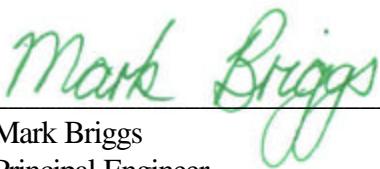


*Electromagnetic Emissions Test Report  
and  
Application for Grant of Equipment Authorization  
pursuant to  
FCC Part 15, Subpart C (15.247) DTS Specifications and  
Industry Canada RSS 210 Issue 5 for an  
Intentional Radiator on the  
Unigen Corporation  
Model: JUNO-PAL*

FCC ID: R8KUGWN2USHN33  
UPN: 5125A-UGWN2US


GRANTEE: Unigen Corporation  
45388 Warm Springs Blvd  
Fremont, CA 94539

TEST SITE: Elliott Laboratories, Inc.  
684 W. Maude Avenue  
Sunnyvale, CA 94086

REPORT DATE: July 11, 2005

FINAL TEST DATE: June 20 and July 1, 2005

AUTHORIZED SIGNATORY:

  
\_\_\_\_\_  
Mark Briggs  
Principal Engineer



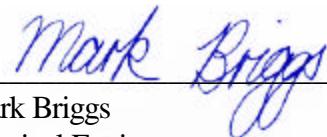
2016-01

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

***DECLARATIONS OF COMPLIANCE***

Equipment Name and Model:  
JUNO-PAL

Manufacturer:  
Unigen Corporation  
45388 Warm Springs Blvd  
Fremont, CA 94539


Tested to applicable standards:  
RSS-210, Issue 5, November 2001 (Low Power License-Exempt Radiocommunication Devices)  
FCC Part 15.247 (DTS)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV2** Dated August 12, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4:2003 as detailed in section 5.3 of RSS-210, Issue 5); and that the equipment performed in accordance with the data submitted in this report.

Signature  
Name  
Title  
Company  
Address



\_\_\_\_\_  
Mark Briggs  
Principal Engineer  
Elliott Laboratories Inc.  
684 W. Maude Ave  
Sunnyvale, CA 94086  
USA

Date: July 11, 2005

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

**TABLE OF CONTENTS**

|                                                                    |           |
|--------------------------------------------------------------------|-----------|
| <b>COVER PAGE.....</b>                                             | <b>1</b>  |
| <b>DECLARATIONS OF COMPLIANCE.....</b>                             | <b>2</b>  |
| <b>TABLE OF CONTENTS.....</b>                                      | <b>3</b>  |
| <b>SCOPE.....</b>                                                  | <b>4</b>  |
| <b>OBJECTIVE.....</b>                                              | <b>4</b>  |
| <b>SUMMARY OF RESULTS .....</b>                                    | <b>5</b>  |
| MEASUREMENT UNCERTAINTIES .....                                    | 5         |
| <b>EQUIPMENT UNDER TEST (EUT) DETAILS .....</b>                    | <b>6</b>  |
| GENERAL.....                                                       | 6         |
| ENCLOSURE.....                                                     | 6         |
| MODIFICATIONS .....                                                | 6         |
| SUPPORT EQUIPMENT .....                                            | 6         |
| EUT INTERFACE PORTS.....                                           | 7         |
| EUT OPERATION DURING TESTING.....                                  | 7         |
| ANTENNA REQUIREMENTS .....                                         | 7         |
| <b>TEST SITE.....</b>                                              | <b>8</b>  |
| GENERAL INFORMATION.....                                           | 8         |
| CONDUCTED EMISSIONS CONSIDERATIONS.....                            | 8         |
| RADIATED EMISSIONS CONSIDERATIONS.....                             | 8         |
| <b>MEASUREMENT INSTRUMENTATION.....</b>                            | <b>9</b>  |
| RECEIVER SYSTEM .....                                              | 9         |
| INSTRUMENT CONTROL COMPUTER .....                                  | 9         |
| LINE IMPEDANCE STABILIZATION NETWORK (LISN) .....                  | 9         |
| POWER METER.....                                                   | 10        |
| FILTERS/ATTENUATORS .....                                          | 10        |
| ANTENNAS .....                                                     | 10        |
| ANTENNA MAST AND EQUIPMENT TURNTABLE .....                         | 10        |
| INSTRUMENT CALIBRATION.....                                        | 10        |
| <b>TEST PROCEDURES .....</b>                                       | <b>11</b> |
| EUT AND CABLE PLACEMENT.....                                       | 11        |
| CONDUCTED EMISSIONS.....                                           | 11        |
| RADIATED EMISSIONS.....                                            | 11        |
| CONDUCTED EMISSIONS FROM ANTENNA PORT .....                        | 12        |
| <b>SPECIFICATION LIMITS AND SAMPLE CALCULATIONS .....</b>          | <b>13</b> |
| FCC 15.407 (A) AND RSS 210 (O) OUTPUT POWER LIMITS.....            | 14        |
| RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS..... | 14        |
| FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS .....          | 15        |
| RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS.....  | 15        |
| SAMPLE CALCULATIONS - CONDUCTED EMISSIONS .....                    | 16        |
| SAMPLE CALCULATIONS - RADIATED EMISSIONS.....                      | 17        |
| EXHIBIT 1: Test Equipment Calibration Data.....                    | 1         |
| EXHIBIT 2: Test Data Log Sheets .....                              | 2         |
| EXHIBIT 3: Test Configuration Photographs.....                     | 3         |
| EXHIBIT 4: Proposed FCC ID Label & Label Location .....            | 4         |
| EXHIBIT 5: Detailed Photographs.....                               | 5         |
| EXHIBIT 6: Operator's Manual.....                                  | 6         |
| EXHIBIT 7: Block Diagram.....                                      | 7         |
| EXHIBIT 8: Schematic Diagrams.....                                 | 8         |
| EXHIBIT 9: Theory of Operation.....                                | 9         |
| EXHIBIT 10: Advertising Literature.....                            | 10        |
| EXHIBIT 11: RF Exposure Information .....                          | 11        |

**SCOPE**

An electromagnetic emissions test has been performed on the Unigen Corporation model JUNO-PAL pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and RSS-210 Issue 5 for licence-exempt low power devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4:2003 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Unigen Corporation model JUNO-PAL and therefore apply only to the tested sample. The sample was selected and prepared by Mark Morrissey of Unigen Corporation

**OBJECTIVE**

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules and RSS-210 Issue 5 for license-exempt low power devices for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

**SUMMARY OF RESULTS**

| FCC Part 15 Section | RSS 210 Section | Description                                      | Measured Value                                          | Comments                                                                                                              | Result   |
|---------------------|-----------------|--------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------|
| 15.247(a)           | 6.2.2(o)(b)     | Digital Modulation                               | Systems uses DSSS techniques                            | System must utilize a digital transmission technology                                                                 | Complies |
| 15.247 (a) (2)      | 6.2.2(o)(b)     | 6dB Bandwidth                                    | 867kHz @ 2402MHz                                        | Minimum allowed is 500kHz                                                                                             | Complies |
|                     | RSP 100         | 99% Bandwidth                                    | 2.125 MHz (26dB bandwidth)                              | For information only                                                                                                  | Complies |
| 15.247 (b) (3)      | 6.2.2(o)(b)     | Output Power, 2400 - 2483.5 MHz                  | 17.1 dBm (0.051 Watts)<br>EIRP = 0.08 W                 | Multi-point applications: Maximum permitted is 1 Watt, with EIRP limited to 4 Watts.                                  | Complies |
| 15.247(d)           | 6.2.2(o)(b)     | Power Spectral Density                           | 7.93 dBm / 3kHz                                         | Maximum permitted is 8dBm/3kHz                                                                                        | Complies |
| 15.247(c)           | 6.2.2(o)(e1)    | Antenna Port Spurious Emissions – 30MHz – 26 GHz | All spurious emissions < -20dBc                         | All spurious emissions < -20dBc.                                                                                      | Complies |
| 15.247(c) / 15.209  |                 | Radiated Spurious Emissions – 30MHz – 26 GHz     | 53.9dB $\mu$ V/m (493.7 $\mu$ V/m) @ 2483.5MHz (-0.1dB) | Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc | Complies |
| 15.207              |                 | AC Conducted Emissions                           | 10.5dB $\mu$ V (3.3 $\mu$ V) @ 1.497MHz (-35.5dB)       |                                                                                                                       | Complies |
|                     | 6.6             | AC Conducted Emissions                           | 16.0dB $\mu$ V @ 17.898MHz (-32.0dB)                    |                                                                                                                       | Complies |
| 15.247 (b) (5)      |                 | RF Exposure Requirements                         | MPE distance < 20cm                                     | Requires 20cm separation distance                                                                                     | Complies |
| 15.203              |                 | RF Connector                                     | Non-standard Hirose connector                           | Unique antenna connection required for user-installed applications.                                                   | Complies |

**MEASUREMENT UNCERTAINTIES**

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

| Measurement Type    | Frequency Range (MHz) | Calculated Uncertainty (dB) |
|---------------------|-----------------------|-----------------------------|
| Conducted Emissions | 0.15 to 30            | ± 2.4                       |
| Radiated Emissions  | 30 to 1000            | ± 3.6                       |

**EQUIPMENT UNDER TEST (EUT) DETAILS****GENERAL**

The Unigen Corporation model JUNO-PAL is a Direct Sequence Spread Spectrum Radio which is designed to operate in the 2400 - 2483.5MHz band. The EUT is a module and so was tested without an enclosure and mounted to a test fixture to allow control and configuration of the device.

The sample was received on June 20, 2005 and tested on June 20 and July 1, 2005. The EUT consisted of the following component(s):

| Manufacturer | Model    | Description            | Serial Number | FCC ID         |
|--------------|----------|------------------------|---------------|----------------|
| Unigen       | JUNO-PAL | 2.4GHz wireless module | 0526-57629    | R8KUGWN2USHN33 |

**ENCLOSURE**

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host device.

**MODIFICATIONS**

The EUT did not require modifications during testing in order to comply with the emission specifications.

**SUPPORT EQUIPMENT**

The following equipment was used as local support equipment for emissions testing:

| Manufacturer | Model | Description     | Serial Number | FCC ID |
|--------------|-------|-----------------|---------------|--------|
| Unigen       |       | Interface Board |               |        |
| Unigen       |       | Battery pack    |               |        |
| Topward      | 3603D | Power Supply    | 677301        |        |

The battery pack was used for radiated emissions tests. The AC-DC bench supply was used for AC conducted emissions tests.

**EUT INTERFACE PORTS**

The I/O cabling configuration during emissions testing was as follows:

| Port         | Connected To                       | Cable(s)    |                        |           |
|--------------|------------------------------------|-------------|------------------------|-----------|
|              |                                    | Description | Shielded or Unshielded | Length(m) |
| Antenna port | Antenna                            | Coax        | Shielded               | 0.2       |
| DC in        | Battery pack or<br>dc power supply | 2 wire      | Unshielded             | 0.2       |

**EUT OPERATION DURING TESTING**

For Tx testing: the EUT was transmitting continuously on either the low, 2402MHz, the middle, 2442MHz, or the High, 2479 MHz channel. For RX testing the EUT was set to continuously receive on either the low, middle or high channels.

**ANTENNA REQUIREMENTS**

The antenna connects to the EUT via a non-standard Hirose coaxial connector, thereby meeting the requirements of FCC 15.203.

**TEST SITE****GENERAL INFORMATION**

Final test measurements were taken on June 20 and July 1, 2005 at the Elliott Laboratories Open Area Test Site #2 and 3 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

**CONDUCTED EMISSIONS CONSIDERATIONS**

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

**RADIATED EMISSIONS CONSIDERATIONS**

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines.

**MEASUREMENT INSTRUMENTATION****RECEIVER SYSTEM**

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

**INSTRUMENT CONTROL COMPUTER**

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

**LINE IMPEDANCE STABILIZATION NETWORK (LISN)**

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

**POWER METER**

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

**FILTERS/ATTENUATORS**

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

**ANTENNAS**

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

**ANTENNA MAST AND EQUIPMENT TURNTABLE**

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

**INSTRUMENT CALIBRATION**

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

## TEST PROCEDURES

### EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst case orientation is used for final measurements.

### CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

### RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

**CONDUCTED EMISSIONS FROM ANTENNA PORT**

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

**SPECIFICATION LIMITS AND SAMPLE CALCULATIONS**

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \sqrt{30} P}{3} \text{ microvolts per meter}$$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

**FCC 15.407 (a) and RSS 210 (o) OUTPUT POWER LIMITS**

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

| Operating Frequency (MHz) | Output Power     | Power Spectral Density |
|---------------------------|------------------|------------------------|
| 902 – 928                 | 1 Watts (30 dBm) | 8 dBm/3kHz             |
| 2400 – 2483.5             | 1 Watts (30 dBm) | 8 dBm/3kHz             |
| 5725 – 5850               | 1 Watts (30 dBm) | 8 dBm/3kHz             |

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

**RSS 210 (o) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS**

T limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

| Frequency Range (MHz) | Limit (uV/m @ 3m) | Limit (dBuV/m @ 3m) |
|-----------------------|-------------------|---------------------|
| 30 to 88              | 100               | 40                  |
| 88 to 216             | 150               | 43.5                |
| 216 to 960            | 200               | 46.0                |
| Above 960             | 500               | 54.0                |

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level.

**FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS**

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205.

| Frequency<br>(MHz) | Average<br>Limit<br>(dBuV)                                                | Quasi Peak<br>Limit<br>(dBuV)                                             |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 0.150 to 0.500     | Linear decrease on<br>logarithmic frequency axis<br>between 56.0 and 46.0 | Linear decrease on<br>logarithmic frequency axis<br>between 66.0 and 56.0 |
| 0.500 to 5.000     | 46.0                                                                      | 56.0                                                                      |
| 5.000 to 30.000    | 50.0                                                                      | 60.0                                                                      |

**RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS**

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

| Frequency<br>Range<br>(MHz) | Limit<br>(uV) | Limit<br>(dBuV) |
|-----------------------------|---------------|-----------------|
| 0.450 to 30.000             | 250           | 48              |

**SAMPLE CALCULATIONS - CONDUCTED EMISSIONS**

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

$R_r$  = Receiver Reading in dBuV

$B$  = Broadband Correction Factor\*

$C$  = Corrected Reading in dBuV

$S$  = Specification Limit in dBuV

$M$  = Margin to Specification in +/- dB

\* Broadband Level - Per ANSI C63.4:2003, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

**SAMPLE CALCULATIONS - RADIATED EMISSIONS**

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20 * \text{LOG10} (D_m/D_s)$$

where:

$F_d$  = Distance Factor in dB

$D_m$  = Measurement Distance in meters

$D_s$  = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_f + F_d$$

and

$$M = R_c - L_s$$

where:

$R_f$  = Receiver Reading in dBuV/m

$F_d$  = Distance Factor in dB

$R_c$  = Corrected Reading in dBuV/m

$L_s$  = Specification Limit in dBuV/m

$M$  = Margin in dB Relative to Spec

***EXHIBIT 1: Test Equipment Calibration Data***

1 Page

**Radiated Emissions, 30 - 26500MHz, 29-Jun-05****Engineer: Mehran Birgani**

| <b>Manufacturer</b> | <b>Description</b>                  | <b>Model #</b>  | <b>Asset #</b> | <b>Cal Due</b> |
|---------------------|-------------------------------------|-----------------|----------------|----------------|
| Hewlett Packard     | Microwave Preamplifier, 1-26.5GHz   | 8449B           | 785            | 26-Apr-06      |
| EMCO                | Horn Antenna, D. Ridge 1-18GHz      | 3115            | 786            | 08-Nov-05      |
| Hewlett Packard     | High Pass filter, 3.5GHz            | P/N 84300-80038 | 1157           | 28-Apr-06      |
| Hewlett Packard     | EMC Spectrum Analyzer, 9KHz - 22GHz | 8593EM          | 1319           | 28-Mar-06      |

**Conducted Emissions - AC Power Ports, 01-Jul-05****Engineer: Chris Byleckie**

| <b>Manufacturer</b>  | <b>Description</b>             | <b>Model #</b>       | <b>Asset #</b> | <b>Cal Due</b> |
|----------------------|--------------------------------|----------------------|----------------|----------------|
| Rohde & Schwarz      | Test Receiver, 0.009-2750 MHz  | ESN                  | 1332           | 23-May-06      |
| Rohde & Schwarz      | Pulse Limiter                  | ESH3 Z2              | 1398           | 11-Feb-06      |
| Fischer Custom Comm. | LISN, Freq. 0.9 -30 MHz,16 Amp | FCC-LISN-50/250-16-2 | 1079           | 01-Jul-05      |

**Frequency Range, Output Power, PSD, 08-Jul-05****Engineer: Mark Briggs**

| <b>Manufacturer</b> | <b>Description</b>                                        | <b>Model #</b> | <b>Asset #</b> | <b>Cal Due</b> |
|---------------------|-----------------------------------------------------------|----------------|----------------|----------------|
| Hewlett Packard     | EMC Spectrum Analyzer 9kHz - 6.5GHz                       | 8595EM         | 787            | 17-Dec-05      |
| Hewlett Packard     | Microwave EMI test system (SA40, 30Hz - 40GHz), Sunnyvale | 84125C         | 1149           | 11-Jul-05      |
| Rohde & Schwarz     | Power Meter, Single Channel                               | NRVS           | 1422           | 01-Nov-05      |
| Rohde & Schwarz     | Power Sensor, 1uW-100mW, DC-18 GHz, 50ohm                 | NRV-Z51        | 1535           | 22-Sep-05      |

***EXHIBIT 2: Test Data Log Sheets***

***ELECTROMAGNETIC EMISSIONS***

***TEST LOG SHEETS***

***AND***

***MEASUREMENT DATA***

**T60140 18 Pages**



## *EMC Test Data*

|                 |                         |                  |        |
|-----------------|-------------------------|------------------|--------|
| Client:         | Unigen                  | Job Number:      | J60079 |
| Model:          | Wireless USB with PA    | T-Log Number:    | T60140 |
|                 |                         | Account Manager: |        |
| Contact:        | Mark Morrissey          |                  |        |
| Emissions Spec: | FCC 15.247 / EN 300 328 | Class:           | -      |
| Immunity Spec:  | EN 301 489-17           | Environment:     | -      |

## **EMC Test Data**

For The

**Unigen**

Model

**Wireless USB with PA**

Date of Last Test: 8/23/2005



## EMC Test Data

|                 |                         |                  |        |
|-----------------|-------------------------|------------------|--------|
| Client:         | Unigen                  | Job Number:      | J60079 |
| Model:          | Wireless USB with PA    | T-Log Number:    | T60140 |
|                 |                         | Account Manager: |        |
| Contact:        | Mark Morrissey          |                  |        |
| Emissions Spec: | FCC 15.247 / EN 300 328 | Class:           | -      |
| Immunity Spec:  | EN 301 489-17           | Environment:     | -      |

### EUT INFORMATION

#### General Description

The EUT is a Direct Sequence Spread Spectrum Radio which is designed to operate in the 2400 - 2483.5MHz band. The EUT is a module and so was tested without an enclosure and mounted to a test fixture to allow control and configuration of the device.

#### Equipment Under Test

| Manufacturer | Model          | Description            | Serial Number | FCC ID         |
|--------------|----------------|------------------------|---------------|----------------|
| Unigen       | JUNO-PAL       | 2.4GHz wireless module | 0526-57629    | R8KUGWN2USHN33 |
| Unigen       | AIRBASE/AIRANT | 2.4GHz wireless module | n/a           | n/a            |

Second unit was used for immunity testing and was in receive-only mode.

#### EUT Antenna

The antenna connects to the EUT via a non-standard Hirose coaxial connector, thereby meeting the requirements of FCC 15.203.

#### EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host device.

#### Modification History

| Mod. # | Test | Date | Modification |
|--------|------|------|--------------|
| 1      |      |      |              |

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.



## EMC Test Data

|                 |                         |                  |        |
|-----------------|-------------------------|------------------|--------|
| Client:         | Unigen                  | Job Number:      | J60079 |
| Model:          | Wireless USB with PA    | T-Log Number:    | T60140 |
|                 |                         | Account Manager: |        |
| Contact:        | Mark Morrissey          |                  |        |
| Emissions Spec: | FCC 15.247 / EN 300 328 | Class:           | -      |
| Immunity Spec:  | EN 301 489-17           | Environment:     | -      |

### Test Configuration #1

#### Local Support Equipment

| Manufacturer | Model | Description     | Serial Number | FCC ID |
|--------------|-------|-----------------|---------------|--------|
|              |       | Interface Board |               |        |
|              |       | Battery pack    |               |        |
| Topward      | 3603D | Power Supply    | 677301        |        |

The battery pack was used for radiated emissions tests. The AC-DC bench supply was used for AC conducted emissions tests.

#### Interface Cabling and Ports

| Port         | Connected To                   | Cable(s)    |                        |           |
|--------------|--------------------------------|-------------|------------------------|-----------|
|              |                                | Description | Shielded or Unshielded | Length(m) |
| Antenna port | Antenna                        | Coax        | Shielded               | 0.2       |
| DC in        | Battery pack / DC power source | 2 wire      | Unshielded             | 0.2       |

#### EUT Operation During Emissions Tests

For Tx testing: the EUT was transmitting continuously on either the low, 2402MHz, the middle, 2442MHz, or the High, 2479 MHz channel. For RX testing the EUT was set to continuously receive on either the low, middle or high channels.



## EMC Test Data

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
|          |                         | Account Manager: | -      |
| Contact: | Mark Morrissey          |                  |        |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | -      |

### Conducted Emissions - Power Ports

#### Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 7/1/2005

Config. Used: 1

Test Engineer: Chris Byleckie

Config Change: See run

Test Location: SVOATS #2

EUT Voltage: Refer to individual run

#### General Test Configuration

The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN.

#### Ambient Conditions:

Temperature: 22 °C

Rel. Humidity: 63 %

#### Summary of Results

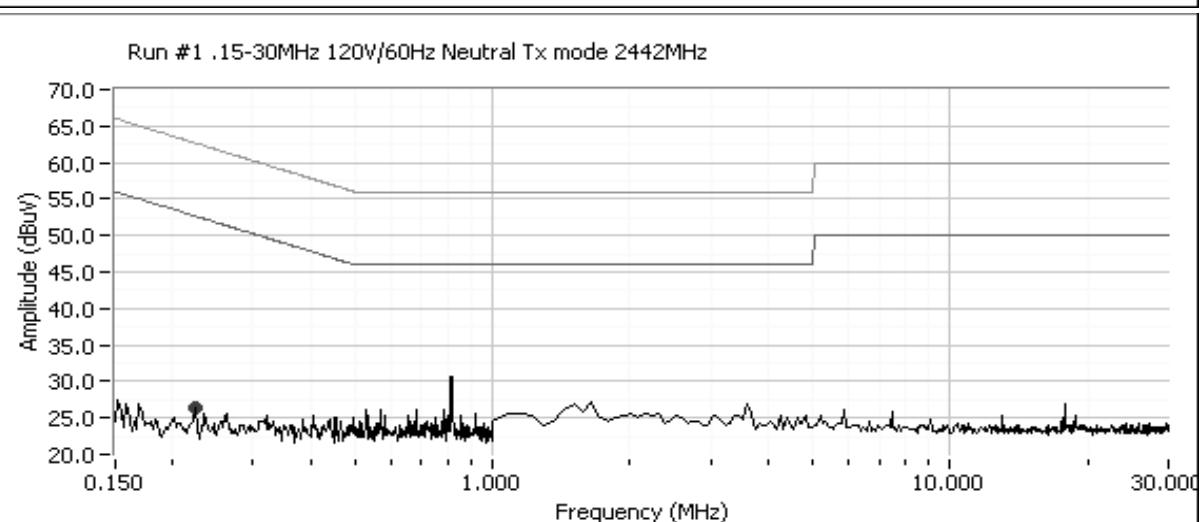
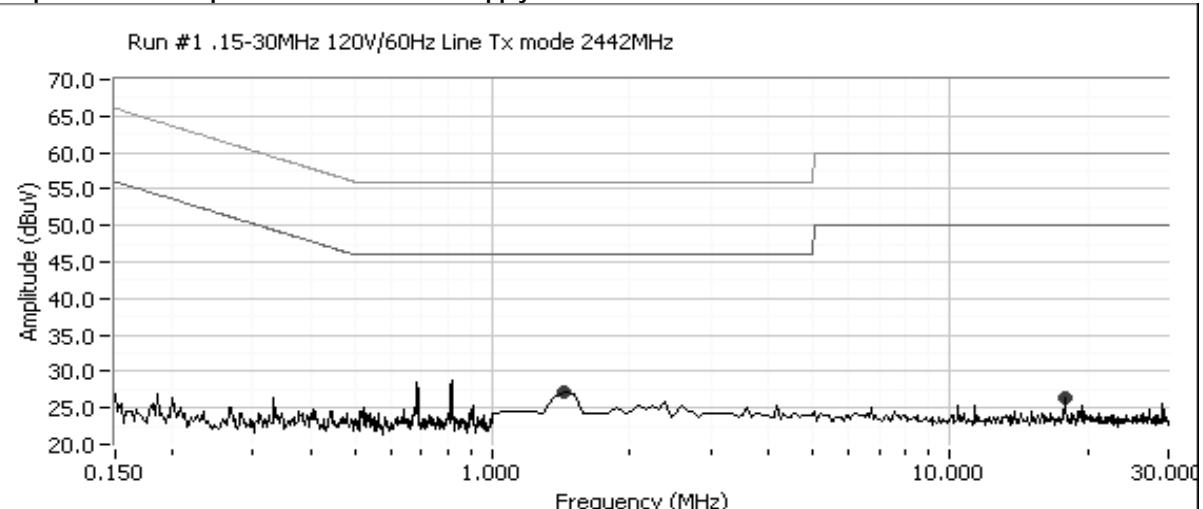
| Run # | Test Performed          | Limit      | Result | Margin                                            |
|-------|-------------------------|------------|--------|---------------------------------------------------|
| 1     | CE, AC Power, 120V/60Hz | FCC 15.207 | Pass   | 10.5dB $\mu$ V (3.3 $\mu$ V) @ 1.497MHz (-35.5dB) |
| 1     | CE, AC Power, 120V/60Hz | RSS 210    | Pass   | 16.0dB $\mu$ V @ 17.898MHz (-32.0dB)              |

#### Modifications Made During Testing:

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.


## EMC Test Data

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: | Mark Morrissey          | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | -      |

### Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

EUT powered from Topward 3603D DC Power supply S/N 677301



Run #1 continued on next page



## EMC Test Data

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: | Mark Morrissey          | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | -      |

### Run #1 continued

#### Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

| Frequency<br>MHz | Level<br>dB $\mu$ V | AC<br>Line | FCC 15.207<br>Limit | Margin | Detector<br>QP/Ave | Comments |
|------------------|---------------------|------------|---------------------|--------|--------------------|----------|
| 0.334            | 23.0                | Line 1     | 49.4                | -26.4  | Peak               |          |
| 1.497            | 23.8                | Line 1     | 46.0                | -22.2  | Peak               |          |
| 17.900           | 27.1                | Line 1     | 50.0                | -22.9  | Peak               |          |
| 0.226            | 23.1                | Neutral    | 52.7                | -29.6  | Peak               |          |
| 3.633            | 22.1                | Neutral    | 46.0                | -23.9  | Peak               |          |
| 17.795           | 28.5                | Neutral    | 50.0                | -21.5  | Peak               |          |

#### Final quasi-peak and average readings

| Frequency<br>MHz | Level<br>dB $\mu$ V | AC<br>Line | FCC 15.207<br>Limit | Margin | Detector<br>QP/Ave | Comments |
|------------------|---------------------|------------|---------------------|--------|--------------------|----------|
| 1.497            | 10.5                | Line       | 46.0                | -35.5  | Average            |          |
| 1.497            | 12.7                | Line       | 56.0                | -43.3  | QP                 |          |
| 17.898           | 6.3                 | Line       | 50.0                | -43.7  | Average            |          |
| 17.898           | 16.0                | Line       | 60.0                | -44.0  | QP                 |          |
| 17.898           | 5.5                 | Neutral    | 50.0                | -44.5  | Average            |          |
| 17.898           | 14.5                | Neutral    | 60.0                | -45.5  | QP                 |          |
| 3.633            | -2.0                | Neutral    | 46.0                | -48.0  | Average            |          |
| 3.633            | 3.5                 | Neutral    | 56.0                | -52.5  | QP                 |          |
| 0.334            | -6.2                | Line       | 49.4                | -55.6  | Average            |          |
| 0.226            | -4.0                | Neutral    | 52.6                | -56.6  | Average            |          |
| 0.334            | -2.1                | Line       | 59.4                | -61.5  | QP                 |          |
| 0.226            | 0.8                 | Neutral    | 62.6                | -61.8  | QP                 |          |

#### Final quasi-peak and average readings

| Frequency<br>MHz | Level<br>dB $\mu$ V | AC<br>Line | RSS 210<br>Limit | Margin | Detector<br>QP/Ave | Comments |
|------------------|---------------------|------------|------------------|--------|--------------------|----------|
| 17.898           | 16.0                | Line       | 48.0             | -32.0  | QP                 |          |
| 17.898           | 14.5                | Neutral    | 48.0             | -33.5  | QP                 |          |
| 1.497            | 12.7                | Line       | 48.0             | -35.3  | QP                 |          |
| 3.633            | 3.5                 | Neutral    | 48.0             | -44.5  | QP                 |          |



## *EMC Test Data*

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
|          |                         | Account Manager: | -      |
| Contact: | Mark Morrissey          |                  |        |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

## FCC 15.247 DTS - Power, Bandwidth and Spurious Emissions

## Test Specifics

**Objective:** The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/20/2005, 6/29/2005 Config. Used: #1  
Test Engineer: C. Byleckie, M Birgani Config Change: -  
Test Location: Chamber #2, SV #3 EUT Voltage: Battery

## General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing and connected to the 2dBi antenna.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

**Ambient Conditions:** Temperature: 22 °C  
Rel. Humidity: 35 %

## Summary of Results

| Run # | Test Performed                                         | Limit                        | Pass / Fail | Result / Margin                                         |
|-------|--------------------------------------------------------|------------------------------|-------------|---------------------------------------------------------|
| 1     | 30 - 25000 MHz, Spurious Emissions In Restricted Bands | FCC Part 15.209 / 15.247( c) | Pass        | 53.9dB $\mu$ V/m (493.7 $\mu$ V/m) @ 2483.5MHz (-0.1dB) |
| 2     | 6dB Bandwidth                                          | 15.247(a)                    | Pass        | 867kHz @ 2402MHz                                        |
| 3     | Output Power                                           | 15.247(b)                    | Pass        | 17.1dBm                                                 |
| 4     | Power Spectral Density (PSD)                           | 15.247(d)                    | Pass        | 7.93dBm @ 2479MHz                                       |

### Modifications Made During Testing:

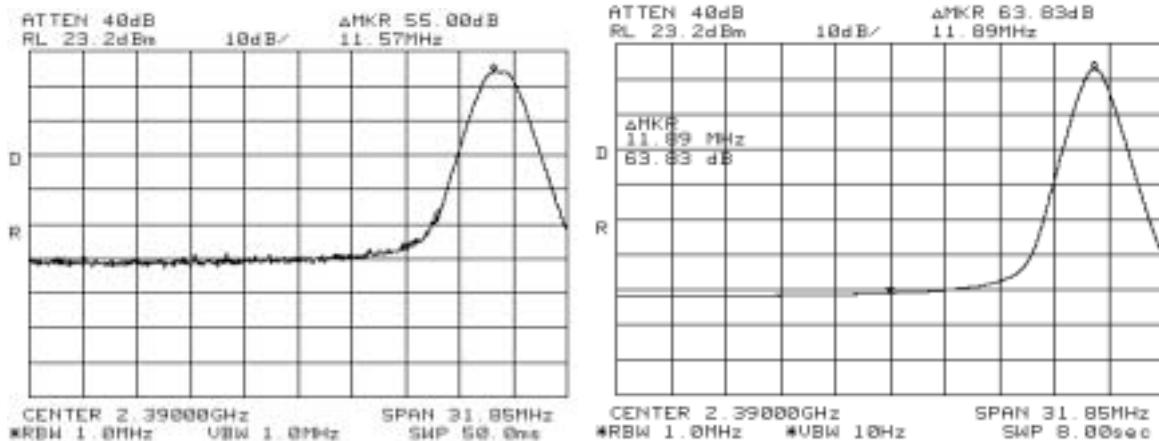
Modifications are detailed under each run description.

## Deviations From The Standard

No deviations were made from the requirements of the standard.



## EMC Test Data


|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: |                         | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

### Run #1a: Radiated Spurious Emissions, 30 - 26000 MHz. Low Channel @ 2402 MHz

#### Fundamental signal level

| Frequency | Level        | Pol | 15.209 / 15.247 | Detector | Azimuth   | Height  | Comments |
|-----------|--------------|-----|-----------------|----------|-----------|---------|----------|
| MHz       | dB $\mu$ V/m | v/h | Limit           | Margin   | Pk/QP/Avg | degrees | meters   |
| 2402.220  | 108.1        | H   | -               | -        | AVG       | 350     | 1.8      |
| 2402.220  | 108.9        | H   | -               | -        | PK        | 350     | 1.8      |
| 2402.150  | 115.0        | V   | -               | -        | AVG       | 3       | 1.4      |
| 2402.150  | 116.7        | V   | -               | -        | PK        | 3       | 1.4      |

#### Marker delta measurements to Calculate band Edge Field Strength



The highest signal level in the restricted bands above and below the allocated band was at the band edge. The highest peak and average field strengths in the restricted band are calculated from the field strength of the fundamental by subtracting a correction factor. The typical factor is the difference between the highest peak and average in band signal level and the highest peak and average restricted band levels.

| Marker Deltas |         |
|---------------|---------|
| Peak          | Average |
| 55.0          | 63.8    |

#### Band Edge Field Strength

| Frequency | Level        | Pol | 15.209 / 15.247 | Detector | Azimuth   | Height  | Comments |
|-----------|--------------|-----|-----------------|----------|-----------|---------|----------|
| MHz       | dB $\mu$ V/m | v/h | Limit           | Margin   | Pk/QP/Avg | degrees | meters   |
| 2390.000  | 51.2         | v   | 54.0            | -2.8     | Avg       | 3       | 1.4      |
| 2390.000  | 61.7         | v   | 74.0            | -12.3    | Pk        | 3       | 1.4      |



## EMC Test Data

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
|          |                         | Account Manager: | -      |
| Contact: | Mark Morrissey          |                  |        |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

### Other spurious emissions:

| Frequency | Level        | Pol | 15.209 / 15.247 | Detector | Azimuth   | Height  | Comments |              |
|-----------|--------------|-----|-----------------|----------|-----------|---------|----------|--------------|
| MHz       | dB $\mu$ V/m | v/h | Limit           | Margin   | Pk/QP/Avg | degrees | meters   |              |
| 12004.75  | 38.8         | H   | 54.0            | -15.2    | AVG       | 0       | 1.0      | 5th Harmonic |
| 12017.24  | 38.8         | H   | 54.0            | -15.2    | AVG       | 19      | 1.0      | 5th Harmonic |
| 7206.560  | 37.1         | H   | 54.0            | -16.9    | AVG       | 350     | 1.2      | 3rd Harmonic |
| 7205.890  | 35.6         | V   | 54.0            | -18.4    | AVG       | 20      | 1.1      | 3rd Harmonic |
| 4803.920  | 32.0         | H   | 54.0            | -22.0    | AVG       | 350     | 1.3      | 2rd Harmonic |
| 4804.790  | 31.6         | V   | 54.0            | -22.4    | AVG       | 170     | 1.1      | 2rd Harmonic |
| 12017.24  | 50.4         | H   | 78.0            | -27.6    | PK        | 19      | 1.0      | 5th Harmonic |
| 12004.75  | 48.7         | H   | 79.0            | -30.3    | PK        | 0       | 1.0      | 5th Harmonic |
| 7206.560  | 46.5         | H   | 77.0            | -30.6    | PK        | 350     | 1.2      | 3rd Harmonic |
| 7205.890  | 45.4         | V   | 76.0            | -30.6    | PK        | 20      | 1.1      | 3rd Harmonic |
| 4803.920  | 41.8         | H   | 74.0            | -32.2    | PK        | 350     | 1.3      | 2rd Harmonic |
| 4804.790  | 41.3         | V   | 75.0            | -33.7    | PK        | 170     | 1.1      | 2rd Harmonic |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB below the level of the fundamental.

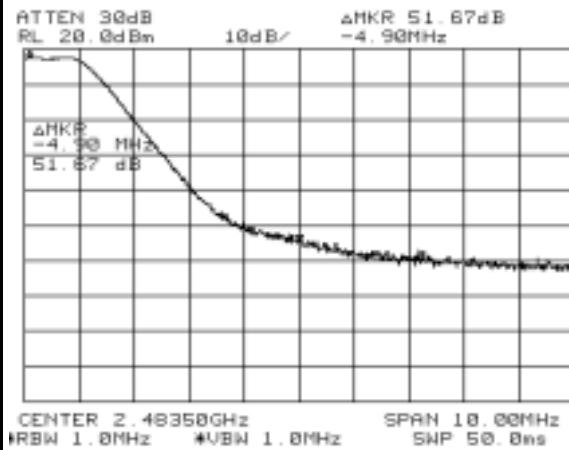
### Run #1b: Radiated Spurious Emissions, 30 - 25000 MHz. Center Channel @ 2442 MHz

| Frequency | Level        | Pol | 15.209 / 15.247 | Detector | Azimuth   | Height  | Comments |                           |
|-----------|--------------|-----|-----------------|----------|-----------|---------|----------|---------------------------|
| MHz       | dB $\mu$ V/m | v/h | Limit           | Margin   | Pk/QP/Avg | degrees | meters   |                           |
| 12206.40  | 38.9         | H   | 54.0            | -15.1    | AVG       | 117     | 1.2      | Standing up               |
| 7318.910  | 34.9         | H   | 54.0            | -19.1    | AVG       | 355     | 1.0      | Standing up (noise floor) |
| 7328.400  | 34.9         | V   | 54.0            | -19.1    | AVG       | 30      | 1.1      | Lay down (Noise floor)    |
| 7318.610  | 34.9         | V   | 54.0            | -19.1    | AVG       | 183     | 1.3      | Standing up (noise floor) |
| 4887.940  | 32.0         | H   | 54.0            | -22.0    | AVG       | 193     | 1.0      | Standing up               |
| 4887.370  | 32.0         | V   | 54.0            | -22.0    | AVG       | 0       | 1.0      | Standing up               |
| 12206.40  | 49.4         | H   | 74.0            | -24.6    | PK        | 117     | 1.2      | Standing up               |
| 7318.610  | 45.4         | V   | 74.0            | -28.6    | PK        | 183     | 1.3      | Standing up (noise floor) |
| 7318.910  | 45.0         | H   | 74.0            | -29.0    | PK        | 355     | 1.0      | Standing up (noise floor) |
| 7328.400  | 44.5         | V   | 74.0            | -29.5    | PK        | 30      | 1.1      | Lay down (Noise floor)    |
| 4887.940  | 42.3         | H   | 74.0            | -31.7    | PK        | 193     | 1.0      | Standing up               |
| 4887.370  | 41.5         | V   | 74.0            | -32.5    | PK        | 0       | 1.0      | Standing up               |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB below the level of the fundamental.



## *EMC Test Data*


|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: | Mark Morrissey          | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

## Run #1c: Radiated Spurious Emissions, 30 - 25000 MHz. High Channel @ 2479 MHz

## Fundamental signal level

| Frequency | Level        | Pol | 15.209 / 15.247 |        | Detector  | Azimuth | Height | Comments         |
|-----------|--------------|-----|-----------------|--------|-----------|---------|--------|------------------|
| MHz       | dB $\mu$ V/m | v/h | Limit           | Margin | Pk/QP/Avg | degrees | meters |                  |
| 2480.110  | 115.2        | V   | -               | -      | AVG       | 17      | 1.4    | RB=1MHz, VB=1MHz |
| 2480.110  | 116.0        | V   | -               | -      | PK        | 17      | 1.4    | RB=1MHz, VB=10Hz |
| 2480.110  | 103.5        | H   | -               | -      | AVG       | 231     | 1.8    | RB=1MHz, VB=1MHz |
| 2480.110  | 105.0        | H   | -               | -      | PK        | 231     | 1.8    | RB=1MHz, VB=10Hz |

## Marker delta measurements to Calculate band Edge Field Strength



The highest signal level in the restricted bands above and below the allocated band was at the band edge. The highest peak and average field strengths in the restricted band are calculated from the field strength of the fundamental by subtracting a correction factor. The typical factor is the difference between the highest peak and average in band signal level and the highest peak and average restricted band levels.

| Marker Deltas |         |
|---------------|---------|
| Peak          | Average |
| 51.7          | 61.33   |

## Band Edge Field Strength

| Frequency | Level        | Pol | 15.209 / 15.247 |        | Detector  | Azimuth | Height | Comments |
|-----------|--------------|-----|-----------------|--------|-----------|---------|--------|----------|
| MHz       | dB $\mu$ V/m | v/h | Limit           | Margin | Pk/QP/Avg | degrees | meters |          |
| 2483.500  | 53.9         | V   | 54.0            | -0.1   | Avg       | 17      | 1.4    |          |
| 2483.500  | 64.3         | V   | 74.0            | -9.7   | Pk        | 17      | 1.4    |          |



## EMC Test Data

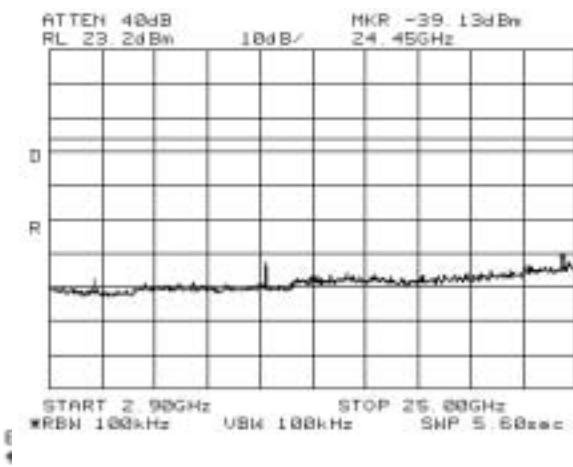
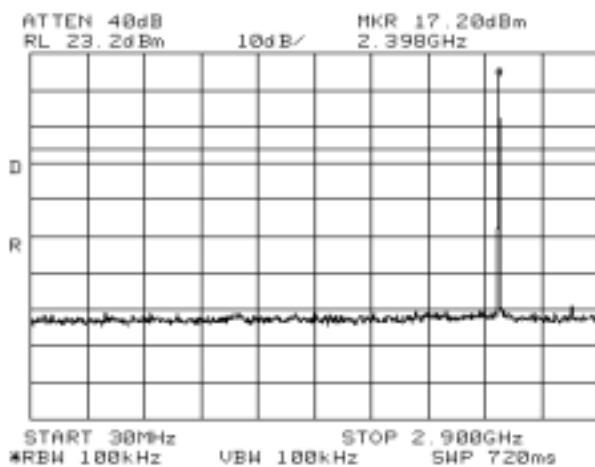
|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: | Mark Morrissey          | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

### Other spurious emissions:

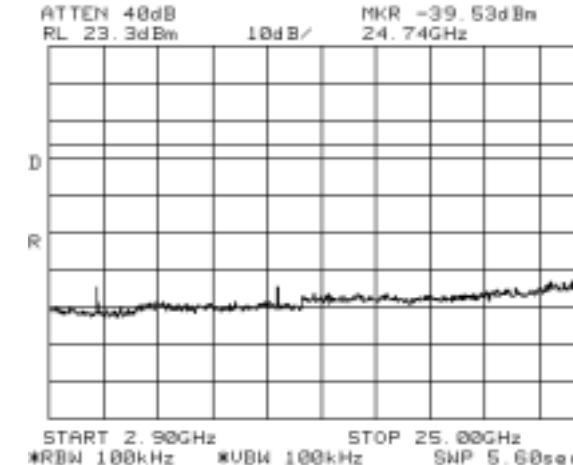
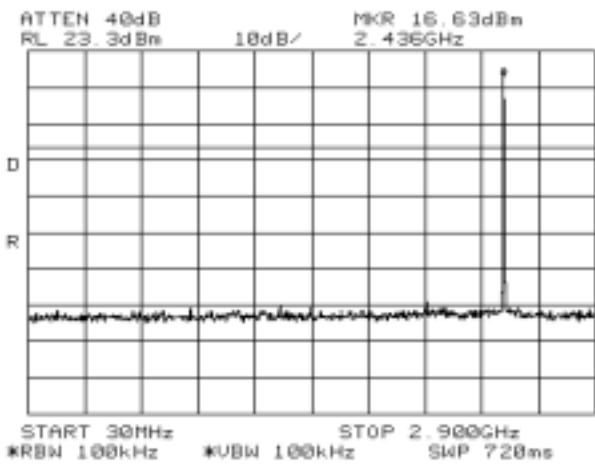
| Frequency<br>MHz | Level<br>dB $\mu$ V/m | Pol<br>v/h | 15.209 / 15.247<br>Limit | Margin | Detector<br>Pk/QP/Avg | Azimuth<br>degrees | Height<br>meters | Comments     |
|------------------|-----------------------|------------|--------------------------|--------|-----------------------|--------------------|------------------|--------------|
| 12397.49         | 39.0                  | H          | 54.0                     | -15.0  | AVG                   | 0                  | 1.2              | 5th Harmonic |
| 12396.55         | 39.0                  | V          | 54.0                     | -15.0  | AVG                   | 138                | 1.1              | 5th Harmonic |
| 7439.96          | 35.5                  | H          | 54.0                     | -18.5  | AVG                   | 0                  | 1.0              | 3rd Harmonic |
| 7443.45          | 35.5                  | V          | 54.0                     | -18.5  | AVG                   | 152                | 1.2              | 3rd Harmonic |
| 4953.25          | 32.1                  | V          | 54.0                     | -21.9  | AVG                   | 281                | 1.2              | 2nd Harmonic |
| 4961.46          | 32.0                  | H          | 54.0                     | -22.0  | AVG                   | 120                | 1.2              | 2nd Harmonic |
| 12397.49         | 49.1                  | H          | 74.0                     | -24.9  | PK                    | 0                  | 1.2              | 5th Harmonic |
| 12396.55         | 49.0                  | V          | 74.0                     | -25.0  | PK                    | 138                | 1.1              | 5th Harmonic |
| 7443.45          | 45.7                  | V          | 74.0                     | -28.3  | PK                    | 152                | 1.2              | 3rd Harmonic |
| 7439.96          | 45.6                  | H          | 74.0                     | -28.4  | PK                    | 0                  | 1.0              | 3rd Harmonic |
| 4953.25          | 42.1                  | V          | 74.0                     | -31.9  | PK                    | 281                | 1.2              | 2nd Harmonic |
| 4961.46          | 42.1                  | H          | 74.0                     | -31.9  | PK                    | 120                | 1.2              | 2nd Harmonic |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below the level of the fundamental.





## EMC Test Data

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: |                         | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

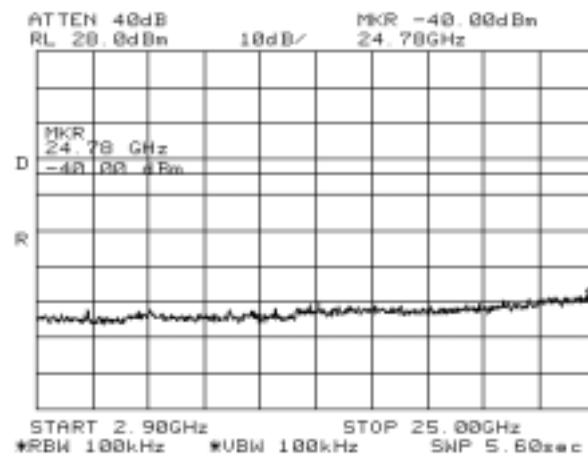
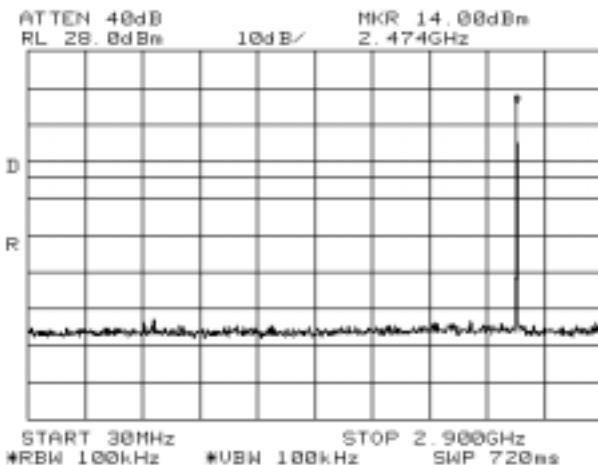


### Run #1d: Antenna Conducted Spurious Emissions, 30 - 25000 MHz.

Refer to plots below. Scans made using RBW=VB=100 KHz with the limit line set at 20dB below the highest in-band signal level.

#### 2402MHz



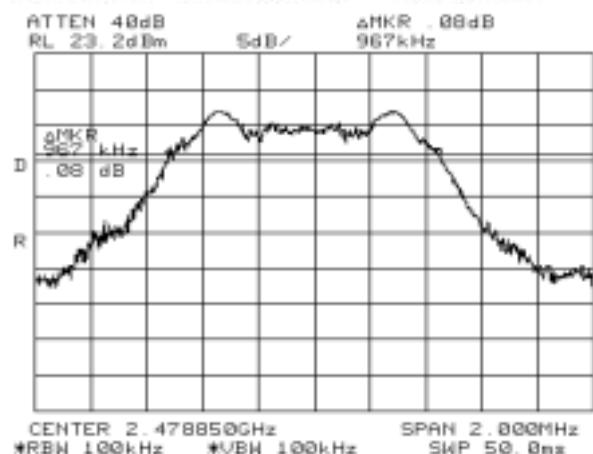
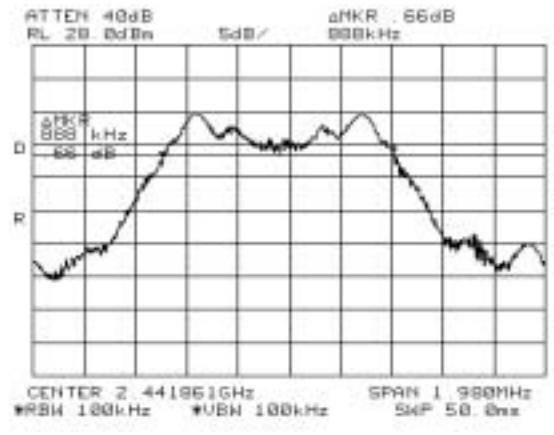
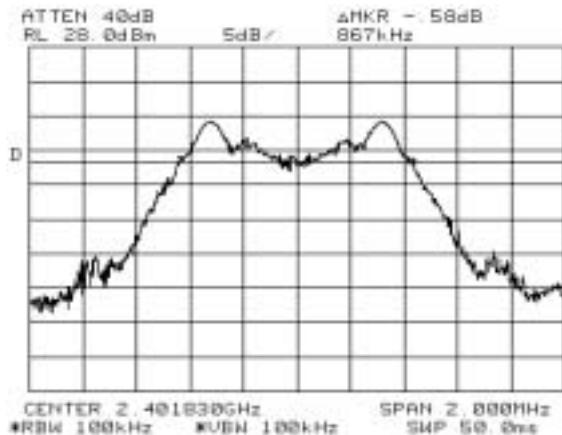
#### 2442MHz




## EMC Test Data

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: |                         | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |





### 2478MHz



|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: |                         | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

**Run #2: Signal Bandwidth**

| Channel | Frequency (MHz) | Resolution Bandwidth | 6dB Signal Bandwidth | 26dB Signal Bandwidth |
|---------|-----------------|----------------------|----------------------|-----------------------|
| Low     | 2402            | 100kHz               | 867kHz               | 3.275MHz              |
| Mid     | 2442            | 100kHz               | 888kHz               | 2.78MHz               |
| High    | 2479            | 100kHz               | 967kHz               | 3.30MHz               |



26dB bandwidth: 2.125 MHz (information only)



## EMC Test Data

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
|          |                         | Account Manager: | -      |
| Contact: | Mark Morrissey          |                  |        |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

### Run #3: Output Power

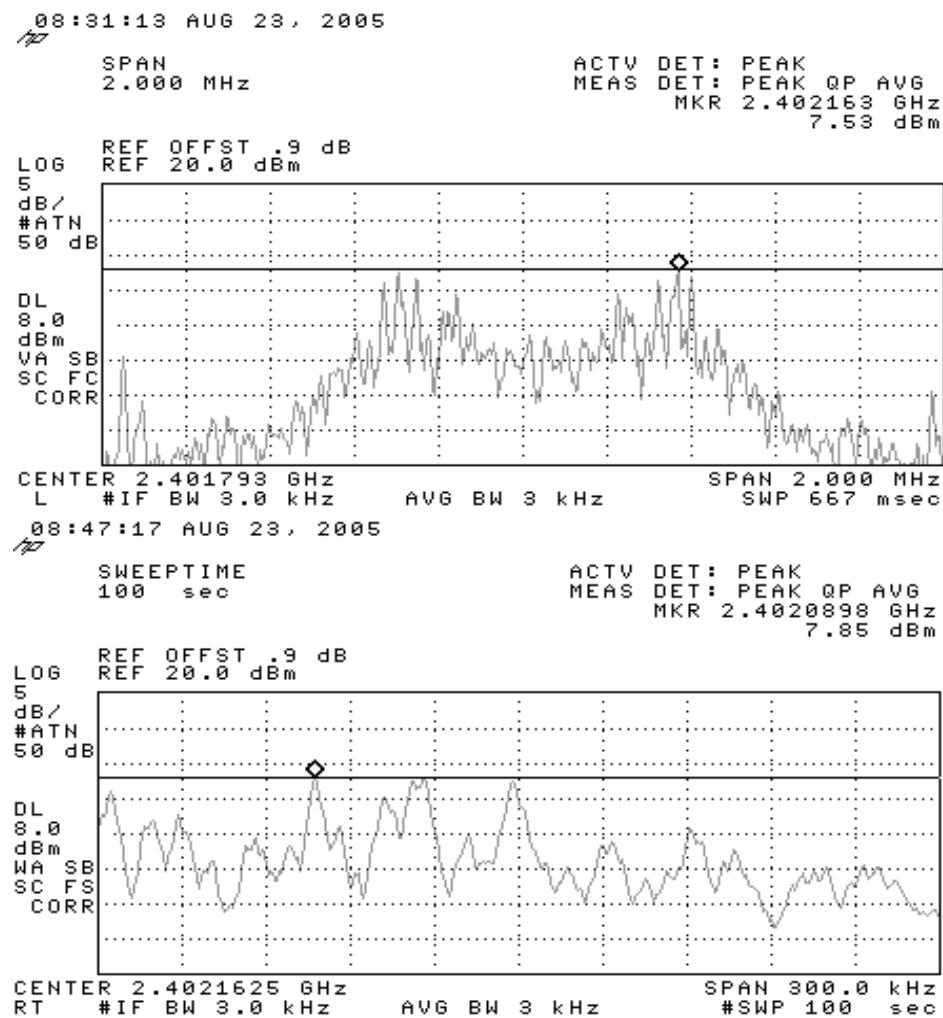
Maximum antenna gain: 2 dBi

| Channel | Frequency (MHz) | Output Power (dBm) | Output Power (W) | EIRP (W) |
|---------|-----------------|--------------------|------------------|----------|
| Low     | 2402            | 17.1               | 0.051            | 0.0813   |
| Mid     | 2442            | 17.1               | 0.051            | 0.0813   |
| High    | 2479            | 17.1               | 0.051            | 0.0813   |

Note 1: Output power measured using a peak power meter



## *EMC Test Data*

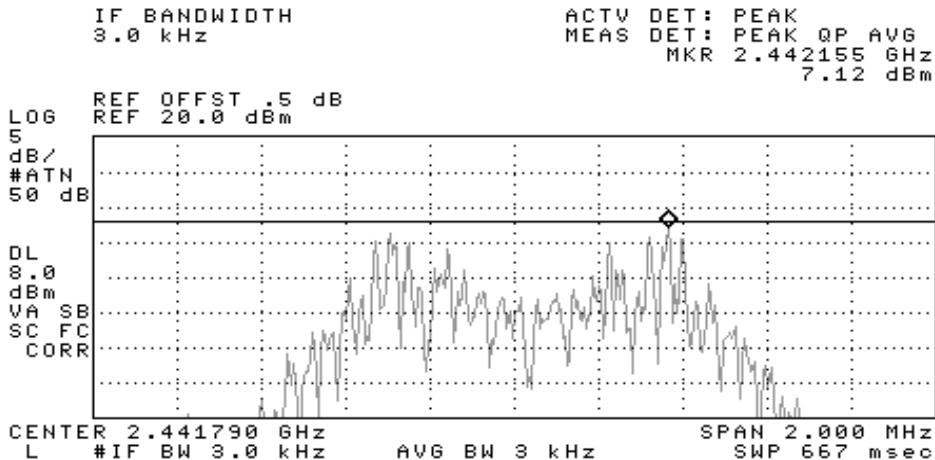

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: | Mark Morrissey          | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

Run #4: Power Spectral Density - Performed 8/23/2005

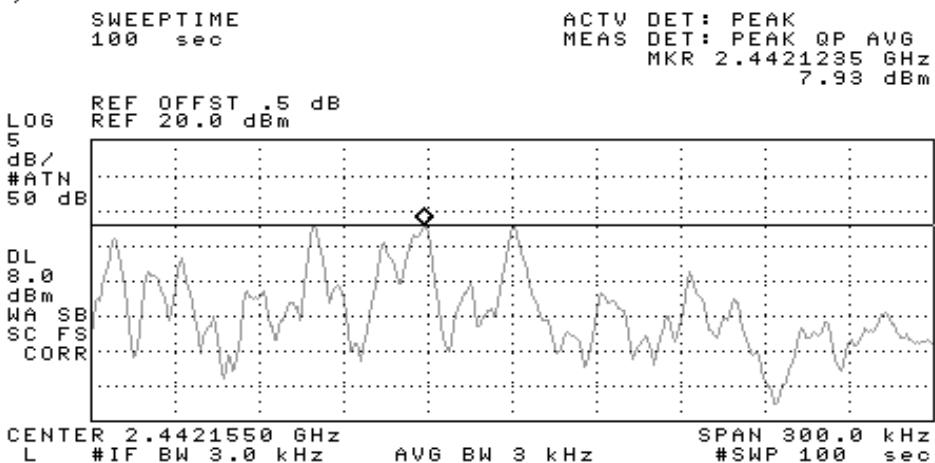
**Maximum permitted is 8dBm/3kHz**

| Channel | Frequency (MHz) | Res BW | P.S.D. (averaged over 1 second in a 3kHz bandwidth) |
|---------|-----------------|--------|-----------------------------------------------------|
| Low     | 2402.0898       | 3 kHz  | 7.85                                                |
| Mid     | 2442.1235       | 3 kHz  | 7.93                                                |
| High    | 2479.5013       | 3 kHz  | 7.46                                                |

Plots show an expanded view to determine frequency of highest PSD (multiple sweeps with a 3kHz bandwidth) and then the actual measurement made with a dwell time of at least 1 second per 3kHz at the frequency with the highest PSD observed in the first plot.





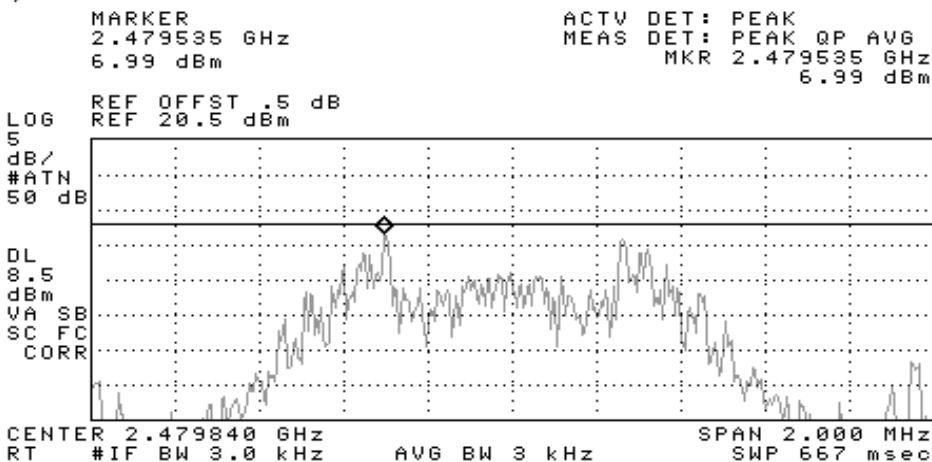


## EMC Test Data

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
|          |                         | Account Manager: | -      |
| Contact: | Mark Morrissey          |                  |        |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

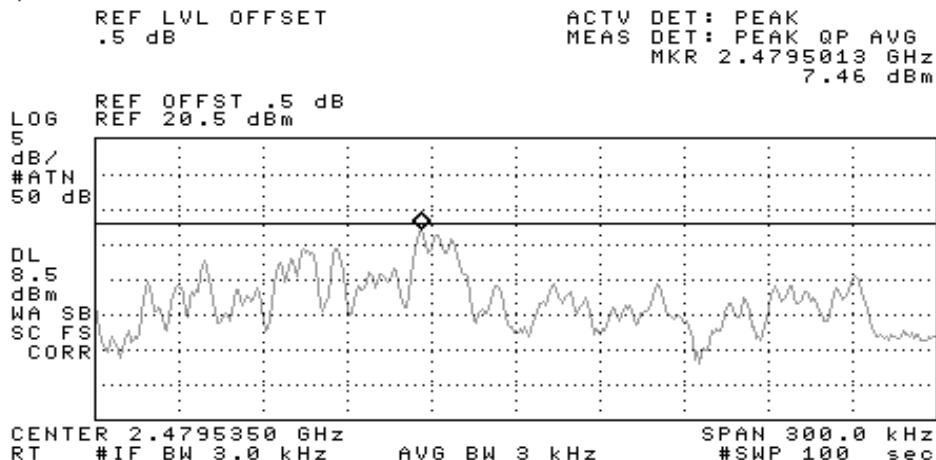
08:49:51 AUG 23, 2005



08:55:56 AUG 23, 2005







## EMC Test Data

|          |                         |                  |        |
|----------|-------------------------|------------------|--------|
| Client:  | Unigen                  | Job Number:      | J60079 |
| Model:   | Wireless USB with PA    | T-Log Number:    | T60140 |
| Contact: | Mark Morrissey          | Account Manager: | -      |
| Spec:    | FCC 15.247 / EN 300 328 | Class:           | N/A    |

09:20:46 AUG 23, 2005



09:18:24 AUG 23, 2005



***EXHIBIT 3: Test Configuration Photographs***

2 Pages

The EUT was tested in two orientations – flat and upright. The photographs show both of these orientations.

***EXHIBIT 4: Proposed FCC ID Label & Label Location***

***EXHIBIT 5: Detailed Photographs  
of Unigen Corporation Model JUNO-PAL Construction***

Pages

***EXHIBIT 6: Operator's Manual  
for Unigen Corporation Model JUNO-PAL***

Pages

***EXHIBIT 7: Block Diagram  
of Unigen Corporation Model JUNO-PAL***

Pages

***EXHIBIT 8: Schematic Diagrams  
for Unigen Corporation Model JUNO-PAL***

Pages

***EXHIBIT 9: Theory of Operation  
for Unigen Corporation Model JUNO-PAL***

Pages

***EXHIBIT 10: Advertising Literature***

Pages

***EXHIBIT 11: RF Exposure Information***

Pages