

Page 41 of 70

10.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	The state of the s
216~960	200	3
Above 960	500	3

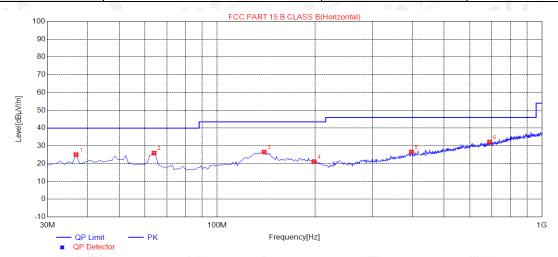
Note: All modes were tested For restricted band radiated emission.

the test records reported below are the worst result compared to other modes.

10.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

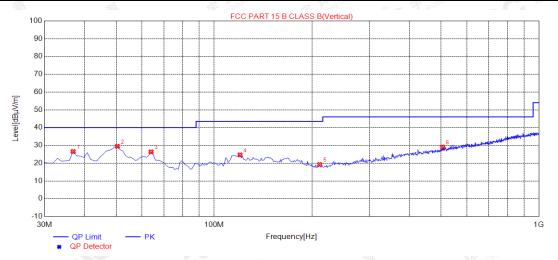
No emission found between lowest internal used/generated frequencies to 30MHz.


The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

RADIATED EMISSION BELOW 1GHZ

EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 8	Antenna	Horizontal

									7
	NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Dolority
	NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
@	1	36.7900	25.09	14.16	40.00	14.91	100	276	Horizontal
-	2	63.9500	26.00	13.25	40.00	14.00	100	69	Horizontal
4	3	139.6100	26.52	14.85	43.50	16.98	150	357	Horizontal
	4	198.7800	21.18	12.11	43.50	22.32	200	54	Horizontal
	5	396.6600	26.59	19.65	46.00	19.41	200	285	Horizontal
	6	690.5700	32.19	25.84	46.00	13.81	100	38	Horizontal


RESULT: PASS

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 8	Antenna	Vertical

NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	36.7900	26.54	14.16	40.00	13.46	100	356	Vertical
2	50.3700	29.48	14.64	40.00	10.52	100	214	Vertical
3	63.9500	26.36	13.25	40.00	13.64	100	9	Vertical
4	120.2100	24.63	13.48	43.50	18.87	100	357	Vertical
5	211.3900	19.22	12.74	43.50	24.28	150	167	Vertical
6	505.3000	29.03	22.30	46.00	16.97	200	358	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 8 is the worst case and recorded in the report.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type of the confirmed at a type of the

Page 44 of 70

RADIATED EMISSION ABOVE 1GHZ

EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 7	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.022	47.87	0.08	47.95	74	-26.05	peak
4804.022	44.56	0.08	44.64	54	-9.36	AVG
7206.033	45.68	2.21	47.89	74	-26.11	peak
7206.033	43.87	2.21	46.08	54	-7.92	AVG
and the station of the state of	(a) All collon of	Allestation		34		
emark:			lin-		K Kilmanoe	The complete
actor = Ante	enna Factor + Cal	ole Loss – I	Pre-amplifier.	0 = 3	(B)	The Lation of Give

EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 7	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Value Type
4804.022	47.79	0.08	47.87	74	-26.13	peak
4804.022	43.97	0.08	44.05	54	-9.95	AVG
7206.033	44.98	2.21	47.19	74	-26.81	peak
7206.033	43.48	2.21	45.69	54	-8.31	AVG
6	The Compiler	A Modal Co.	© Americano of the American of	Allesto		
temark:		stati.	64			Mills
actor = Ante	enna Factor + C	able Loss – I	Pre-amplifier.	1411		KEL DILANCE

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the

Report No.: AGC01789190502FE03 Page 45 of 70

EUT Bluetooth Speaker M		Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 8	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4882.022	46.69	0.14	46.83	74	-27.17	peak
4882.022	42.18	0.14	42.32	54	-11.68	AVG
7323.033	41.33	2.36	43.69	74	-30.31	peak
7323.033	37.29	2.36	39.65	54	-14.35	AVG
The North	Jan Kill Ding	" J	Ling Compiles (8)	restation 6	Aftestad	
® # FnorGlobs	O To Global	® # Jation of G		~ (5)		
Remark:	Allestalle	G Alle			TII.	lim:
actor = Ante	nna Factor + Ca	ble Loss – F	Pre-amplifier.		4121 July	Kil mpliance

EUT	Bluetooth Speaker	Model Name	BTS-622B	
Temperature	25°C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	Mode 8	Antenna	Vertical	

			Will Walle	The company	0 -	S. GIL
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4882.022	46.77	0.14	46.91	74	-27.09	peak
4882.022	41.36	0.14	41.5	54	-12.5	AVG
7323.033	45.82	2.36	48.18	74	-25.82	peak
7323.033	40.78	2.36	43.14	54	-10.86	AVG
	165 May 1	Kil normaliance	Glob	() ## F	on of Glob	
	E Modal Count	of Global	Attestation Attestation	Allesu		
Remark:	ijonol	ttestation	60			
actor = Ante	enna Factor + C	able Loss – l	Pre-amplifier.			litte:
				Plan		ATTS AU

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC01789190502FE03 Page 46 of 70

EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 9	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4960.022	46.58	0.22	46.8	74	-27.2	peak
4960.022	39.23	0.22	39.45	54	-14.55	AVG
7440.033	40.66	2.64	43.3	74	-30.7	peak
7440.033	38.58	2.64	41.22	54	-12.78	AVG
The Con	TK 12 Day	~ J	Ling Compile	nestation C	Allestan	
3 St. Jon of Globe	@ F Global	® Mation of C		~ (6)		
Remark:	Altaslatio	G Atte			711	litte:
actor = Ante	enna Factor + Ca	ble Loss – F	Pre-amplifier.		Alas	Kil mpliance

EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 9	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.022	46.21	0.22	46.43	74	-27.57	peak
4960.022	38.34	0.22	38.56	54	-15.44	AVG
7440.033	39.5	2.64	42.14	74	-31.86	peak
7440.033	37.34	2.64	39.98	54	-14.02	AVG
	Age was	The Kilmpliance	F (Glob)	® ##	on of Glov	.G **
	FA comb	of Global	Attestation .	Allesh		
Remark:	lion of A	testation	7.0			_
actor = Ante	enna Factor + C	able Loss – I	Pre-amplifier.			-1111
				- 11111		

RESULT: PASS

Note: Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been tested. The 8DPSK modulation is the worst case and recorded in the report.

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

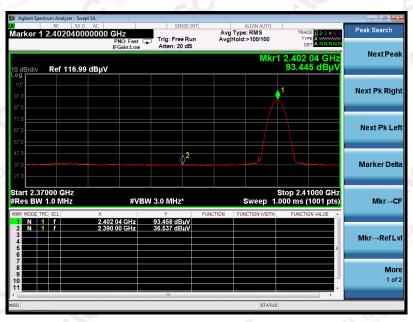
EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 7	Antenna	Horizontal

PK

AV

RESULT: PASS

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.



EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 7	Antenna	Vertical

PΚ

AV

RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

IGC 8

EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 9	Antenna	Horizontal

PK

ΑV

RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

IGC 8

EUT	Bluetooth Speaker	Model Name	BTS-622B
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 9	Antenna	Vertical

PΚ

AV

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F. All test modes had been pre-tested. The 8DPSK modulation is the worst case and recorded in the report.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained fo

GC

Page 51 of 70

11. NUMBER OF HOPPING FREQUENCY

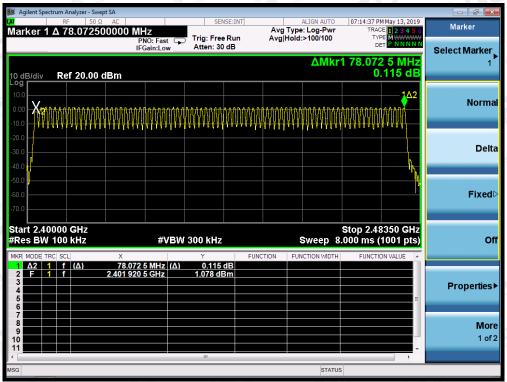
11.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW > RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
- 4. Allow the trace to stabilize.

11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2


11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

11.4. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS

Note: The GFSK modulation is the worst case and recorded in the report.

The results spowfill this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 52 of 70

@ 400 089 2118

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Zero span, centered on a hopping channel.
- 2. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 4. Detector function: Peak. Trace: Max hold.
- 5. Use the marker-delta function to determine the transmit time per hop.
- 6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) x (period specified in the requirements / analyzer sweep time)

7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

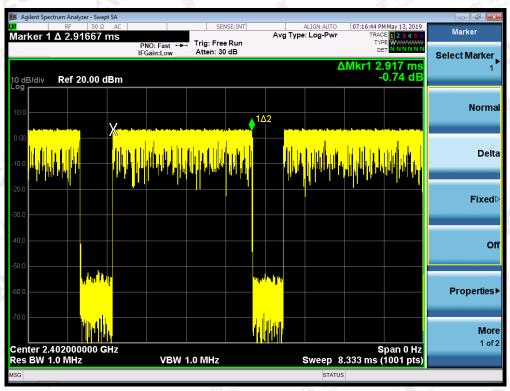
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

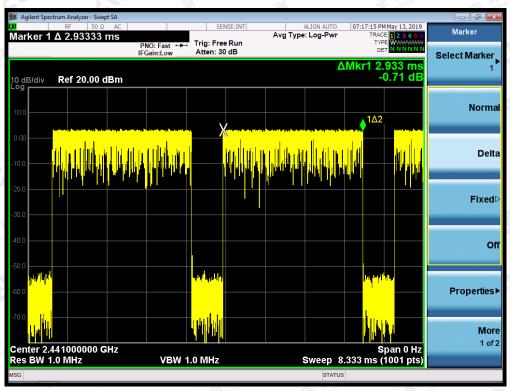
12.4. LIMITS AND MEASUREMENT RESULT


Channel	Time of Pulse for DH5 (ms)	Number of hops in the period specified in the requirements	Sweep Time (ms)	Limit (ms)
Low	2.917	28*4	326.704	400
Middle	2.933	24*4	281.568	400
High	2.917	25*4	291.700	400

Note: The 8DPSK modulation is the worst case and recorded in the report.

The results spoword this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 Ĉ, this documate teannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

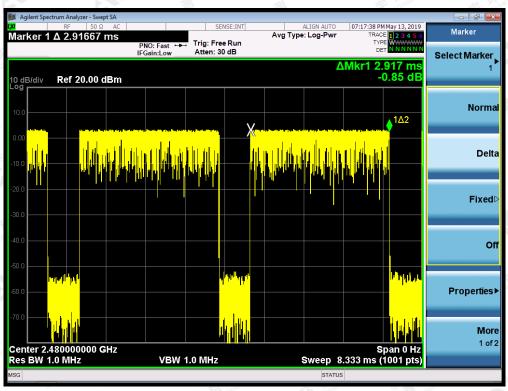
TEST PLOT OF LOW CHANNEL

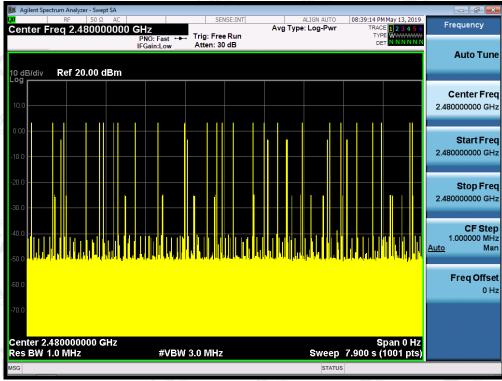




The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

TEST PLOT OF MIDDLE CHANNEL





The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

TEST PLOT OF HIGH CHANNEL

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

13. FREQUENCY SEPARATION

13.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Wide enough to capture the peaks of two adjacent channels.
- 2. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3. Video (or average) bandwidth (VBW) ≥ RBW.
- 4. Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

13.4. LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT
	KHz	KHz	Dane (Fig. 1)
CH01-CH02	1000	>=25 KHz or 2/3 20 dB BW	Pass A Common Pass

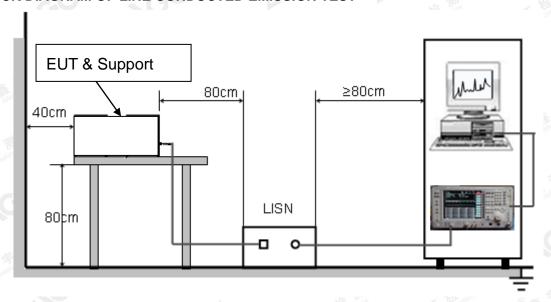
TEST PLOT FOR FREQUENCY SEPARATION

Note: The 8DPSK modulation is the worst case and recorded in the report.

The results spowfill this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 57 of 70

14. FCC LINE CONDUCTED EMISSION TEST


14.1. LIMITS OF LINE CONDUCTED EMISSION TEST

F	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

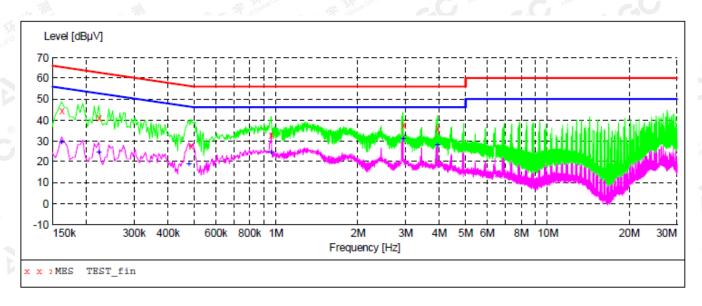
Page 58 of 70

14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- The EUT received DC 15V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST


- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- The test data of the worst case condition(s) was reported on the Summary Data page.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc. gett.com.

14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT: "TEST fin"

5/16/2019 10: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.162000	44.50	10.8	65	20.9	QP	L1	FLO
0.222000	40.90	10.9	63	21.8	QP	L1	FLO
0.486000	27.50	11.1	56	28.7	QP	L1	FLO
0.958000	32.80	11.3	56	23.2	QP	L1	FLO
2.938000	37.80	11.5	56	18.2	QP	L1	FLO
3.926000	35.70	11.6	56	20.3	QP	L1	FLO

MEASUREMENT RESULT: "TEST fin2"

5/16/2019 10: Frequency MHz	46AM Level dBμV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.162000	29.40	10.8	55	26.0	AV	L1	FLO
0.222000	24.30	10.9	53	28.4	AV	L1	FLO
0.478000	18.70	11.0	46	27.7	AV	L1	FLO
0.958000	24.30	11.3	46	21.7	AV	L1	FLO
2.938000	31.20	11.5	46	14.8	AV	L1	FLO
3.926000	28.10	11.6	46	17.9	AV	L1	FLO

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

Line Conducted Emission Test Line 2-N

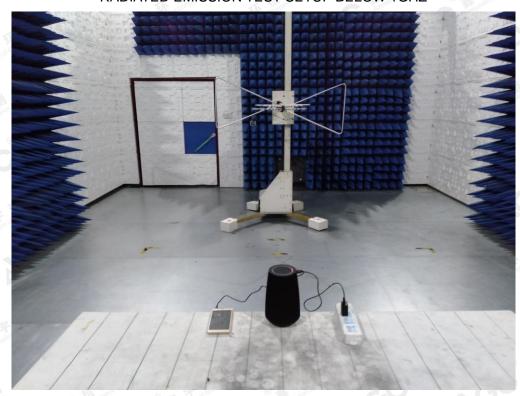
MEASUREMENT RESULT: "TEST_fin"

5/16/2019 10:50AM									
Frequen	cy Level Hz dBuV		Limit dBuV	Margin dB	Detector	Line	PE		
IVI	нг авич	ав	авич	αь					
0.1620	00 42.90	10.8	65	22.5	QP	N	FLO		
0.1940	00 40.40	10.9	64	23.5	QP	N	FLO		
0.2420	00 39.30	10.9	62	22.7	QP	N	FLO		
0.5140	00 35.20	11.1	56	20.8	QP	N	FLO		
1.9900	00 28.40	11.5	56	27.6	QP	N	FLO		
2.9700	00 37.30	11.5	56	18.7	QP	N	FLO		

MEASUREMENT RESULT: "TEST_fin2"

5/16/ Fi	2019 10: equency MHz	50AM Level dBμV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0	.162000	29.40	10.8	55	26.0	AV	N	FLO
0	.186000	26.60	10.9	54	27.6	AV	N	FLO
0	.242000	28.00	10.9	52	24.0	AV	N	FLO
0	.526000	29.20	11.1	46	16.8	AV	N	FLO
1	.982000	33.60	11.5	46	12.4	AV	N	FLO
2	2.966000	26.80	11.5	46	19.2	AV	N	FLO

RESULT: PASS


Note: All the test modes had been tested, the mode 8 was the worst case. Only the data of the worst case would be record in this test report.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHZ

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a titp://www.agc.gett.com.

Attestation of Global Compliance

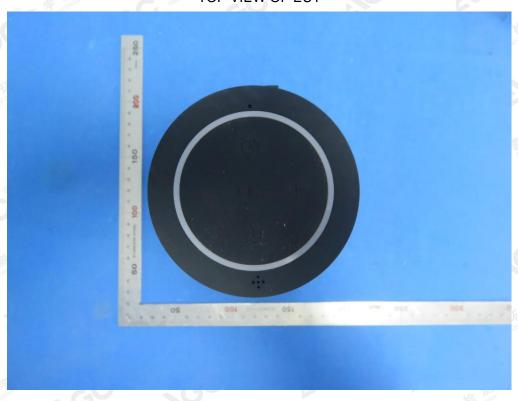
Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

CONDUCTED EMISSION TEST SETUP

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance

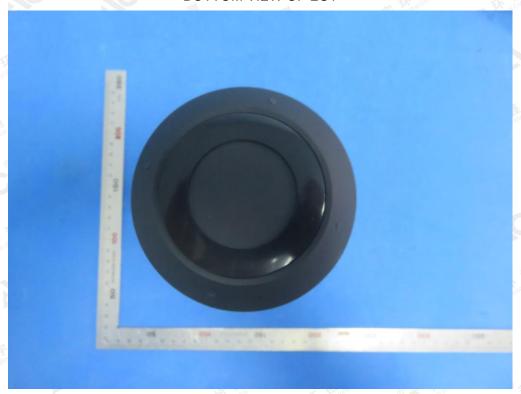
Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China



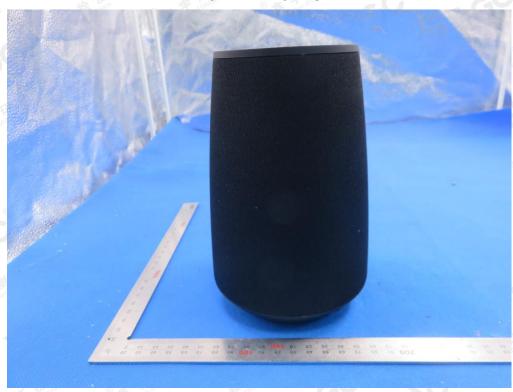
APPENDIX B: PHOTOGRAPHS OF EUT

TOTAL VIEW OF EUT

TOP VIEW OF EUT


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the co

Attestation of Global Compliance

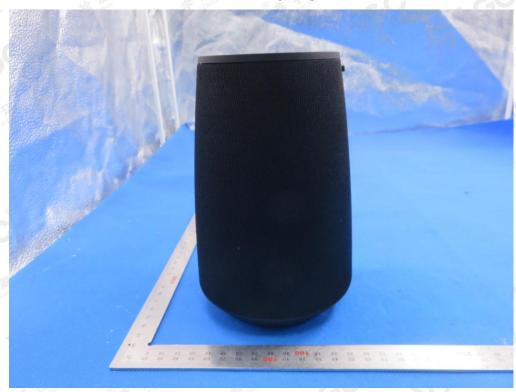

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

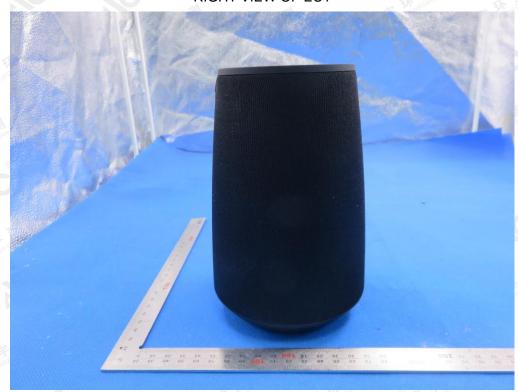
The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance


Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

BACK VIEW OF EUT

LEFT VIEW OF EUT


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

RIGHT VIEW OF EUT

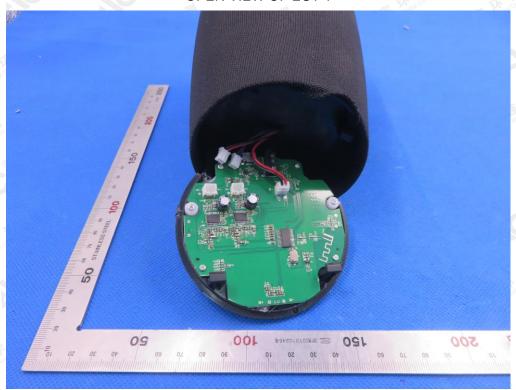
VIEW OF EUT (PORT)

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

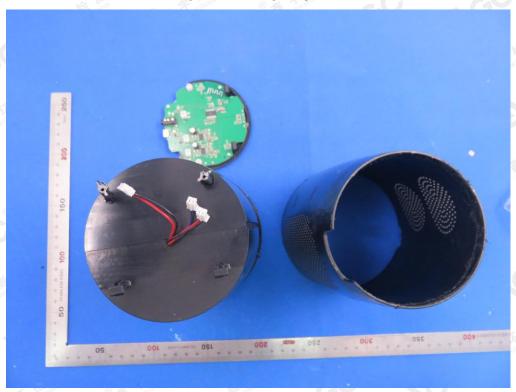
Attestation of Global Compliance

Tel: +86-755 2908 1955

Fax: +86-755 2600 8484


E-mail: agc@agc-cert.com

@ 400 089 2118

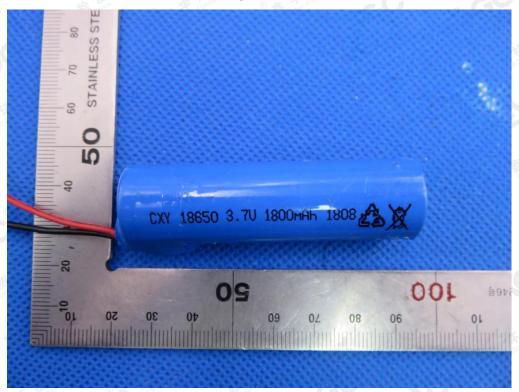

 $Add: 2/F.\ , Building\ 2, No.1-4, Chaxi\ Sanwei\ Technical\ Industrial\ Park, Gushu,\ Xixiang,\ Baoan\ District,\ Shenzhen,\ Guangdong\ Chinang Chinangdong\ Ch$

OPEN VIEW OF EUT-1

OPEN VIEW OF EUT-2

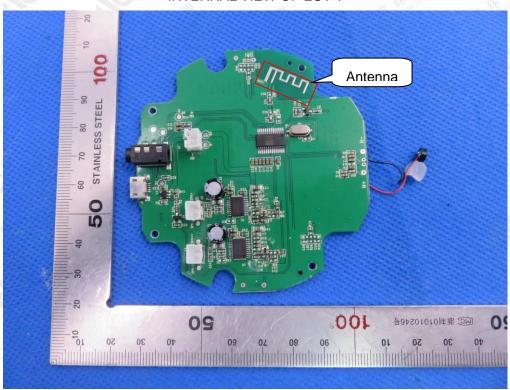
The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance

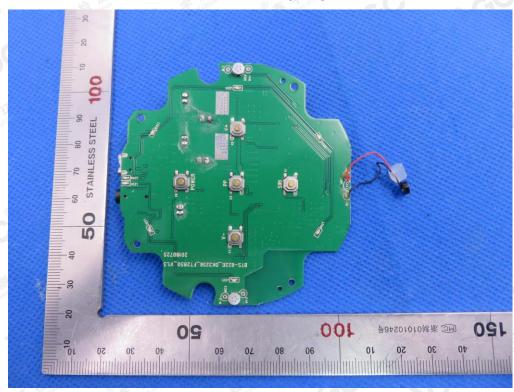

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

OPEN VIEW OF EUT-3

VIEW OF BATTERY

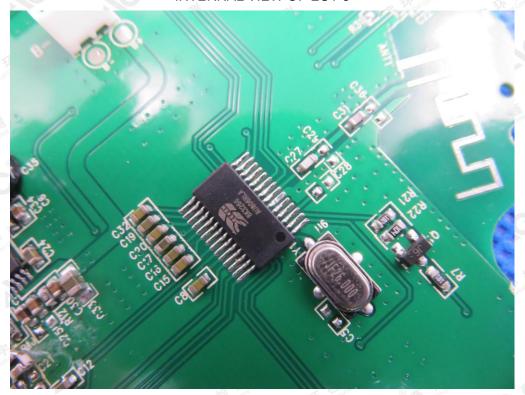

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at alther.//www.agc.gett.com.

Attestation of Global Compliance


Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2


The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

INTERNAL VIEW OF EUT-3

END OF REPORT--

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a title://www.agc-geat.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484

E-mail: agc@agc-cert.com

@ 400 089 2118

 $Add: 2/F.\ , Building\ 2, No.1-4, Chaxi\ Sanwei\ Technical\ Industrial\ Park, Gushu,\ Xixiang,\ Baoan\ District,\ Shenzhen,\ Guangdong\ Chinang Chinangdong\ Ch$