Page 1 of 29

EUT: AMB2524; AMB2524-1 FCC ID: R7TAMB2524

FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

Test Report acc. to FCC Title 47 CFR Part 15 Relating to AMBER wireless GmbH AMB2524 AMB2524-1

> Title 47 - Telecommunication Part 15 - Radio Frequency Devices Subpart C – Intentional Radiators Measurement Procedure: ANSI C63.4-2014 ANSI C63.10-2013

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 2 of 29

EUT: AMB2524; AMB2524-1 FCC ID: R7TAMB2524

FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

MANUFACTURER				
Manufacturer name	AMBER wireless GmbH			
Manufacturer's grantee code R7T				
Manufacturer's address Rudi-Schillings-Str. 31, 54296 Trier				
Phone	+49 (0) 651 99355 0			
Fax	+49 (0) 651 99355-69			
Email	Gudrun.eckhardt@amber-wireless.com			

TESTING LABORATORY

Test engineer	Mr. Ralf Trepper
Testing laboratory name	m. dudde hochfrequenz-technik GmbH & Co. KG
Testing laboratory address	Rottland 5a, 51429 Bergisch Gladbach, Germany
Phone	+49 (0) 2207 96890
Fax	+49 (0) 2207 968920
Email	m.duddelabor@dudde.com

RELEVANT S	STANDARD
-------------------	----------

Title	47 - Telecommunication
Part	15 - Radio Frequency Devices
Subpart	Subpart C – Intentional Radiators – Section 15.249
Measurement procedure	ANSI C63.4-2014 & ANSI C63.10-2013

EQUIPMENT UNDER TEST (EUT)					
Equipment category 2.4 GHz Wireless Transceiver Module					
Trade name					
Type designation	AMB2524 AMB2524-1				
Serial no.	110.004091 (AMB2524) 110.004092 (AMB2524-1)				
Variants					

Date: 2017-09-07	Created: F	6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 3 of 29

M. dudde

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1 FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

1. Test results

Clause	Requirements headline	Test result			Page number
8.1	Antenna requirement	ement Pass Fai		N.t.*	9
8.2	Conducted limits	ucted limits Pass Fail		N.t. ³	10 – 12
8.3	Restricted bands of operation	Pass Fail		N.t.*	13 – 14
8.4	Radiated emission limits, general requirements	ents Pass F		N.t.*	15 – 19
8.5	Fundamental frequencies / Field strength limits	Pass	Fail	N.t.*	20 – 23
8.6	Bandwidth		Fail	N.t.*	24 – 25

* Not tested

The equipment passed all the conducted tests

No

Yes

Signature	Mill Touppe	charl Reiden
Name	Mr. Ralf Trepper	Mr. Manfried Dudde
Designation	RF Test Engineer	Laboratory-Manager
Date of issue	2017-12-06	2017-12-06

Page 4 of 29

EUT: AMB2524; AMB2524-1	FCC ID: R7TAMB2524	FCC Title 47 CFR Part 15	Date of issue: 2017-12-06
	Table	of contents	
1. Test results			
2. Introduction			5
3. Testing laboratory			5
4. Applicant			6
5. Product and produce	ct documentation		6
6. Conclusions, obser	vations and comments		7
7. Operational descrip	ntion		
8. Compliance assess	ment		9
8.1 Antenna requirem	nent		9
8.1.1 Regulation			9
8.1.2 Result			9
8.2 Conducted limits			
8.2.1 Regulation			
8.2.2 Test proced	ures		
8.2.3 Result			
8.3 Restricted bands of	of operation		
8.3.1 Regulation			
8.3.2 Result			14
8.4 Radiated emission	n limits, general requirements		
8.4.1 Regulation			
8.4.2 Test proced	ure		
8.4.3 Calculation	of the field strength		
8.4.4 Result			
8.5 Field strength lim	its of fundamental frequencies an	nd harmonics	
8.5.1 Regulation			
8.5.2 Test proced	ure		
8.5.3 Calculation	of the average correction factor.		
8.5.4 Calculation	of the field strengths		
8.5.5 Result			
8.6 Bandwidth (20 dl	8)		
8.6.1 Regulation			
8.6.2 Test proced	ure		
8.6.3 Result			
	ation to the test report		
	ment		
11. List of test cables			

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 5 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1 FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

2. Introduction

This test report is not an expert opinion and consists of:

- Test result summary
- List of contents
- Introduction and further information
- Performance assessment
- Detailed test information

All pages have been numbered consecutively and bear the m. dudde hochfrequenz-technik GmbH & Co. KG logo, the test report number, the date, the test specification in its current version as well as the type designation of the EUT. The total numbers of pages in this report is **29**.

The tests were carried out in a representative assembly and in accordance with the test methods and/or requirements stated in:

FCC Title 47 CFR Part 15 Subpart C Section 15.249 & ANSI C63.4-2014 & ANSI C63.10-2013

The sample of the product was received on:

- 2017-10-27

The tests were carried out in the following period of time:

- 2017-11-28 - 2017-12-04

3. Testing laboratory

m. dudde hochfrequenz-technik GmbH & Co. KG, Rottland 5a, D-51429 Bergisch Gladbach Germany

Phone: +49 - (0) 22 07 / 96 89-0 Fax: +49 - (0) 22 07 / 96 89-20

FCC Registration Number: 763407

Accredited by:

DAkkS Deutsche Akkreditierungsstelle GmbH DAkkS accreditation number: D-PL-12053-01-00

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Test report no. 170	1105	<i>•</i>]
---------------------	------	------------

Page 6 of 29

			Sinsti & co. KG	- 0
EUT: AMB2524; AMB2524-1	FCC ID: R7TAMB2524	FCC Title 47 CFR Part 15	Date of issue:	2017-12-06
4. Applicant				
Company name	: AMBER wireless Gm	bH		
Address	: Rudi-Schillings-Str. 3	1		
	54296 Trier			
Country	: Germany			
Telephone	: +49 (0) 651 99355 0			
Fax	: +49 (0) 651 99355-69			
Email	: Gudrun.eckhardt@am	ber-wireless.com		
Date of order	: 2017-10-02			
References	: Mrs. Gudrun Eckhardt			
5. Product and prod	luct documentation			
Samples of the followi	ing apparatus were submitted for t	testing:		

Manufacturer	: AMBER wireless GmbH
Trademark	:
Type designation	: AMB2524 / AMB2524-1
Serial number	: 110.004091 (AMB2524) 110.004092 (AMB2524-1)
Hardware versions	:
Variants	:
Software release	:
Type of equipment	: 2.4 GHz Wireless Transceiver Module
Power used	: 3.3 V DC
Frequency used	: 2400 MHz – 2483.5 MHz
Generated or used frequencies	: 26 MHz (crystal),
	2400 MHz – 2483.5 MHz (carrier)
ITU emission class	: 808KF1D (AMB2524)
	809KF1D (AMB2524-1)
FCC ID	: R7TAMB2524

For issuing this report the following product documentation was used:

Title	Description	Version

Date: 2017-09-07	Created:	P6	Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergi	sch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 7 of 29

EUT: AMB2524;FCC ID: R7TAMB2524FCC Title 47 CFR Part 15Date of issue: 2017-12-06AMB2524-1

For issuing this report the following product documentation was used:

Description	Date	Identifications
External photographs of the Equipment Under Test (EUT)	2017-12-06	Annex no. 1
Internal photographs of the Equipment Under Test (EUT)	2017-12-06	Annex no. 2
Channel occupancy / bandwidth	2017-12-06	Annex no. 3
Label sample	2017-12-06	Annex no. 4
Functional description / User Manual	2017-12-06	Annex no. 5
Test setup photos	2017-12-06	Annex no. 6
Block diagram	2017-12-06	Annex no. 7
Operational description	2017-12-06	Annex no. 8
Schematics	2017-12-06	Annex no. 9
Parts list	2017-12-06	Annex no. 10

6. Conclusions, observations and comments

The test report will be filed at m. dudde hochfrequenz-technik GmbH & Co. KG for a period of 10 years following the issue of this report. It may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of m. dudde hochfrequenz-technik GmbH & Co. KG.

The results of the tests as stated in this report are exclusively applicable to the EUT as identified in this report. m. dudde hochfrequenz-technik GmbH & Co. KG cannot be held liable for properties of the EUT that have not been observed during these tests.

m. dudde hochfrequenz-technik GmbH & Co. KG assumes the sample to comply with the requirements of FCC Title 47 CFR Part 15 for the respective test sector, if the test results turn out positive.

Comments: ---

: 2017-12-06

Name : Ralf Trepper

Function : RF Test Engineer

Signature

Date

: ... A. J. Truppe

Date Name Function Signature

: Laboratory Manager . Charl Derold

: Manfried Dudde

: 2017-12-06

Date: 2017-09-07	Created:	P6	Reviewed: P9	Releas	sed: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergi	sch Gladbach/ Germany	Tel: +49 22	207-96890	Fax +49 2207-968920

Page 8 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1 FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

7. Operational description

7.1 EUT details

The EUT is a 2.4 GHz radio module, that converts wired data on the UART to RF-data on the air and vice versa.

7.2 EUT configuration

The EUT is connected to typical voltage 3.3 V DC as declared by the manufacturer and then connected to laptop via USB cable provided by manufacturer. The EUT is then configured to the required frequency using the terminal program (HTerm 0.8.1beta) provided by the manufacturer.

7.3 EUT measurement description

Radiated measurements

The EUT was tested in a typical fashion. During preliminary emission tests the EUT was operated in the continuous measuring mode for worst case emission mode investigation. Therefore, the final qualification testing was completed with the EUT operated in continuous measuring mode. All tests were performed with the EUT's typical voltage: 3.3 V DC.

In order to establish the maximum radiation, firstly, there have been viewed all orthogonal adjustments of the test samples, secondly the test ample have been rotated at all adjustments around the own axis between 0° and 360° , and thirdly, the antenna polarization between horizontal and vertical had been varied.

Radiated measurement above 1 GHz is made by placing loose-laid RF absorber material on the ground plane as mentioned in ANSI C63.4-2014.

Additionally, radiated emission measurements above 1 GHz are made using calibrated linearly polarized antennas as specified in ANSI C63.4-2014, which may have a smaller beamwidth (main lobe) than do the antennas used for frequencies below 1 GHz. The measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal.

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 9 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1 FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

8. Compliance assessment

8.1 Antenna requirement

8.1.1 Regulation

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

8.1.2 Result

Antenna Type	Antenna description	Frequency	Gain	Number of Antennas
Chip Antenna	Integrated Antenna	2400 – 2483.5 MHz	0 dBi	1
Wire Antenna	Lambda/4	2400 – 2483.5 MHz	2 dBi	1

The equipment passed the conducted tests	Yes	No	N.t. *
Test setup photos / test results are attached	Yes	No	Annex no.:

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Test report no. 17011091		Page 10 of 29	hochfrequenz-technik GmbH & Co. KG	
EUT: AMB2524; AMB2524-1	FCC ID: R7TAMB2524	FCC Title 47 CFR Part 15	Date of issue: 2017-12-06	

m. dudde

8.2 Conducted limits

8.2.1 Regulation

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H /50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Conducted Limits					
Frequency of Emission	Quasi-Peak (QP)	Average (AV)			
MHz	dBµV	dBµV			
0.15 - 0.5	66 to 56*	56 to 46*			
0.5 - 5	56	46			
5 -30	60	50			
*Limit Decreases with the logarithm of the frequency					

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

1) For carrier current system containing their fundamental emission within the frequency band 535–1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μV within the frequency band 535–1705 kHz, as measured using a 50 μH /50 Ω LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 11 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1 FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

8.2.2 Test procedures

The EUT and the additional equipment (if required) are connected to the main power through a line impedance stabilization network (LISN). The LISN must be appropriate to ANSI C63.4-2014 Section 7. Additional equipment must also be connected to a second LISN with the same specifications described in the above section (if required).

8.2.3 Result

Conducted emissions (Section 15.207) - Tested with external AC power supply								
Tested Line	Frequency	Bandwidth	QP Value	QP Limit	Margin	AV Value	AV Limit	Margin
L1/N	MHz	kHz	dBµV	dBµV	dB	dBµV	dBµV	dB
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
	Measurement uncertainty $< \pm 2 \text{ dB}$							

Test Cables used				
Test equipment used				
The equipment passed th	he conducted tests	Yes	No	N.t. ³
Test setup photos / test i	results are attached	Yes	No	Annex no.:

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 12 of 29

EUT: AMB2524; AMB2524-1 FCC ID: R7TAMB2524

FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

C	Conducted emissions (Section 15.207) - Tested with a Laptop over USB / LAN port							
Tested Line	Frequency	Bandwidth	QP Value	QP Limit	Margin	AV Value	AV Limit	Margin
L1 / N	MHz	kHz	dBµV	dBµV	dB	dBµV	dBµV	dB
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
		9						
	Measurement uncertainty $< \pm 2 \text{ dB}$							

Test Cables used				
Test equipment used				
The equipment passed t	he conducted tests	Yes	No	N.t. ³
Test setup photos / test	results are attached	Yes	No	Annex no.:

Date: 2017-09-07	Created: I	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 13 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1 FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

8.3 Restricted bands of operation

8.3.1 Regulation

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Restricted bands of operation					
Frequency Band	Frequency Band	Frequency Band	Frequency Band		
MHz	MHz	MHz	GHz		
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15		
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46		
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75		
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5		
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2		
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5		
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7		
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4		
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5		
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2		
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4		
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12		
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0		
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8		
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5		
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)		
13.36 - 13.41					
¹ Ur		ricted band shall be 0.490-0.51 ove 38.6	0 MHz.		

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR Quasi-Peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this Section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 14 of 29

EUT: AMB2524;FCC ID: R7TAMB2524FCC Title 47 CFR Part 15Date of issue: 2017-12-06AMB2524-1

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to Section 15.213.

(4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.256 in the frequency band 75-85 GHz, or § 15.257 of this part

(5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of Subpart D or F of this part.

(7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.245(b).

(10) White space devices operating under subpart H of this part are exempt from complying with the requirements of this section for the 608-614 MHz band.

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).

8.3.2 Result

Test Cables used	K1a, K83, K84, K50, K51, K40, K56
Test equipment used	104, 406, 445a, 345, 166a, 171a, 23

The equipment passed the conducted tests	Yes**	No	N.t. *
Test setup photos / test results are attached	Yes	No	Annex no.:

**All emissions fall under restricted band is mentioned the clause 8.4 and are marked blue!

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 15 of 29

EUT: AMB2524;FCC ID: R7TAMB2524FCC Title 47 CFR Part 15Date of issue: 2017-12-06AMB2524-1

8.4 Radiated emission limits, general requirements

8.4.1 Regulation

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement distance
MHz	μV / m	m
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100^{**}	3
88-216	150**	3
216-960	200**	3
above 960	500	3

(b) In the emission table above, the tighter limit applies at the band edges.

(c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

(e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

(f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 16 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1

FCC Title 47 CFR Part 15 Date

Date of issue: 2017-12-06

8.4.2 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8 m above the ground. The turn table would be allowed to rotate 360° to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna is changed in horizontal and vertical polarization; the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4-2014 Section 8 "Radiated Emissions Testing"

Measurement procedures for electric field radiated emissions from 9kHz - 1 GHz & 1 GHz - 40 GHz are covered in Clause 8 of ANSI C63.4-2014. The ANSI C63.4-2014 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Sub clause 8.3.2 of ANSI C63.4-2014 states that the measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." We consider the "cone of radiation" to be the 3 dB beam width of the measurement antenna.

While the "bore-sighting" technique is not explicitly mentioned in ANSI C63.4-2014, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beam width of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTs, measuring system sensitivity, etc.

ANSI C63.4-2014 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

The measurement procedure for harmonics and spurious emissions above 40 GHz is taken from ANSI C63.10-2013.

Date: 2017-09-07	Created:	P6	Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gl	adbach/ Germany	Tel: +49 2207-9689	0 Fax +49 2207-968920

Page 17 of 29

EUT: AMB2524;FCC ID: R7TAMB2524FCC Title 47 CFR Part 15Date of issue: 2017-12-06AMB2524-1

Radiated emissions	test characteristics
Frequency range	9 kHz – Above 960 MHz
Test distance	3 m*
	9 kHz (Below 30 MHz)
Test instrumentation minimum resolution bandwidth	120 kHz (30 MHz - 1,000 MHz)
	1 MHz (Above 1000 MHz)
Detector Type	Quasi peak and Average based on frequency range
Receive antenna scan height	1 m - 4 m
Receive antenna polarization	Vertical/horizontal

* According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

8.4.3 Calculation of the field strength

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of a pre-amplifier)

Receiver Level	: Receiver reading without correction factors
Correction Factor	: Antenna factor + cable loss

For example:

The receiver reading is 32.7 dB μ V. The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of 35.91dB μ V/m. The 35.91dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m$ = Common Antilogarithm (35.91/20) = 62.44

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 18 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1

FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

8.4.4 Result

Т	'ransmit	ter spu	rious radia	tion bel	ow 30	MHz (S	ection 15.2	05, 15.209) -	AMB2524	& AN	IB2524-	1
f	Detct	BW	Rx Level	MD	CF	DEF	LC	Limit	Margin	ЕР	-	enna
_	2000	2			01		20				Pol	H
MHz	Туре	kHz	dBµV	m	dB	dB	dBµV/m	dBµV/m	dB	0	H/V	m
	QP	120	**	3			**					
	QP	120	**	3			**					
					Measu	rement un	certainty: ± 4 of	dB				
					**N	lo emissi	ons detected					
								MD: Measure		e CF :	Correctio	on factor
								Pol:Antenna		H: A	ntenna he	ight
Remark: *	^{*1} Noise le	evel of the	measuring in	strument s	$\leq 4.0 \text{dB}$	µV@10m	distance (0.00	9 MHz -30 MH	Hz)			

Remark: * Peak Limit according to Section 15.35 (b).

Test Cables used	K1a, K83, K56
Test equipment used	103, 23, 171a

The equipment passed the conducted tests	Yes	No	N.t. *
Test setup photos / test results are attached	Yes	No	Annex no.:6

Date: 2017-09-07	Created: 1	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 19 of 29

]	Fransmi	tter spu	irious rae	diation	above 3) MHz (Section	15.205, 15.	209) – AM	B2524 & A	MB252	24-1	
f	Detct	BW	Rx Level	MD	CF	DEF	AVC	LC	Limit	Margin	ЕР	Anter Pol	nna H
MHz	Туре	kHz	dBµV	m	dB	dB	dB	dBµV/m	dBµV/m	dB	0	H/V	n
30.0	РК	100	≤3.5 * *	3	-2.6* ⁵	0	0	0.9	40.0	39.1	0-360	H / V	1-
88.0	РК	100	≤3.5 * *	3	-10.8* ⁵	0	0	-7.3	40.0	47.3	0-360	H / V	1-
216.0	РК	100	≤3.5 * *	3	-10.3* ⁵	0	0	-6.8	43.5	50.3	0-360	H / V	1-
960.0	РК	100	≤3.5 * *	3	8.50* ⁵	0	0	12.0	43.5	31.5	0-360	H / V	1-
700.0	РК	1000	≤4.5**	3	3.80* ⁶	0	0	8.3	54.0	45.7	0-360	H / V	1-
805.5	РК	1000	≤10 **	3	9.5* ⁶	0	0	19.5	54.0	34.5	0-360	H / V	1-
250.0	РК	1000	≤10 **	3	8.00*6	0	0	18.0	54.0	36.0	0-360	H / V	1-
000.0	РК	1000	≤10 **	3	8.40*6	0	0	18.4	54.0	35.6	0-360	H / V	1.
				2	9.10* ⁶	0	0	19.4	51.0		0-360	H / V	1.
000.0	PK	1000	≤10 **	3	9.10**	0	U	19.4	54.0	34.6	0-300	11/ 4	
	PK PK	1000	$\leq 10^{**}$ $\leq 14^{**}$	3	9.10 ^{**} 12.9* ⁶	0	0	26.9	54.0	34.6 27.1	0-360	H/V	1.
500.0 300.0 Frequen CF :Dist: I:Anten mark: * mark: * mark: *	PK PK Cy Detct ance extra na polari ¹ noise flo ² noise flo ³ noise flo	1000 1000 : Detector polation zation or 1 or 1 or 1	≤ 14** ≤ 14** sr type BV factor AV H: Antenn noise level noise level noise level	3 3 W: Bandy VC : Aven a height of the me of the me of the me	12.9* ⁶ 14.8* ⁶ Mea width Rx raging Co asuring in asuring in asuring in	0 0 surement to Level : R rrection f strument : strument : strument :	0 0 uncertainty $Eeceiver le actor I \leq 3.5 dB\mu V\leq 4.5 dB\mu V\leq 10 dB\mu V$	26.9 28.8 y: ± 4 dB vel MD: Me .C : Level co V @ 3m distar V @ 3m distar	54.0 54.0 asurement dis rrected EP: lice (30 - 1,000) lice (1,000 - 2) ce (2,000 - 5);	27.1 25.2 stance CF : • EUT Position 0 MHz) 000 MHz) 500 MHz)	0-360 0-360	H/V H/V	1-
500.0 300.0 Frequen EF :Dista i:Anten mark: * mark: * mark: * mark: * mark: * mark: *	PK PK PK Detct ance extra na polariz noise flo noise flo noise flo noise flo noise flo for using for using	1000 1000 : Detector polation a pre-am a pre-am a pre-am	≤ 14** ≤ 14** r type BV factor AV H: Antenn noise level noise level noise level plifier in th plifier in th K1a	3 W: Bandy WC: Aven a height of the me of the me of the me of the me the range b e range b e, K83, H	12.9* ⁶ 14.8* ⁶ Mea width Rx raging Co asuring in asuring in asuring in asuring in etween 1.0 etween 1.0	0 0 surement to Level : R rrection f strument = strument = strument = 0 kHz and 0 GHz and 0 GHz and	0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.9 28.8 y: ± 4 dB vel MD: Me .C : Level co V @ 3m distar V @ 3m distan V @ 3m distan Hz	54.0 54.0 asurement dis rrected EP: nce (30 - 1,000 nce (1,000 - 2,	27.1 25.2 stance CF : • EUT Position 0 MHz) 000 MHz) 500 MHz)	0-360 0-360	H/V H/V	1-
500.0 300.0 Frequen EF :Dista l:Anten mark: * mark: * mark: * mark: * mark: * mark: *	PK PK PK icy Detct ance extra noise flo ² noise flo ³ noise flo ⁴ noise flo ⁵ for using	1000 1000 : Detector polation a pre-am a pre-am a pre-am	≤ 14** ≤ 14** r type BV factor AV H: Antenn noise level noise level noise level plifier in th plifier in th K1a	3 W: Bandy WC: Aven a height of the me of the me of the me of the me the range b e range b e, K83, H	12.9* ⁶ 14.8* ⁶ Mea width Rx raging Co assuring in asuring in asuring in asuring in etween 10 etween 1.0	0 0 surement to Level : R rrection f strument = strument = strument = 0 kHz and 0 GHz and 0 GHz and	0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.9 28.8 y: ± 4 dB vel MD: Me .C : Level co V @ 3m distar V @ 3m distan V @ 3m distan Hz	54.0 54.0 asurement dis rrected EP: lice (30 - 1,000) lice (1,000 - 2) ce (2,000 - 5);	27.1 25.2 stance CF : • EUT Position 0 MHz) 000 MHz) 500 MHz)	0-360 0-360	H/V H/V	1-
500.0 300.0 Frequen EF :Dist: I:Anten mark: * mark: * mark: * mark: * mark: * mark: * mark: * mark: * mark: *	PK PK PK Detett ance extra na polaria noise flo ² noise flo ³ noise flo ⁵ for using ⁵ for using <u>Cables</u> equipm	1000 1000 : Detector polation or r or r a pre-am a pre-am used ent usec	≤ 14** ≤ 14** r type BV factor AV H: Antenn noise level noise level noise level plifier in th plifier in th K1a	3 3 W: Bandw VC : Aven a height of the me of the me of the me of the me is range b is range b is range b is range b	12.9* ⁶ 14.8* ⁶ Mea width Rx raging Co asuring in asuring in asuring in asuring in etween 1.0 etween 1.0 (X84, K50 (345, 171)	0 0 surement to Level : R rrection f strument = strument = strument = 0 kHz and 0 GHz and 0 GHz and	0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.9 28.8 y: ± 4 dB vel MD: Me .C : Level co V @ 3m distar V @ 3m distan V @ 3m distan Hz	54.0 54.0 asurement dis rrected EP: lice (30 - 1,000) lice (1,000 - 2) ce (2,000 - 5);	27.1 25.2 stance CF : • EUT Position 0 MHz) 000 MHz) 500 MHz)	0-360 0-360	H/V H/V	1-
EF :Dista ol:Anten emark: * emark: * emark: * emark: * emark: *	PK PK PK icy Detct ance extra na polari ¹ noise flo ² noise flo ³ noise flo ⁴ noise flo	1000 1000 i Detector polation eation or 1 or 1	≤ 14** ≤ 14** ≤ 14** Trype BV factor AV H: Antenn noise level noise level noise level plifier in th	3 3 W: Bandy VC : Aven the height of the me of the me of the me of the me of the me of the me of the me	12.9* ⁶ 14.8* ⁶ Mea width Rx raging Co asuring in asuring in asuring in asuring in the second second second second second asuring in the second	0 0 surement to Level : R rrection f strument : strument : strument : 0 kHz and	0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.9 28.8 y: ± 4 dB vel MD: Me .C : Level co V @ 3m distar V @ 3m distan V @ 3m distan Hz	54.0 54.0 asurement dis rrected EP: lice (30 - 1,000) lice (1,000 - 2) ce (2,000 - 5);	27.1 25.2 stance CF : • EUT Position 0 MHz) 000 MHz) 500 MHz)	0-360 0-360	H/V H/V	•

N.t.* see clause: 9

 Date: 2017-09-07
 Created: P6
 Reviewed: P9
 Released: P1
 Vers. no. 1.17

 dudde hochfrequenz-technik GmbH & Co. KG
 Rottland 5a
 51429 Bergisch Gladbach/ Germany
 Tel: +49 2207-96890
 Fax +49 2207-968920

Page 20 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 FCC Title 47 CFR Part 15 Date of issue: 2017-12-06 AMB2524-1

8.5 Field strength limits of fundamental frequencies and harmonics

8.5.1 Regulation

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Intentional radiator- Fundamental frequencies / Field strength limits							
Frequency	FrequencyField strength of fundamentalField strength of harmonics						
MHz	mV/m	μV/m					
902-928	50	500					
2400-2483.5	50	500					
5725-5875	50	500					
24.0-24.25	250	2500					

(b) Fixed, point-to-point operation as referred to in this paragraph shall be limited to systems employing a fixed transmitter transmitting to a fixed remote location. Point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information are not allowed. Fixed, point-to-point operation is permitted in the 24.05-24.25 GHz band subject to the following conditions:

(1) The field strength of emissions in this band shall not exceed 2500 millivolts/meter.

(2) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.001\%$ of the operating frequency over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 °C. For battery operated equipment, the equipment tests shall be performed using a new battery.

(3) Antenna gain must be at least 33 dBi. Alternatively, the main lobe beamwidth must not exceed 3.5° . The beamwidth limit shall apply to both the azimuth and elevation planes. At antenna gains over 33 dBi or beamwidths narrower than 3.5° , power must be reduced to ensure that the field strength does not exceed 2500 millivolts/meter.

(c) Field strength limits are specified at a distance of 3 meters.

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

(e) As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 21 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1

FCC Title 47 CFR Part 15 Date

8.5.2 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8m above the ground. The turn table would be allowed to rotate 360° to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna are changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4-2014 Section 8 "Radiated Emissions Testing"

Measurement procedures for electric field radiated emissions from 9kHz - 1 GHz & 1 GHz - 40 GHz are covered in Clause 8 of ANSI C63.4-2014. The ANSI C63.4-2014 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Sub clause 8.3.2 of ANSI C63.4-2014 states that the measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." We consider the "cone of radiation" to be the 3 dB beam width of the measurement antenna.

While the "bore-sighting" technique is not explicitly mentioned in ANSI C63.4-2014, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beam width of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTs, measuring system sensitivity, etc.

ANSI C63.4-2014 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

The measurement procedure for harmonics and spurious emissions above 40 GHz is taken from ANSI C63.10-2013.

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ German	y Tel: +49 2207-96890	Fax +49 2207-968920

Page 22 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 FCC Title 47 CFR Part 15 AMB2524-1

Part 15 Date of issue:

Date of issue: 2017-12-06

Radiated emissions test characteristics				
Test distance	10m, 3 m*			
	9 kHz (Below 30 MHz)			
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1,000 MHz)			
	1 MHz (Above 1000 MHz)			
Receive antenna height	1 m (20 kHz – 30 MHz)			
Receive antenna polarization	0° - 90° (20 kHz – 30 MHz)			
Bassiva antanna soon haight	1 m - 4 m (30 MHz - 15,000 MHz)			
Receive antenna scan height	1 m – 2.5 m (18,000 MHz - 40,000 MHz)			
Receive antenna polarization	vertical/horizontal (Above 30 MHz)			

*According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

8.5.3 Calculation of the average correction factor

The average correction factor is computed by analyzing the "worst case" on time in any 100msec time period and using the formula: Corrections Factor + $20*\log$ (worst case on time/100msec). Analysis of the remote transmitter worst case on time in any 100msec time period is an on time of 50msec, therefore the correction factor is $20*\log(50/100) = -6$ dB. The maximum correction factor to be applied is 20 dB per section 15.35 of the FCC rules.

8.5.4 Calculation of the field strengths

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-Amplifier (with the use of a pre-amplifier)

Receiver Level	: Receiver reading without correction factors
Correction Factor	: Antenna factor + cable loss

For example:

The receiver reading is 32.7 dB μ V. The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of 35.91dB μ V/m. The 35.91dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m$ = Common Antilogarithm (35.91/20) = 62.44

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 23 of 29

EUT: AMB2524; AMB2524-1 FCC ID: R7TAMB2524

FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

8.5.5 Result

F	Detct	BW	Rx Level	MD	CF	DEF	LC	Limit	Margin	EP	Ante Pol	nna H
MHz	Туре	kHz	dBµV	m	dB	dB	dBµV/m	dBµV/m	dB	o	H/ V	cn
2400.5	РК	300	76.3	3	10.5	0	86.8	94.0	7.2	180	V	17
2441.0	РК	300	81.1	3	10.7	0	91.8	94.0	2.2	180	V	12
2483.0	РК	300	78.8	3	10.9	0	89.7	94.0	4.3	190	V	10
					Measurement	uncertainty:	$\pm 4 \text{ dB}$					
		All o	other emissi	ons are l	ower than the	e noise leve	el of the mea	suring equij	oment!			
T	•44	T?-1.1	<u>C441</u>	E			TT	(S4 1	5 3 40)		204 1	
F	Detct	BW	Rx	- runua MD	mental Emi CF	DEF		Limit	5.249) – A Margin	EP	Ante	
MHz	Туре	kHz	Level dBµV	m	dB	dB	dBµV/m	dBµV/m	dB	o	Pol H / V	H n
2400.5	PK	300	80.7	3	10.5	0	91.2	94.0	2.8	90	Н	28
2441.0	РК	300	82.0	3	10.7	0	92.7	94.0	1.3	150	Н	10
2483.0	РК	300	81.9	3	10.9	0	92.8	94.0	1.2	90	Н	28
PEF :Distan emark: * ¹ r emark: * ² r emark: * ³ r emark: * ⁴ r emark: * ⁵ f emark: * ⁶ f	noise floor noise floor noise floor noise floor noise floor or using a or using a	Detector f blation fa no no no pre-ampli pre-ampli	type BW: B ctor LC: ise level of th ise level of th ise level of th ise level of th ise level of th	Bandwidth Level con ne measuri ne measuri ne measuri ne measuri nge betwe	a Rx Level : R rected EP: H ng instrument : ng instrument : ng instrument : en 100 kHz and en 1.0 GHz and	ecceiver leve CUT Position ≤ 3.5dBµV ≤ 4.5dBµV ≤ 10dBµV (≤ 14dBµV (d 1,000 MH	el MD: Meas n Pol:Anten @ 3m distanc @ 3m distanc @ 3m distance @ 3m distance	e (30 – 1,000 e (1,000 – 2,0 e (2,000 – 5,50	ance CF : on H: Ar MHz) 000 MHz) 00 MHz)			r
Test e	^ ^	t used t passed	K1a, K8 104, 445 the conduct	5a, 345, cted test	S			Yes Yes	No No		.t. [≛] < no.:6	

 Date: 2017-09-07
 Created: P6
 Reviewed: P9
 Released: P1
 Vers. no. 1.17

 dudde hochfrequenz-technik GmbH & Co. KG
 Rottland 5a
 51429 Bergisch Gladbach/ Germany
 Tel: +49 2207-96890
 Fax +49 2207-968920
 Page 24 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1 FCC Title 47 CFR Part 15

8.6 Bandwidth (20 dB)

8.6.1 Regulation

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

8.6.2 Test procedure

ANSI C63.10-2013 Section 6.9.3 Occupied bandwidth measurements.

The occupied bandwidth is measured as the width of the spectral envelope of the modulated signal, at an amplitude level reduced from a reference value by a specified ratio (or in decibels, a specified number of dB down from the reference value). Typical ratios, expressed in dB, are -6 dB, -20 dB, and -26 dB, corresponding to 6 dB BW, 20 dB BW, and 26 dB BW, respectively. In this subclause, the ratio is designated by "-xx dB." The reference value is either the level of the unmodulated carrier or the highest level of the spectral envelope of the modulated signal, as stated by the applicable requirement. Some requirements might specify a specific maximum or minimum value for the "-xx dB" bandwidth; other requirements might specify that the "-xx dB" bandwidth be entirely contained within the authorized or designated frequency band.

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Steps a) through c) might require iteration to adjust within the specified tolerances.

e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.

f) Set detection mode to peak and trace mode to max hold.

g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 25 of 29

EUT: AMB2524;FCC ID: R7TAMB2524FCC Title 47 CFR Part 15Date of issue: 2017-12-06AMB2524-1

h) Determine the "-xx dB down amplitude" using [(reference value) -xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).

j) Place two markers, one at the lowest frequency and the other at the highest frequency of the

envelope of the spectral display, such that each marker is at or slightly below the "- xx dB downamplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labelled. Tabular data may be reported in addition to the plot(s).

8.6.3 Result

Intentional radiator- Maximum Measured 20 dB Bandwidth – (AMB2524)					
Operating Frequency Maximum Measured 20 dB Bandwidth					
MHz	kHz				
2400.5 770.7					
2441.0	789.2				
2483.0	808.1				

Intentional radiator- Maximum Measured 20 dB Bandwidth – (AMB2524-1)					
Operating Frequency Maximum Measured 20 dB Bandwidth					
MHz	kHz				
2400.5	808.7				
2441.0	784.0				
2483.0	806.5				

Test Cables used	K44			
Test equipment used	144, 226, 502, test-fixture			
The equipment passed t	he conducted tests	Yes	No	N.t. *

Test setup photos / test results are attached	Yes	No	Annex no.:3

Page 26 of 29

EUT: AMB2524;FCC ID: R7TAMB2524FCC Title 47 CFR Part 15Date of issue: 2017-12-06AMB2524-1

9. Additional information to the test report

Remarks	Description		
N.t. ¹	Not tested, because the antenna is part of the PCB		
N.t. ²	Not tested, because the EUT is directly battery powered		
N.t. ³	Not tested, because not applicable to the EUT		
N.t. ⁴	Not tested, because not ordered		

Date: 2017-09-07	Created: F	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ German	y Tel: +49 2207-96890	Fax +49 2207-968920

Page 27 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 AMB2524-1

FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

10. List of test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
Test fixture	Dudde				
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)		05/2016	05/2019	Seibersdorf
OATS	Dudde (104)		06/2016	06/2018	Dudde
Digital Multimeter	GW GDM-8045G (144)	0090256	08/2016	08/2019	Testo
Pre-amplifier (100kHz - 1.3GHz)	Hewlett Packard 8447 E (166a)	1726A00705	07/2016	07/2018	Dudde
Hornantenna (2.0-14.0 GHz)	Schwarzbeck BBHA 9120 C (169)	305	09/2016	09/2020	Seibersdorf
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	03/2016	03/2018	Rohde & Schwarz
Pre-amplifier (1GHz - 18GHz)	Narda (345)		02/2016	02/2018	Dudde
Bilog-antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)		04/2016	04/2019	Seibersdorf
Log. Per, Antenne (1- 18 GHz)	Schwarzbeck STLP 9148 (445a)		03/2016	03/2019	Seibersdorf
Signal Analyzer (9 kHz –30.0 GHz)	Rohde & Schwarz FSV 30 (502)	100932	06/2016	06/2019	Rohde & Schwarz

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

Page 28 of 29

EUT: AMB2524; FCC ID: R7TAMB2524 FCC AMB2524-1

FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

11. List of test cables

Туре	Manufacturer/ Model no.	Cable no.	Last calibration	Next calibration	Calibration executed by
RF- cable	Kabelmetal 18m [N]	K1a	10/2017	10/2018	Dudde
RF- cable	Aircell 0.5m [BNC]	K40	10/2017	10/2018	Dudde
RF- cable	Sucoflex 104 Suhner [N] 1 m	K52	10/2017	10/2018	Dudde
RF- cable	Aircell 1m [BNC/N]	K56	10/2017	10/2018	Dudde
RF- cable	Sucoflex 100 Suhner [N] 1 m	K61	10/2017	10/2018	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K83	10/2017	10/2018	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K84	10/2017	10/2018	Dudde
RF- cable	Sucoflex Suhner 13 m [N]	K144	10/2017	10/2018	Dudde
RF- cable	Sucoflex Suhner 8m [SMA]	K145	10/2017	10/2018	Dudde
RF- cable	Sucoflex Suhner 8m [SMA]	K146	10/2017	10/2018	Dudde

Date: 2017-09-07	Created: 1	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920

	Test rep	port no.	17011	1091
--	----------	----------	-------	------

Page 29 of 29

EUT: AMB2524; AMB2524-1 FCC ID: R7TAMB2524

FCC Title 47 CFR Part 15

Date of issue: 2017-12-06

End of test report

Date: 2017-09-07	Created:	P6 Reviewed: P9	Released: P1	Vers. no. 1.17
dudde hochfrequenz-technik GmbH & Co. KG	Rottland 5a	51429 Bergisch Gladbach/ Germany	Tel: +49 2207-96890	Fax +49 2207-968920