

TEST REPORT

No. I21N02292-BLE

for

Guangdong OPPO Mobile Telecommunications Corp., Ltd.

Mobile Phone

Model Name: A102OP

with

Hardware Version: 11

Software Version: ColorOS V11

FCC ID: R9C-A102OP

Issued Date: 2021-08-26

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001 Email: yewu@caict.ac.cn. www.saict.ac.cn

©Copyright. All rights reserved by SAICT.

CONTENTS

CONT	ENTS	2		
1. SU	JMMARY OF TEST REPORT	3		
1.1.	Test Items	3		
1.2.	TEST STANDARDS	3		
1.3.	TEST RESULT	3		
1.4.	TESTING LOCATION	3		
1.5.	Project data	3		
1.6.	SIGNATURE	3		
2. Cl	LIENT INFORMATION	4		
2.1.	APPLICANT INFORMATION	4		
2.2.	MANUFACTURER INFORMATION	4		
3. EC	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5		
3.1.	About EUT	5		
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5		
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5		
3.4.	GENERAL DESCRIPTION	6		
4. RI	EFERENCE DOCUMENTS	7		
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7		
4.2.	Reference Documents for testing	7		
5. TI	EST RESULTS	8		
5.1.	TESTING ENVIRONMENT	8		
5.2.	TEST RESULTS	8		
5.3.	STATEMENTS	8		
6. TI	EST EQUIPMENTS UTILIZED	9		
7. LA	ABORATORY ENVIRONMENT1	0		
8. M	EASUREMENT UNCERTAINTY1	1		
ANNE	X A: DETAILED TEST RESULTS	2		
TEST	CONFIGURATION	2		
	ANTENNA REQUIREMENT			
A.1 M	MAXIMUM PEAK OUTPUT POWER	5		
A.2 I	PEAK POWER SPECTRAL DENSITY	6		
A.36	5DB BANDWIDTH	:0		
A.4 I	BAND EDGES COMPLIANCE	4		
A.5 TRANSMITTER SPURIOUS EMISSION - CONDUCTED				
A.67	A.6 TRANSMITTER SPURIOUS EMISSION - RADIATED			
A.7 A	A.7 AC POWER LINE CONDUCTED EMISSION			

1. Summary of Test Report

1.1. Test Items

Product Name	Mobile Phone
Model Name	A102OP
Applicant's name	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Manufacturer's Name	Guangdong OPPO Mobile Telecommunications Corp., Ltd.

1.2. Test Standards

FCC Part15-2019; ANSI C63.10-2013

1.3. Test Result

Pass

Please refer to "5.2. Test Results"

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project data

Testing Start Date:	2021-07-25
Testing End Date:	2021-08-25

1.6. Signature

Lin Zechuang (Prepared this test report)

Tang Weisheng (Reviewed this test report)

Zhang Bojun (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	Guangdong OPPO Mobile Telecommunications Corp., Ltd.	
Address:	NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City,	
Address.	Guangdong, China	
Contact Person	Mei XiLi	
E-Mail	meixili@oppo.com	
Telephone:	(86)76986076999	
Fax:	/	

2.2. Manufacturer Information

Company Name:	Guangdong OPPO Mobile Telecommunications Corp., Ltd.		
Address:	NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City,		
Audress.	Guangdong, China		
Contact Person	Mei XiLi		
E-Mail	meixili@oppo.com		
Telephone:	(86)76986076999		
Fax:	/		

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

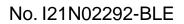
Product Name	Mobile Phone
Model Name	A102OP
Frequency Range	2400MHz~2483.5MHz
Type of Modulation	GFSK
Number of Channels	40
Antenna Type	Integrated
Antenna Gain	-3.0dBi
Power Supply	3.85V DC by Battery
FCC ID	R9C-A102OP
Condition of EUT as received	No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Receive Date
UT03aa	868994050054571	11		2021-07-23
	868994050054563	11	ColorOS V11	2021-07-23
UT02aa	868994050055578	11		2024 07 22
	868994050055560	11	ColorOS V11	2021-07-23

*EUT ID: is used to identify the test sample in the lab internally.


UT03aa is used for conduction test, UT02aa is used for radiation test and AC Power line Conducted Emission test.

3.3. Internal Identification of AE used during the test

AE ID*	Description	AE ID*
AE1	Battery	/
AE2	Charger	/
AE3	USB Cable	/
AE4	Headset	/

AE1

Model	BLP779
Manufacturer	TWS TECHNOLOGY (GUANGZHOU) LIMITED
Capacity	3890mAh
Nominal Voltage	3.85V
AE2	
Model	OP92KAJH
Manufacturer	Shenzhen Kunxing Technology Co.,Ltd.

Specification AE3	Japan Standard Charger	
Model	DL143	
Manufacturer	Dongguan Fuqiang Electronics Co., Ltd	
AE4		
Model	MH156	
Manufacturer	JiangXi Risound Electronics CO.,LTD	

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Mobile Phone with integrated antenna and battery. It consists of normal options: Lithium Battery, Charger, USB Cable and Headset.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2019
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902–928MHz,	
	2400–2483.5 MHz, and 5725–5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. Test Results

5.1. Testing Environment

Normal Temperature:	15~35°C
Relative Humidity:	20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Peak Power Spectral Density	15.247 (e)	Р
3	6dB Bandwidth	15.247 (a)	Р
4	Band Edges Compliance	15.247 (d)	Р
5	Transmitter Spurious Emission - Conducted	15.247 (d)	Р
6	Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	Р
7	AC Power line Conducted Emission	15.107, 15.207	Р

See **ANNEX A** for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2021-12-30	1 year
2	RF Control Unit	JS0806-2	21C8060398	Tonscend	2022-05-09	1 year
3	Test Receiver	ESCI	100702	Rohde & Schwarz	2022-01-13	1 year
4	LISN	ENV216	102067	Rohde & Schwarz	2022-07-15	1 year

Radiated test system

No.	Equipmont	Model	Serial	Serial Manufacturer		Calibration
NO.	Equipment	Model	Number	Manufacturer	Due date	Period
1	Loop Antenna	HLA6120	35779	TESEQ	2022-04-25	3 years
2	BiLog Antenna	3142E	0224831	ETS-Lindgren	2024-05-27	3 years
3	Horn Antenna	3117	00066577	ETS-Lindgren	2022-04-02	3 years
4	Horn Antenna	QSH-SL-18	³ 17013 Q-par	O-par	2023-01-06	3 years
-	Tiom Antenna	-26-S-20		2020 01 00	o years	
5	Test Receiver	ESR7	101676	Rohde & Schwarz	2021-11-25	1 year
6	Spectrum	FSV40	101192	Rohde & Schwarz	2022-01-13	1 voor
0	Analyser	13040	101192		2022-01-13	1 year
7	Chamber	FACT3-2.0	1285	ETS-Lindgren	2023-05-29	2 years

Test software

No.	Equipment	Manufacturer	Version
1	RF Test System	Tonscend	JS1120-3
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Semi-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω
Normalised site attenuation (NSA)	$< \pm 4$ dB, 3 m distance, from 30 to 1000 MHz

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-1000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω

Fully-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

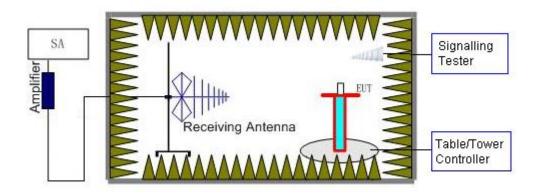
8. <u>Measurement Uncertainty</u>

Test Name	Uncertainty (<i>k</i> =2)	
1. Maximum Peak Output Power	1.32dB	
2. Peak Power Spectral Density	2.32dB	
3. 6dB Bandwidth	66H	lz
4. Band Edges Compliance	1.92dB	
	30MHz≤f<1GHz	1.41dB
5 Transmitter Spurious Emission Conducted	1GHz≤f<7GHz	1.92dB
5. Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
6. Transmitter Spurious Emission - Radiated	9kHz≤f<30MHz	1.74dB
	30MHz≤f<1GHz	4.84dB
	1GHz≤f<18GHz	4.68dB
	18GHz≤f≤40GHz	3.76dB
7. AC Power line Conducted Emission	150kHz≤f≤30MHz	3.00dB

ANNEX A: Detailed Test Results

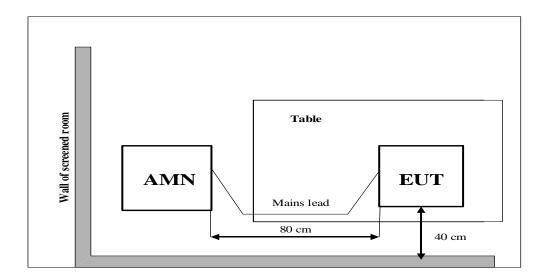
Test Configuration

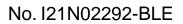
The measurement is made according to ANSI C63.10.


1) Conducted Measurements

- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the spectrum analyzer to start measurement.
- 5. Record the values.

2) Radiated Measurements


Test setup: EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.



3) AC Power line Conducted Emission Measurement

For Bluetooth LE, the EUT is working under test mode. The EUT is commanded to operate at maximum transmitting power.

A.0 Antenna requirement

Measurement Limit:

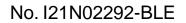
Standard	Requirement
Standard FCC CRF Part 15.203	Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,
	§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is -3.0dBi. The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter.


Measurement Limit:

Standard	Limit (dBm)
FCC 47 CRF Part 15.247(b)	< 30

Measurement Results:

Mode	Frequency (MHz)	RF output power (dBm)	Conclusion
	2402(CH0)	5.59	Р
LE 1M	2440(CH19)	6.16	Р
	2480(CH39)	7.38	Р
	2402(CH0)	5.84	Р
LE 2M	2440(CH19)	6.45	Р
	2480(CH39)	7.44	Р

Conclusion: Pass

A.2 Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-clause 11.10.2

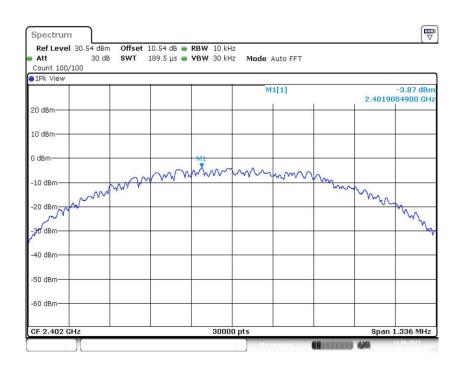
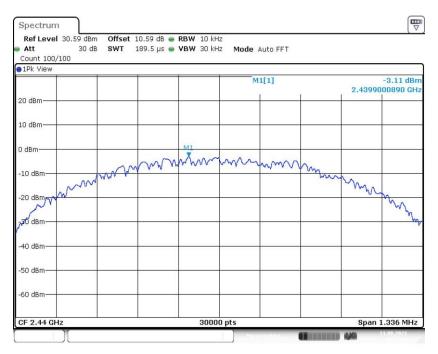
Measurement Limit:

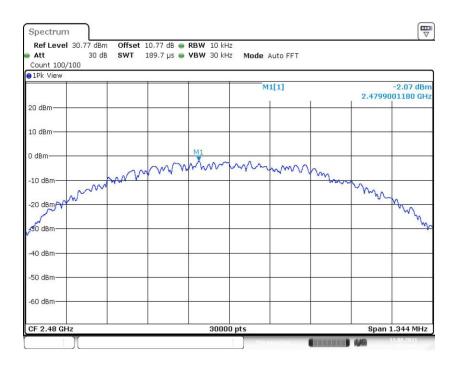
Standard	Limit (dBm/3 kHz)
FCC 47 CRF Part 15.247(e)	< 8 dBm/3 kHz

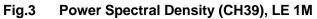
Measurement Results:

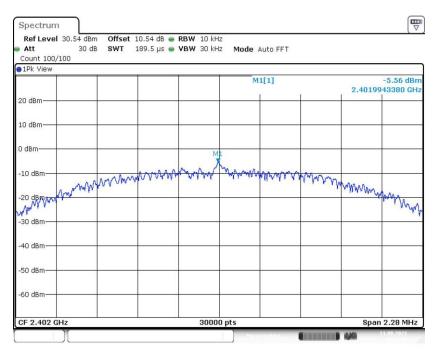
Mode	Frequency (MHz)	-	Peak Power Spectral Density (dBm)		
	2402(CH0)	Fig.1	-3.87	Р	
LE 1M	2440(CH19)	Fig.2	-3.11	Р	
	2480(CH39)	Fig.3	-2.07	Р	
	2402(CH0)	Fig.4	-5.56	Р	
LE 2M	2440(CH19)	Fig.5	-4.92	Р	
	2480(CH39)	Fig.6	-3.91	Р	

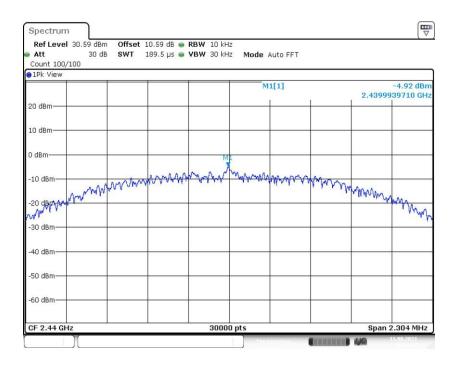
See below for test graphs. Conclusion: PASS

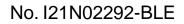






Fig.1 Power Spectral Density (CH0), LE 1M







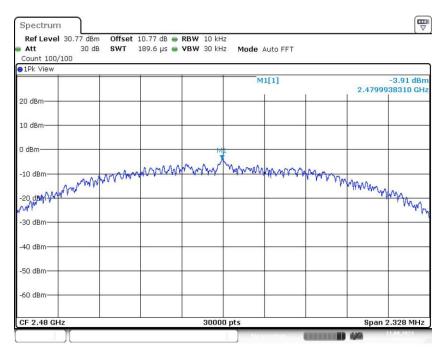


Fig.6 Power Spectral Density (CH39), LE 2M

A.3 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

Measurement Result:

Mode	Frequency (MHz)	Test Res	ults (kHz)	Conclusion
	2402(CH0)	Fig.7	668.00	Р
LE 1M	2440(CH19)	Fig.8	668.00	Р
	2480(CH39)	Fig.9	672.00	Р
	2402(CH0)	Fig.10	1144.00	Р
LE 2M	2440(CH19)	Fig.11	1152.00	Р
	2480(CH39)	Fig.12	1152.00	Р

See below for test graphs. Conclusion: PASS

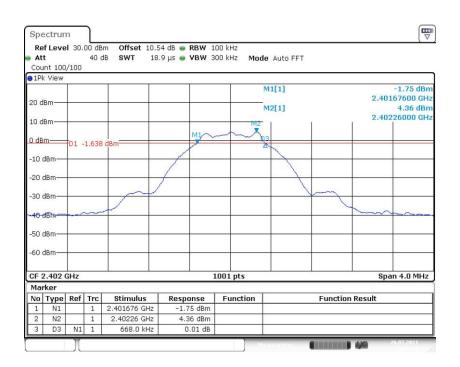
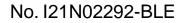



Fig.7 6dB Bandwidth (CH0), LE 1M

Spe	ectrun	n	1					
At	f Leve t int 100		00 dB 40 d		59 dB 👄 RBW 1 3.9 μs 👄 VBW 3		e Auto FFT	
	View	,						
20 d	Bm						M1[1] M2[1]	-0.54 dBr 2.43967600 GH 5.50 dBr
10 d	Bm	-				M2	1 1	2.44026000 GH
<mark>0 dB</mark>	m	D1 -	0.500	dBm	MI		23	
-10	dBm—							
-20	dBm—							
-30	dBm—			\square	<u> </u>			
40	dBm—	~	~~					
-50	dBm—							
-60	dBm—							
	2.44 G	Hz				1001 pts		Span 4.0 MHz
	rker	D-C	Tur	01	Demons	E		
N0 1	Type N1	Ref	1 Trc	Stimulus	-0.54 dBm	Function	Fund	ction Result
2	N2		1	2.44026 GHz	5.50 dBm			
3	DЗ	N1	1	668.0 kHz	-0.00 dB			

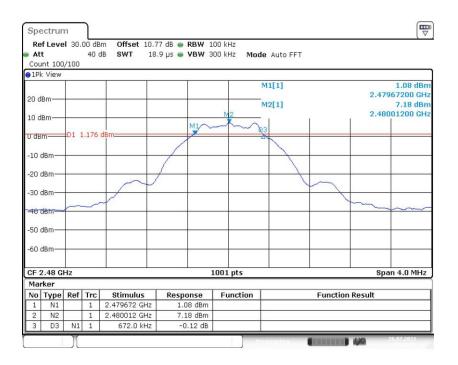
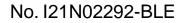
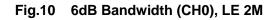




Fig.9 6dB Bandwidth (CH39), LE 1M

Re	f Leve	1 30.	00 dB	m Offset 10	.54 dB 👄 RBW 1	LOO kHz			
At			40 0		8.9 µs 👄 VBW 3		ode Auto FFT		
Cou	int 100	/100		Non Marchael					
1P	(View				18455	02			
							M1[1]		-1.94 dBn
20 d	Bm						and the state of	2.40	144800 GH
							M2[1]		4.10 dBn
10 d	Bm	<u> </u>				NZ	- 1 - 1	2.40	201600 GH
					M1	X	0		
0 dB	m	D1 -	1.895	dBm	2 m	~ ~~~			
	lo.			1 -				~	
-10	dBm—								
20	dBm			1				Y	
20	abin		1					2	
-30	dBm—	-	/	-					
_		~							m
-40	dBm—	-		-					
	In								
-50	dBm—								
-60	dBm—								
00	abin								
CE 1	2.402 (GHZ				1001 pts		Sn	an 4.0 MHz
	ker								
	Туре	Ref	Trc	Stimulus	Response	Function	E	unction Result	
1	N1		1	2.401448 GHz			1		
2	N2		1	2.402016 GHz	4.10 dBm				
3	D3	N1	1	1.144 MHz	-0.32 dB				

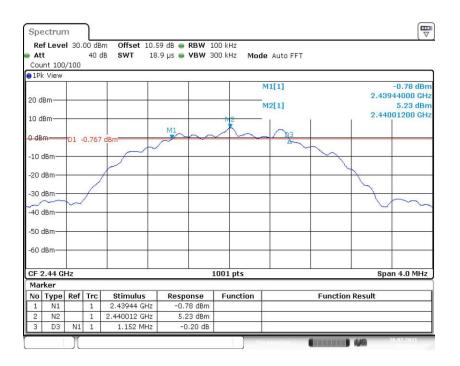
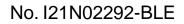



Fig.11 6dB Bandwidth (CH19), LE 2M

Re	ectrur ef Leve		00 dB	m Offset 10.7	7 dB 👄 RBW 1	00 kHz		T
At			40		.9 µs 🖷 VBW 3		le Auto FFT	
	int 100	/100						
D1P	k View							
							M1[1]	1.01 dBi 2.47944000 GH
20 c	IBm—	+					M2[1]	7.03 dBi
	ID					M2	matal.	2.48001200 GH
10 c	IBW				M1	X		
0 de	m	D1 1	1.033	dBm-	m	15	- D3	
				~~~				
-10	dBm—	-		1		_		
	10							$\mathcal{A}$
-20	dBm—		/					
-30	dBm	-	1					
~	~~~	-						y m
-40	dBm—	-		-				
50	dBm							
-30								
-60	dBm—	<u> </u>						
CF :	2.48 G	Hz			1	001 pts		Span 4.0 MHz
Ma	rker							
No	Туре	Ref	Trc	Stimulus	Response	Function	Func	tion Result
1	N1		1	2.47944 GHz	1.01 dBm			
2	N2		1	2.480012 GHz	7.03 dBm			
3	D3	N1	1	1.152 MHz	-0.21 dB			

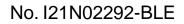
Fig.12 6dB Bandwidth (CH39), LE 2M



### A.4 Band Edges Compliance

#### **Measurement Limit:**

Standard	Limit (dBm)
FCC 47 CFR Part 15.247 (d)	> 20


### Measurement Result:

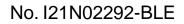
Mode	Frequency (MHz)	Test Resu	lts (dBm)	Conclusion
LE 1M	2402(CH0)	Fig.13	50.75	Р
	2480(CH39)	Fig.14	53.13	Р
LE 2M	2402(CH0)	Fig.15	47.76	Р
	2480(CH39)	Fig.16	52.71	Р

See below for test graphs. Conclusion: PASS

At	f Leve t int 300		00 dBr 30 d		4 dB 👄 RBW 1 L ms 👄 VBW 3		<b>le</b> Auto Sw	veep	
	( View	/ 300							
10 d	Bm						M1[1] M2[1]		4.41 dBr 2.4022540 GH -48.63rdBr
0 dB	m						-	74 97	2.400000 GH
-10	dBm								
_	dBm-	D1 -	15.590	D dBm					
	dBm—								
	dBm—						_		
		um	water up to	methodem	naunument	mound	n4	Manulus	monor he
	dBm—								
-70 (	dBm—						_		
	t 2.35 ker	GHz				691 pts			Stop 2.405 GHz
	Туре	Ref	Trc	Stimulus	Response	Function		Function f	Result
1	N1		1	2.402254 GHz	4.41 dBm	. anotion		. anotion i	
2	N2		1	2.4 GHz	-48.63 dBm				
3	NЗ		1	2.39 GHz	-49.67 dBm				
4	N4		1	2.3821232 GHz	-46.34 dBm				

Fig.13 Band Edges (CH0), LE 1M






Spe	ectrur	n	٦						
At	f Leve t nt 300		00 dB 30 d		77 dB 👄 RBW 1 1 ms 👄 VBW 3		<b>le</b> Auto Swee	эр	, , , , , , , , , , , , , , , , , , ,
• 1P	View								
10 d	Bm	M1					M1[1] M2[1]		7.18 dBn 2.480250 GH -48.85 dBn
0 dB	m	1	_				mz[1]	1 1	2.483500 GH
-10	dBm—	11						_	
-20 (	dBm		-12.82	20 dBm					
-30 (	dBm—						_	-	
-40 (	dBm—		M2		M3			1914	
-501	18m	-	hourse	nothing	antenne	manna	manufathere	muchaman	manhammandadered
-60 (	dBm—	_						~	
-70 (	dBm—							-	
Star	t 2.47	GHz	(			691 pts		78	Stop 2.55 GHz
	ker								
	Туре	Ref		Stimulus	Response	Function		Function	Result
1	N1 N2		1	2.48025 GHz 2.4835 GHz	7.18 dBm -48.85 dBm				
3	N3		1	2.4005 GHz	-47.91 dBm				
4	N4		1	2.528667 GHz	-45.95 dBm				
							cesurios		25.07.2021



	nt 300	/300	30 d	ib <b>SWT</b> 1	.1 ms 🕳 V	<b>BW</b> 3	00 kHz Moo	le Auto Swee	эр		
10 d 0 dB								M1[1] M2[1]		2.4020	.80 dBr
	dBm—	-D1 -	15.82	0 dBm							Д
	dBm— dBm—										
	dBm	un	henry	weighter	hummen	wheney	empedenter	hathinsonal	M3	wayman	4
	dBm—										
	dBm	GHz					691 pts			Stop 2.4	05 GHz
Mai	rker										
No 1	Type N1	Ref	Trc 1	Stimulus 2.402015 GHz	Respon	dBm	Function		Function	Result	
2	N1 N2		1	2.402013 GHz 2.4 GHz	-42.80						
3	NЗ		1	2.39 GHz	-47.26						
3	N3 N4		1	2.39 GHz 2.3999783 GHz	-47.26						

Fig.15 Band Edges (CH0), LE 2M



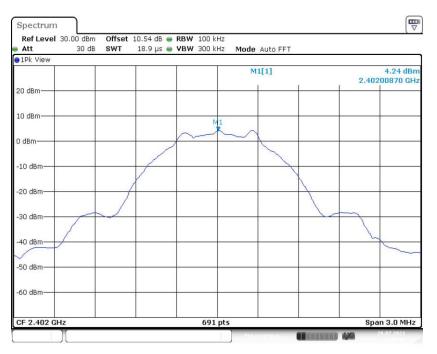


Spe	ctrun	n	٦						
Att	f <b>Leve</b> : nt 300,		00 dB 30 d		77 dB 👄 RBW 1 .1 ms 👄 VBW 3		<b>le</b> Auto Swe	ер	
●1Pk	View			- W					
10 dB	3m	M1					M1[1] M2[1]		6.95 dB 2.480010 GF -48.41 dB
0 dBn	n	A						1	2.483500 GH
-10 d	IBm—	D1 -	13.05	0 dBm			_	_	
-20 d	IBm—						-		
-30 d	IBm—	-	5						_
-40 d			M2		M3				1/14
-50 d	Bm			And the second	a share the second s	kan laga kanga danga	menter and the	Uniphan mana han dite	when the whole the second
-60 d	lBm—	-					-		
-70 d	IBm—								
Start	t 2.47	GHz				691 pts			Stop 2.55 GH:
Mark	ker								
		Ref		Stimulus	Response	Function		Functio	on Result
1	N1		1	2.48001 GHz	6.95 dBm				
2	N2		1	2.4835 GHz	-48.41 dBm				
3	N3		1	2.5 GHz	-48.10 dBm				
4	N4		1	2.538754 GHz	-45.76 dBm				

Fig.16 Band Edges (CH39), LE 2M



# A.5 Transmitter Spurious Emission - Conducted


### Measurement Limit:

	Standard		Limit (dBm)					
FCC 4	7 CFR Part 15.2	47 (d)	20dBm below peak output power in 100 kHz bandwidth					
Measuremen	t Results:							
MODE	Channel	Frequency	Range	Test Results	Conclusion			
		2.402 GHz		Fig.17	Р			
	0	30MHz -1GHz		Fig.18	Р			
		1GHz-26.5GHz		Fig.19	Р			
	19	2.440 GHz		Fig.20	Р			
LE 1M		30MHz -1GHz		Fig.21	Р			
		1GHz-26.5GHz		Fig.22	Р			
	39	2.480 GHz		Fig.23	Р			
		30MHz -1GHz		Fig.24	Р			
		1GHz-26	.5GHz	Fig.25	Р			
		2.402 GHz		Fig.26	Р			
	0	30MHz -1GHz		Fig.27	Р			
		1GHz-26.5GHz		Fig.28	Р			
		2.440 GHz		Fig.29	Р			
LE 2M	19	30MHz -1GHz		Fig.30	Р			
		1GHz-26.5GHz		Fig.31	Р			
		2.480 (	GHz	Fig.32	Р			
	39	30MHz -	1GHz	Fig.33	Р			
		1GHz-26	.5GHz	Fig.34	Р			

See below for test graphs.

**Conclusion: Pass** 







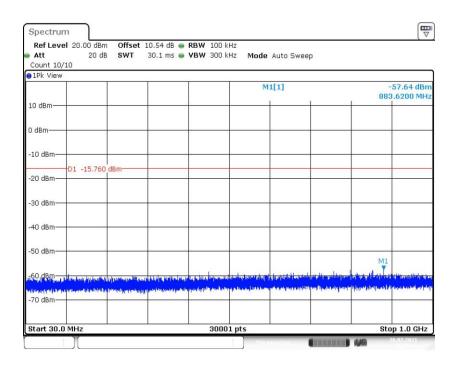
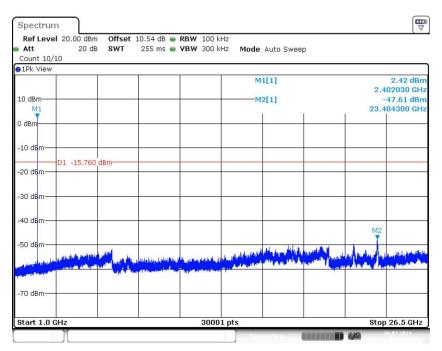




Fig.18 Conducted Spurious Emission (CH0, 30MHz -1GHz), LE 1M









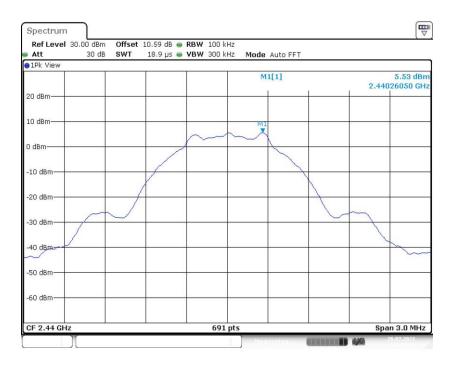
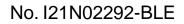




Fig.20 Conducted Spurious Emission (CH19, Center Frequency), LE 1M





20 dE 10	SWT	30.1 ms 👄	<b>VBW</b> 300 k	Hz Mode	Auto Swee	р		
r	1	T	Т					57 00 ID
				IVI	1[1]			-57.98 dBn 9.9140 MH
			~					
D1 -14.470	dBm							
				M1				
				Contra to state in the				
Press Second distances of	nan falfa-sinaa faqua		a (kapar Palis) arketer	and the property of the second	and the provident sectors.	adate at the public	an the district why district the	ann and and
	01 -14.470	D1 -14.470 dBm	10	10	10 M	10 M1[1]	10 M1[1]	10 M1[1] 58 00 00 01 -14.470 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



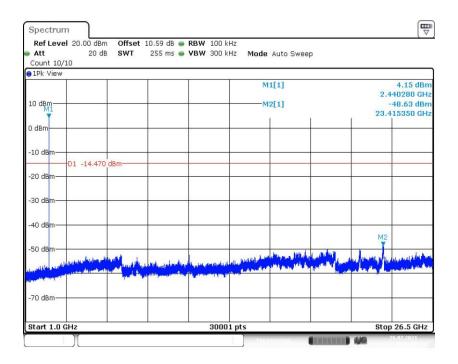
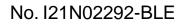
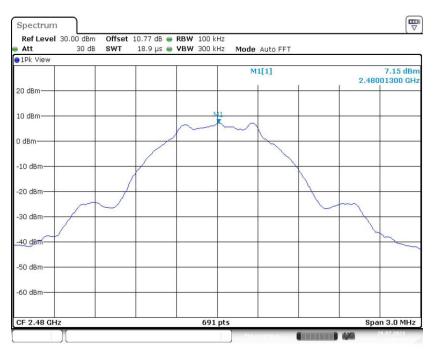





Fig.22 Conducted Spurious Emission (CH19, 1GHz-26.5GHz), LE 1M









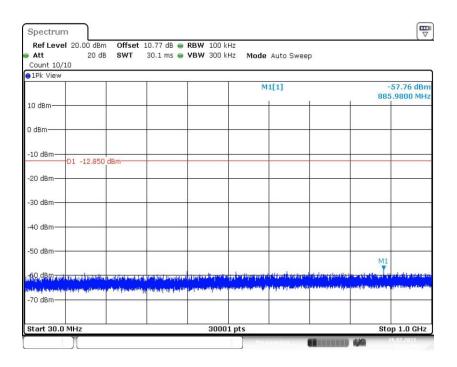
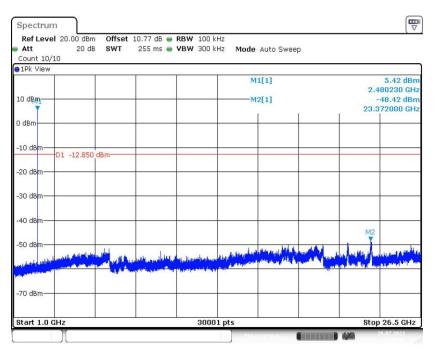




Fig.24 Conducted Spurious Emission (CH39, 30MHz -1GHz), LE 1M









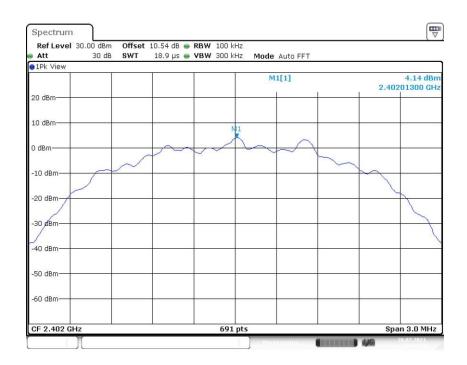
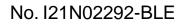




Fig.26 Conducted Spurious Emission (CH0, Center Frequency), LE 2M





Ref Leve	el 20.00 dBm 20 dB		10.54 dB 👄	<b>RBW</b> 100 k <b>VBW</b> 300 k		Auto Sweer			
Count 10/		3 3 11	30.1 ms 🖶	4BW 300 K	moue	Auto Sweet			
1Pk View				(dd)					
					M	1[1]			-58.23 dBn 7.5360 MH
10 dBm								98	7.5360 MH
) dBm				21					
10 dBm—									
20 dBm—	-D1 -15.860	dBm							
30 dBm—						1.2 × 2			
-40 dBm—									
50 dBm—									M
60 dBm	Apothesportab	din per brauduj	and the second s	and a still so that of the	ndetre andre	harding bit, give	the investment		
70 dBm—			- firstlandageneiseren	angangurahiraga,	. New York and the second s	a an	and the submitted of the	an a	a la <mark>la navana</mark> ta se
Start 30.0					1 pts				op 1.0 GHz



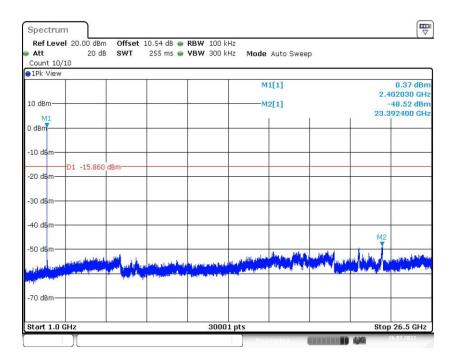
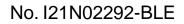
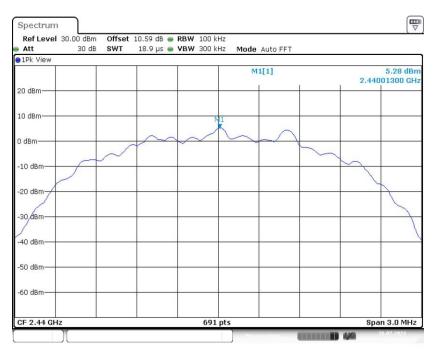




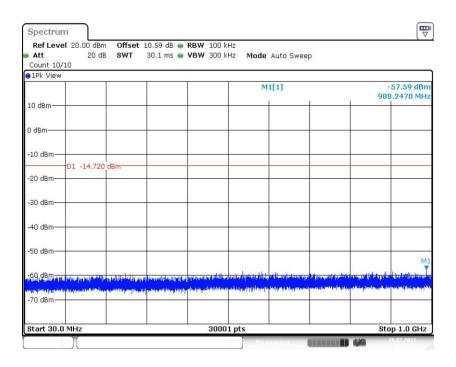
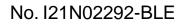
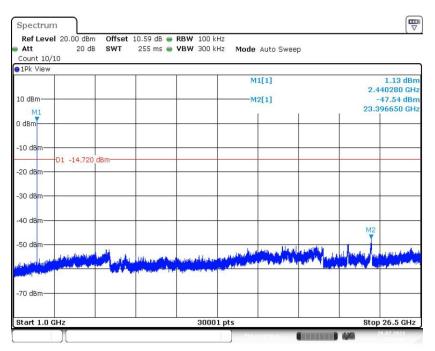

Fig.28 Conducted Spurious Emission (CH0, 1GHz-26.5GHz), LE 2M

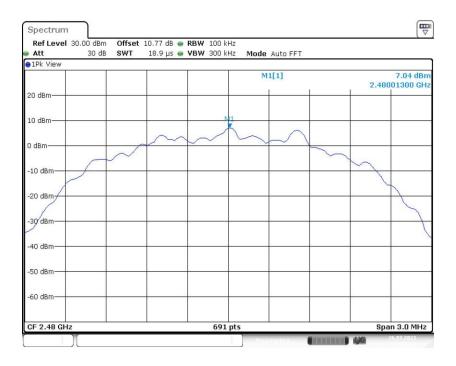




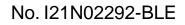






Fig.30 Conducted Spurious Emission (CH19, 30MHz -1GHz), LE 2M


















Ref Leve	el 20.00 dBr 20 d		10.77 dB 👄	RBW 100 k VBW 300 k		Auto Cureo					
Count 10/		5 391	30.1 ms 🖷	YDW 300 K	nz Mode	Auto Swee	þ				
1Pk View											
					M	1[1]			-58.54 dBn 565.4380 MH		
10 dBm		~						563	5.4380 MH		
) dBm				0							
10 dBm											
20 dBm—	-D1 -12.960										
30 dBm—											
40 dBm—											
50 dBm—											
60 dBm	-	a dil di milia di sina di bia	and a superior	ultray attractions	M1	-	and some offer	uter all a total	and the state		
70 dBm—	a sina () _e ntrin a fata parte	n staanen kerkete	aldura hafar san da h	an that to a second second	onlinitetetetetetetetetetetetetetetetetetet	a da na da na polici na principa da filo	andrad (data) and	ange tayangan dan angera	Laboration of the second second		
Start 30.0	MU ₂			3000	1 nts			Ste	p 1.0 GHz		



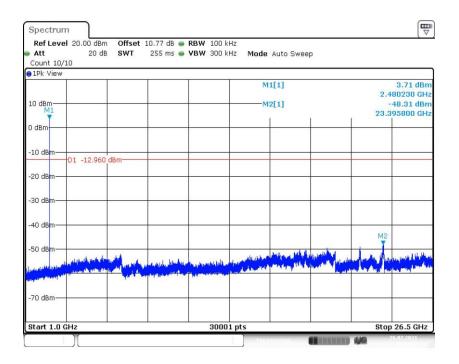



Fig.34 Conducted Spurious Emission (CH39, 1GHz-26.5GHz), LE 2M



## A.6 Transmitter Spurious Emission - Radiated

#### Measurement Limit:

Standard	Limit (dBm)	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dBm below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

#### Limit in restricted band:

Frequency of emission (MHz)	Field strength(µV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

### **Test Condition:**

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

**Note:** According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz.Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements.



## **Measurement Results:**

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~18 GHz	Fig.35	Р
	19	1 GHz ~18 GHz	Fig.36	Р
	39	1 GHz ~18 GHz	Fig.37	Р
LE 1M	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.38	Р
	Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.39	Р
		9 kHz ~30 MHz	Fig.40	Р
	All channels	30 MHz ~1 GHz	Fig.41	Р
		18 GHz ~ 26.5 GHz	Fig.42	Р
	0	1 GHz ~18 GHz	Fig.43	Р
	19	1 GHz ~18 GHz	Fig.44	Р
	39	1 GHz ~18 GHz	Fig.45	Р
LE 2M	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.46	Р
	Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.47	Р
		9 kHz ~30 MHz	Fig.48	Р
	All channels	channels 30 MHz ~1 GHz		Р
		18 GHz ~ 26.5 GHz	Fig.50	Р

### Worst Case Result

## For LE 1M:

# CH39 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	101	(dB/m)
11851.714286	47.67	74.00	26.33	V	10.1
13367.571429	48.96	74.00	25.04	Н	11.4
14595.000000	50.95	74.00	23.05	Н	11.9
15877.714286	52.76	74.00	21.24	V	14.0
16888.285714	55.25	74.00	18.75	V	18.0
17959.285714	54.70	74.00	19.30	V	19.1

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
11851.714286	35.62	54.00	18.38	V	10.1
13367.571429	37.19	54.00	16.81	Н	11.4
14595.000000	37.68	54.00	16.32	Н	11.9
15877.714286	40.51	54.00	13.49	V	14.0
16888.285714	42.44	54.00	11.56	V	18.0
17959.285714	42.88	54.00	11.12	V	19.1



## For LE 2M: CH39 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	FOI	(dB/m)
12267.428572	49.16	74.00	24.84	V	11.0
13421.142857	48.83	74.00	25.17	Н	11.5
14856.428572	50.79	74.00	23.21	V	13.0
15925.714286	52.38	74.00	21.62	Н	14.1
16963.714286	55.67	74.00	18.33	Н	18.3
17926.285714	56.25	74.00	17.75	Н	18.9

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
12267.428572	37.00	54.00	17.00	V	11.0
13421.142857	36.65	54.00	17.35	Н	11.5
14856.428572	38.71	54.00	15.29	V	13.0
15925.714286	40.12	54.00	13.88	Н	14.1
16963.714286	42.67	54.00	11.33	Н	18.3
17926.285714	43.31	54.00	10.69	Н	18.9

### Note:

A "reference path loss" is established and the  $A_{Rpl}$  is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss.  $P_{Mea}$  is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs.

## **Conclusion: Pass**



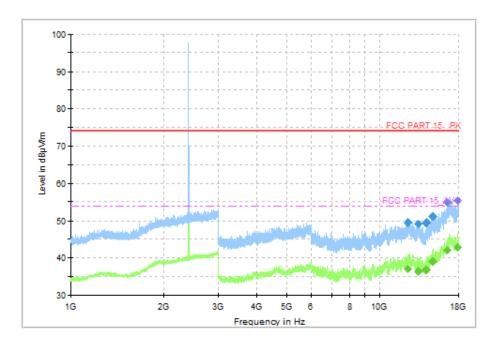



Fig.35 Radiated Spurious Emission (CH0, 1 GHz ~18 GHz), LE 1M

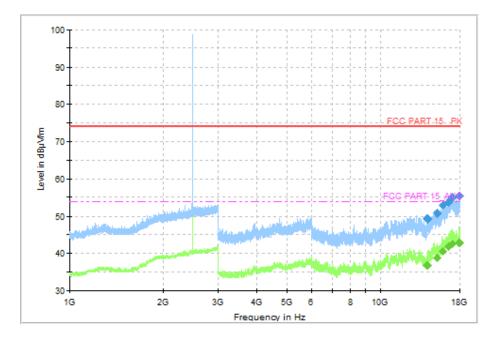



Fig.36 Radiated Spurious Emission (CH19, 1 GHz ~18 GHz), LE 1M






Fig.37 Radiated Spurious Emission (CH39, 1 GHz ~18 GHz), LE 1M

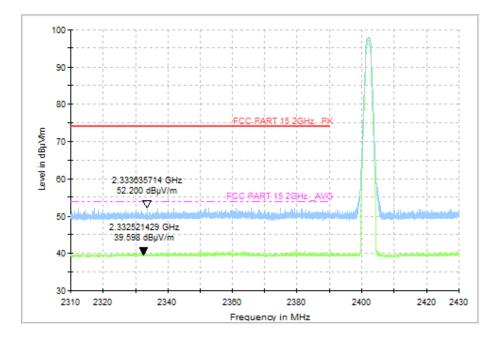



Fig.38 Radiated Band Edges (CH0, 2380GHz~2450GHz), LE 1M



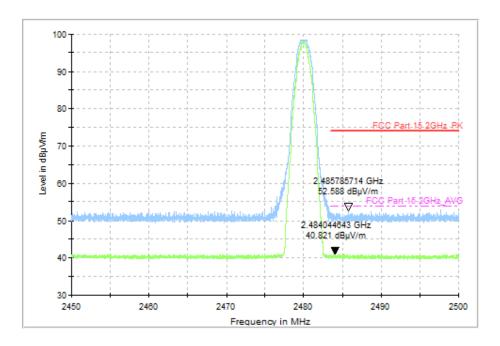



Fig.39 Radiated Band Edges (CH39, 2450GHz~2500GHz), LE 1M

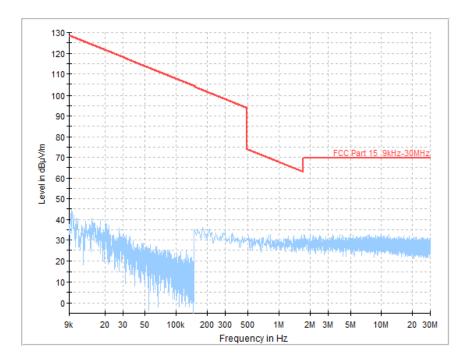



Fig.40 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz), LE 1M



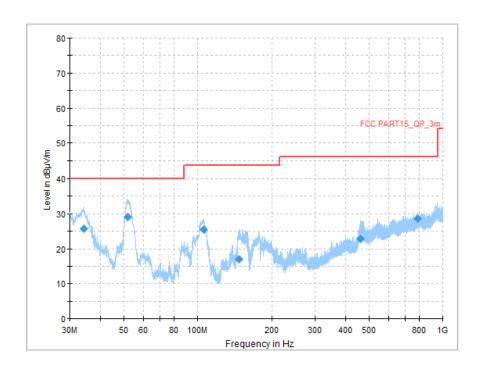



Fig.41 Radiated Spurious Emission (All Channels, 30 MHz-1 GHz), LE 1M



Fig.42 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz), LE 1M






Fig.43 Radiated Spurious Emission (CH0, 1 GHz ~18 GHz), LE 2M

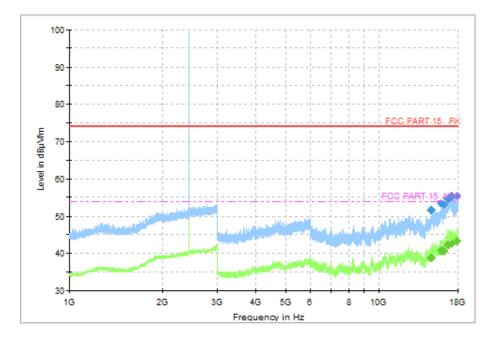



Fig.44 Radiated Spurious Emission (CH19, 1 GHz ~18 GHz), LE 2M



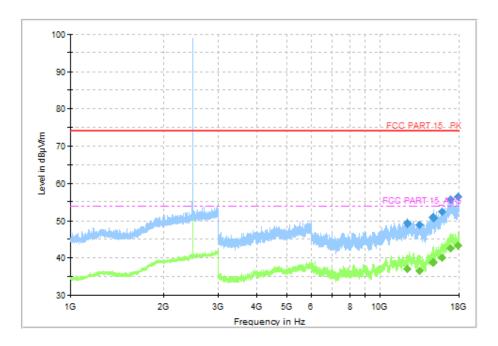



Fig.45 Radiated Spurious Emission (CH39, 1 GHz ~18 GHz), LE 2M

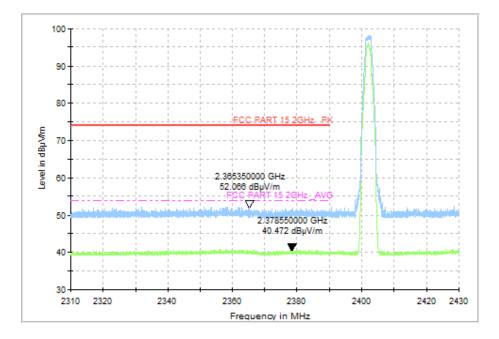



Fig.46 Radiated Band Edges (CH0, 2380GHz~2450GHz), LE 2M



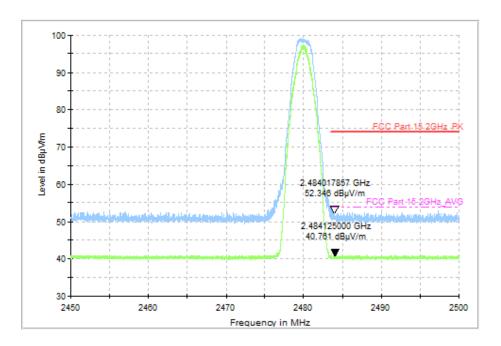



Fig.47 Radiated Band Edges (CH39, 2450GHz~2500GHz), LE 2M

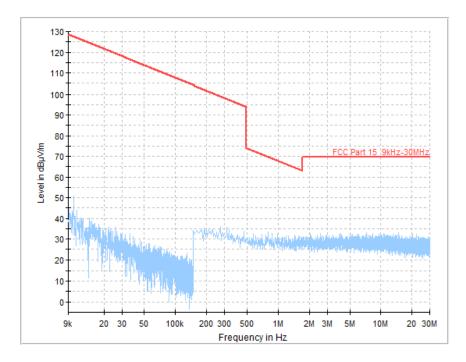



Fig.48 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz), LE 2M



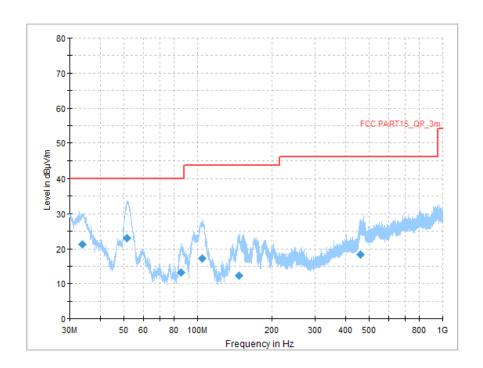



Fig.49 Radiated Spurious Emission (All Channels, 30 MHz-1 GHz), LE 2M

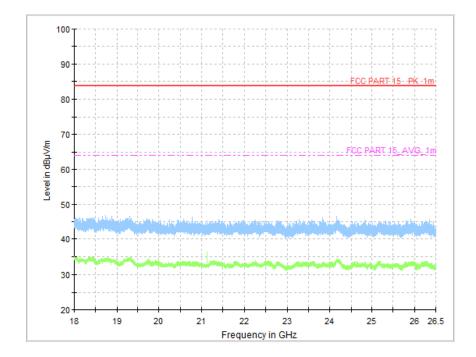



Fig.50 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz), LE 2M



## A.7 AC Power line Conducted Emission

#### **Test Condition:**

Voltage (V)	Frequency (Hz)
120	60

#### Measurement Result and limit:

#### LE 1M-AE2, AE3, AE4

Frequency range	Quasi-peak	Average-peak	Result (dBμV)		Conclusion
(MHz)	Limit (dBµV)	Limit (dBμV)	Traffic	Idle	Conclusion
0.15 to 0.5	66 to 56	56 to 46			
0.5 to 5	56	46	Fig.51	Fig.52	Р
5 to 30	60	50			
					l • • • • •

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

### LE 2M-AE2, AE3, AE4

Frequency range	Quasi-peak	Average-peak	Result	(dBµV)	Conclusion		
(MHz)	Limit (dBμV)	Limit (dBμV)	Traffic Idle		Traffic Idle		Conclusion
0.15 to 0.5	66 to 56	56 to 46					
0.5 to 5	56	46	Fig.53	Fig.54	Р		
5 to 30	60	50					
NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15							
MHz to 0.5 MHz.							

Note: The measurement results include the L1 and N measurements.

### See below for test graphs.

**Conclusion: Pass** 



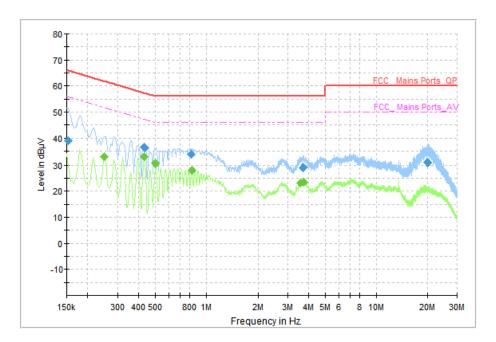



Fig.51 AC Power line Conducted Emission (Traffic), LE 1M

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.154000	39.00	65.78	26.78	N	ON	10
0.430000	36.46	57.25	20.79	L1	ON	10
0.434000	36.34	57.18	20.83	L1	ON	10
0.814000	33.94	56.00	22.06	L1	ON	10
3.690000	28.80	56.00	27.20	L1	ON	10
20.154000	30.65	60.00	29.35	Ν	ON	10

## Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.250000	33.05	51.76	18.71	L1	ON	10
0.430000	32.83	47.25	14.43	L1	ON	10
0.502000	30.57	46.00	15.43	L1	ON	10
0.826000	28.15	46.00	17.85	L1	ON	10
3.582000	23.16	46.00	22.84	L1	ON	10
3.722000	23.31	46.00	22.69	L1	ON	10



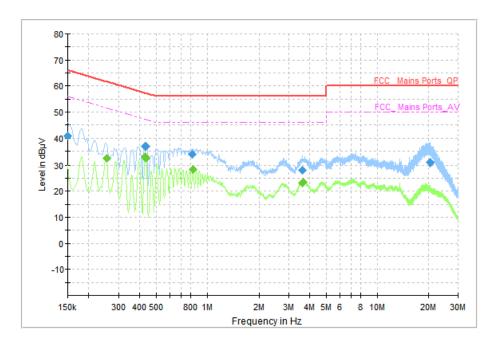



Fig.52 AC Power line Conducted Emission (Idle), LE 1M

Frequency	Quasi Peak	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.150000	40.76	66.00	25.24	Ν	ON	10
0.430000	36.90	57.25	20.36	L1	ON	10
0.434000	36.77	57.18	20.41	L1	ON	10
0.814000	33.79	56.00	22.21	L1	ON	10
3.598000	28.09	56.00	27.91	L1	ON	10
20.506000	30.69	60.00	29.31	Ν	ON	10

## Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.254000	32.40	51.63	19.22	L1	ON	10
0.430000	32.94	47.25	14.31	L1	ON	10
0.434000	32.44	47.18	14.74	L1	ON	10
0.826000	28.45	46.00	17.55	L1	ON	10
3.598000	23.24	46.00	22.76	L1	ON	10
3.666000	23.30	46.00	22.70	L1	ON	10



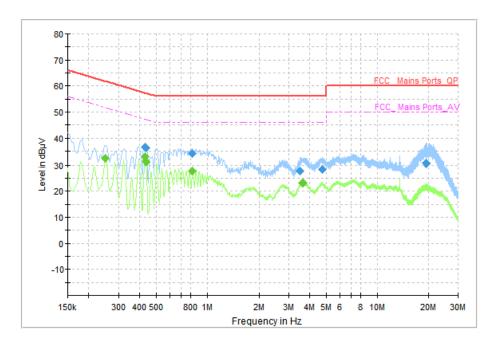



Fig.53 AC Power line Conducted Emission (Traffic), LE 2M

Frequency	Quasi Peak	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.430000	36.44	57.25	20.82	L1	ON	10
0.434000	36.26	57.18	20.92	L1	ON	10
0.818000	34.07	56.00	21.93	L1	ON	10
3.502000	27.66	56.00	28.34	L1	ON	10
4.726000	28.34	56.00	27.66	L1	ON	10
19.350000	30.54	60.00	29.46	Ν	ON	10

## Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.250000	32.40	51.76	19.35	L1	ON	10
0.430000	32.77	47.25	14.48	L1	ON	10
0.434000	31.10	47.18	16.08	L1	ON	10
0.818000	27.74	46.00	18.26	L1	ON	10
3.602000	23.18	46.00	22.82	L1	ON	10
3.634000	23.15	46.00	22.85	L1	ON	10



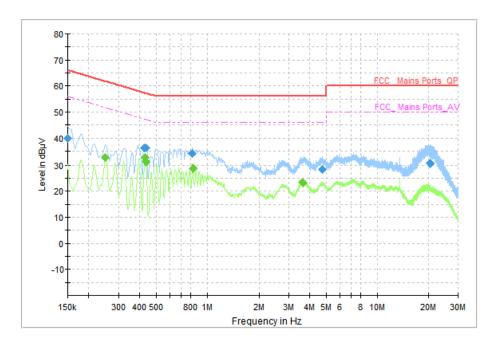



Fig.54 AC Power line Conducted Emission (Idle), LE 2M

Frequency	Quasi Peak	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)		i iitoi	(dB)
0.150000	39.85	66.00	26.15	Ν	ON	10
0.426000	36.37	57.33	20.96	L1	ON	10
0.434000	36.28	57.18	20.90	L1	ON	10
0.818000	34.08	56.00	21.92	L1	ON	10
4.718000	28.35	56.00	27.65	L1	ON	10
20.554000	30.38	60.00	29.62	Ν	ON	10

## Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.250000	32.60	51.76	19.15	L1	ON	10
0.430000	32.75	47.25	14.50	L1	ON	10
0.434000	31.10	47.18	16.08	L1	ON	10
0.822000	28.48	46.00	17.52	L1	ON	10
3.602000	23.28	46.00	22.72	L1	ON	10
3.658000	23.09	46.00	22.91	L1	ON	10

### ***END OF REPORT***