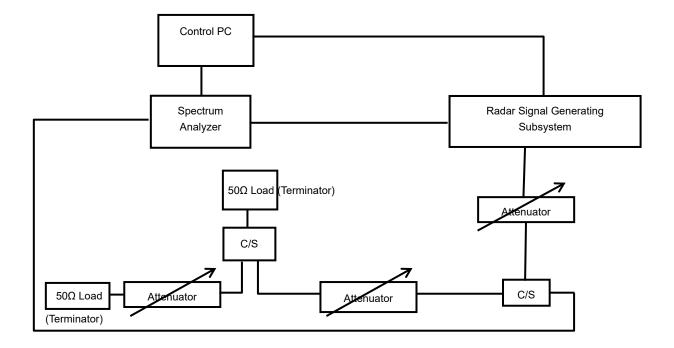
5.1.2.2 Test Procedure

DFS MEASUREMENT SYSTEM:

A complete DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 6, 7 and 8. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

Control PC Radar Signal Generating Subsystem Analyzer Attenuator C/S C/S C/S Traffic Monitoring Subsystem Support Unit Master / Client with DFS function

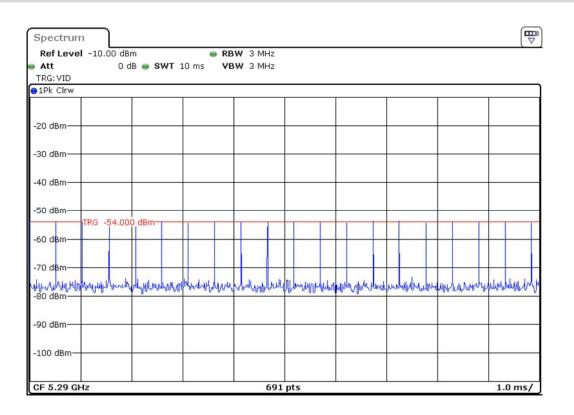
Conducted setup configuration of ADT DFS Measurement System


The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file ($6\frac{1}{2}$ Magic Hours) from Master device, the designated MPEG test file and instructions are located at: <u>http://ntiacsd.ntia.doc.gov/dfs/</u>.

CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:

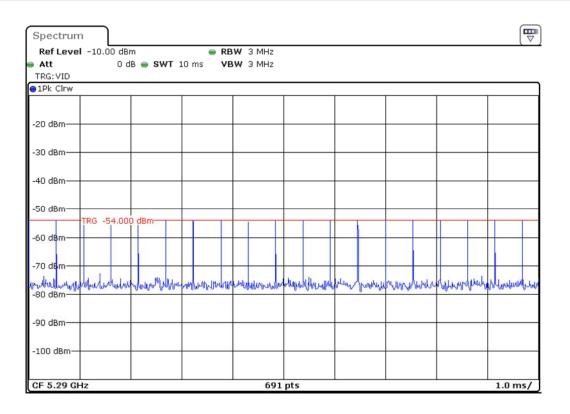
The measured channel is 5500 MHz in 20MHz Bandwidth and 5530MHz in 80MHz Bandwidth. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The Master antenna gain is 6.57dBi and required detection threshold is-54.43dBm (= -62 +1 +6.57)dBm. The calibrated conducted detection threshold level is set to -54.43 dBm.

Conducted setup configuration of Calibration of DFS Detection Threshold Level

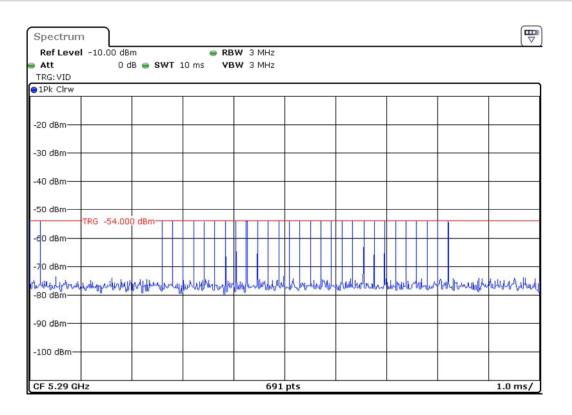


Radar Waveform Calibration Result

Radar Type 0 Calibration Plot (5290MHz)

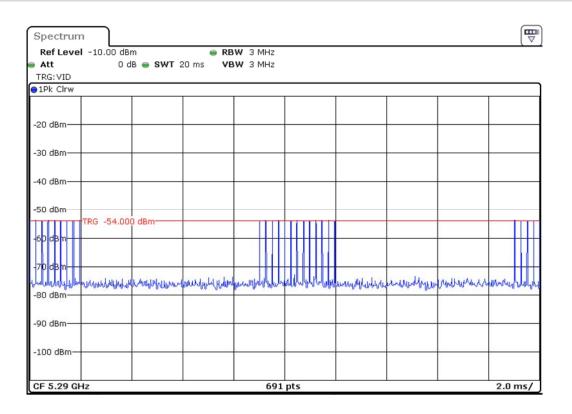

Spectr	um		F	Sp	ect	rum	2	- () s	pectru	um 3		X	S	peo	ctrum	14	4	X					₹
Ref Lev									● RB\															_
Att			I	0 dE	-	SWT	25	ms	VB	и зм	Hz													
	SGL TRG: VID																							
⊖1Pk Clr	W						_					-					_					_		_
-30 dBm	_						_																	-
-40 dBm	_						_																	_
-50 dBm																								_
-60 dBm		TRG	i -54	1.00) dB	m																		
-70 dBm																								
mount	un	Mal	Minh	Mu	ahuu	me	uh	Mary	habelen	Ambro	lipite	(h)	mm	仆	AN THE	holyny	phy	huly	min	halunn	allow	h	walker	how
-80 dBm																								-
-90 dBm	+						_																	_
-100 dBr	n-						_																	_
-110 dBr	n+																							_
-120 dBr	n-						_																	_
CF 5.29	CF 5.29 GHz 691 pts 2.5 ms								2.5 ms	$\overline{}$														

Radar Type 1 test A Calibration Plot (5290MHz)

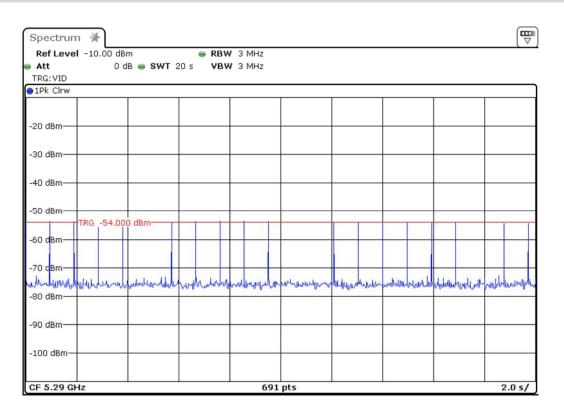


Radar Type 1 test B Calibration Plot (5290MHz)

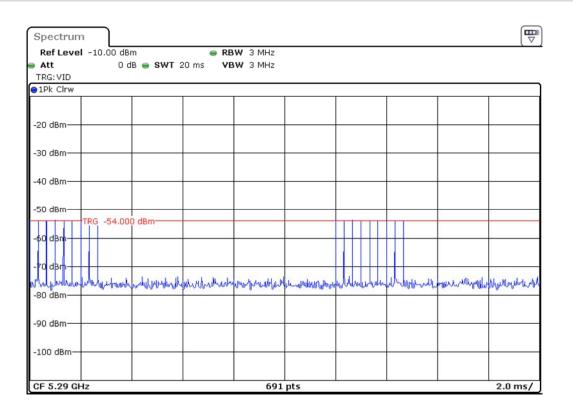
Radar Type 2 Calibration Plot (5290MHz)



Radar Type 3 Calibration Plot (5290MHz)



Radar Type 4 Calibration Plot (5290MHz)

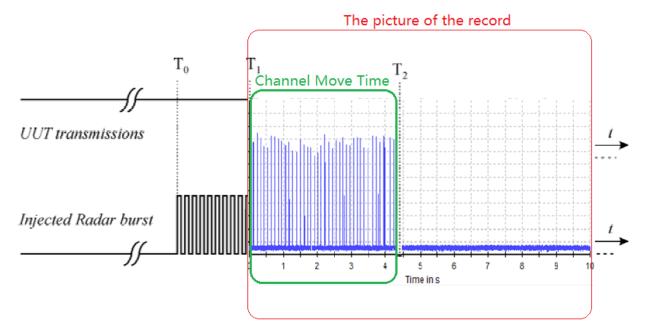


Radar Type 5 Calibration Plot (5290MHz)

Radar Type 6 Calibration Plot (5290MHz)

Please refer to ANNEX A.

ANNEX A TEST RESULT


A.1 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME

Result of DFS Channel Shutdown

Note: The radar test signals are injected into the Master Device.

This test was investigated for different bandwidth (the lowest and the highest bandwidth). The following plots was done on 80MHz as a representative

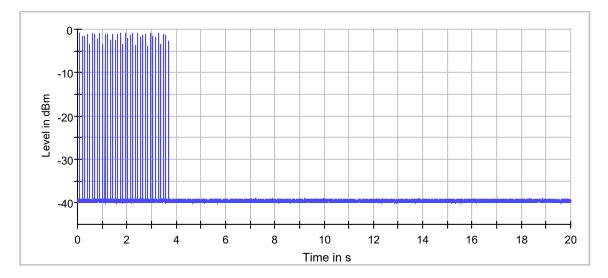
Description	Operation Mode	Operation Channel	Value (s)	Limit
Channel Move Time	802.11a	52	3.650	10 s
Channel Closing Transmission Time	802.11a	52	0.037	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.
Channel Move Time	802.11a	100	3.500	10 s
Channel Closing Transmission Time	802.11a	100	0.037	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.
Channel Move Time	802.11ac (80 MHz)	58	3.550	10 s
Channel Closing Transmission Time	802.11ac (80 MHz)	58	0.035	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.
Channel Move Time	802.11ac (80 MHz)	106	3.552	10 s
Channel Closing Transmission Time	802.11ac (80 MHz)	106	0.035	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.
Test Verdict			Pass	

Group

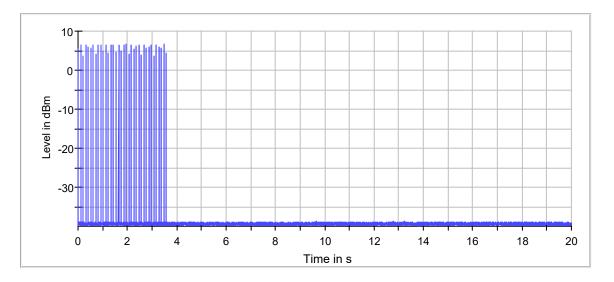
T0 denotes DFS test signal start generated on the channel.

T1 denotes the end of the radar burst.

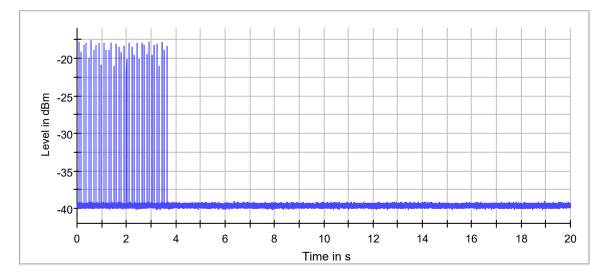
T2 denotes the instant when the UUT has ceased all transmissions on the channel.


The time difference between T1 and T2 shall be measured. This value (*Channel Move Time*) shall be noted and compared with the limit.

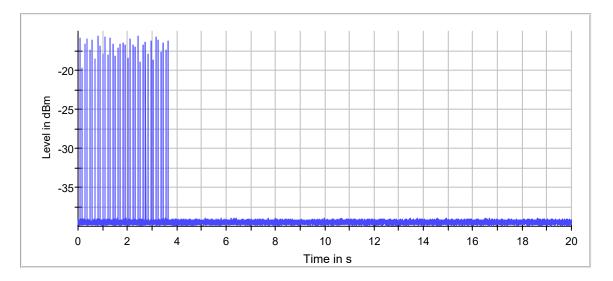
The aggregate duration (*Channel Closing Transmission Time*) of all transmissions from the UUT on Chr during the *Channel Move Time* shall be compared to the limit.


DFS Test schematic graphic

802.11a Channel 52

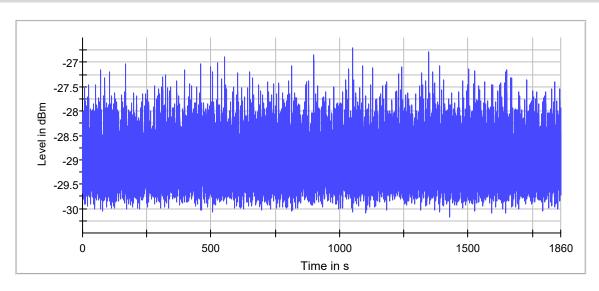


802.11a Channel 100

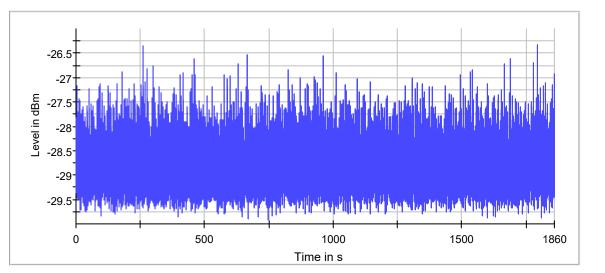


802.11ac(80 MHz) Channel 58

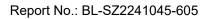
802.11ac(80 MHz) Channel 106

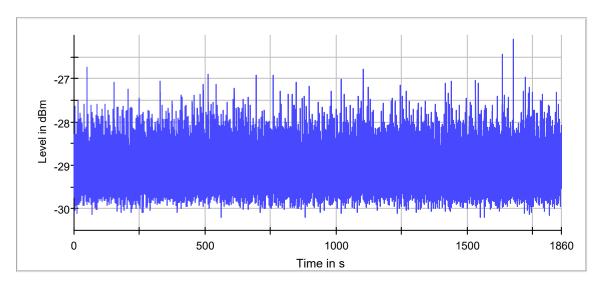


A.2 NON- OCCUPANCY PERIOD

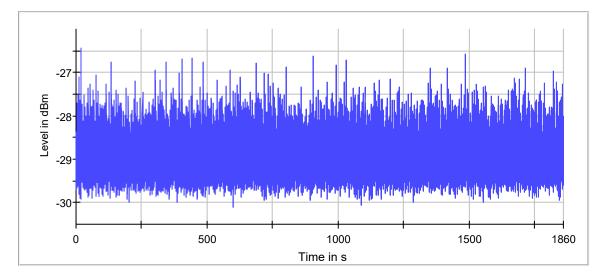

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.


802.11a Channel 52



Page No. 25 / 28



802.11ac(80 MHz) Channel 58

802.11ac(80 MHz) Channel 106

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ2241045-AR.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ2241045-AW.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SZ2241045-AI.PDF".

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.

2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.

3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.

4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.

5. The test data and results are only valid for the tested samples provided by the customer.

6. This report shall not be partially reproduced without the written permission of the laboratory.

7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--