

FCC - Title 47 CFR Part 15	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item						
Kind of test item:	Radio Module with BT LE + WLAN					
Model name:	Stephano-I / 2617011025000					
FCC ID:	R7T1701102					
ISED certification number:	5136A-1701102					
Frequency:	2400 MHz to 2483.5 MHz					
Technology tested:	WLAN					
Antenna:	Integrated antenna					
Power supply:	3.3 V DC by external power supply					
Temperature range:	-40°C to 85°C					

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test	report	autho	rized:
		aaciio	

•	0	•

Michael Dorongovski
Lab Manager
Radio Labs

Test performed:

Andreas Kurzkurt Testing Manager Radio Labs

Test report no.: 1-4723_22-02-07

1 Table of contents

1	Table o	f contents	2
2	Genera	information	4
	2.2	Notes and disclaimer Application details Fest laboratories sub-contracted	4
3	Test sta	andard/s, references and accreditations	5
4	Reporti	ng statements of conformity – decision rule	6
5	Test en	vironment	7
6	Test ite	m	7
		General description	
7	Descrip	tion of the test setup	8
	7.2 S 7.3 F 7.4 C	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz Conducted measurements system AC conducted	10 11 12
8		ce of testing	
	8.2 S	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	15 16
9	Measur	ement uncertainty	18
10	Su	mmary of measurement results	19
11	Ad	ditional information and comments	20
12 13		ditional EUT parameterasurement results	21 22
	13.1 13.2 13.3 13.4 13.5	Antenna gain Identify worst case data rate Maximum output power Duty cycle Peak power spectral density	23 24 25 26
	13.6 13.7 13.8 13.9 13.10	6 dB DTS bandwidth Occupied bandwidth – 99% emission bandwidth Occupied bandwidth – 20 dB bandwidth Band edge compliance radiated Spurious emissions conducted	28 29 30 35
	13.11 13.12 13.13	Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz	43

Test report no.: 1-4723_22-02-07

1	3.14	Spurious emissions conducted below 30 MHz (AC conducted)	55
14	Obs	servations	
15	Glo	ssary	
16	Doc	cument history	59
17	Acc	creditation Certificate – D-PL-12076-01-04	59
18	Acc	creditation Certificate – D-PL-12076-01-05	60

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2022-08-11
Date of receipt of test item:	2023-06-12
Start of test:*	2023-06-12
End of test:*	2023-07-07
	NAL NALILI

Person(s) present during the test: Mr. Matthias Hauser, Mr. Aravindbalaji Krishnamurty

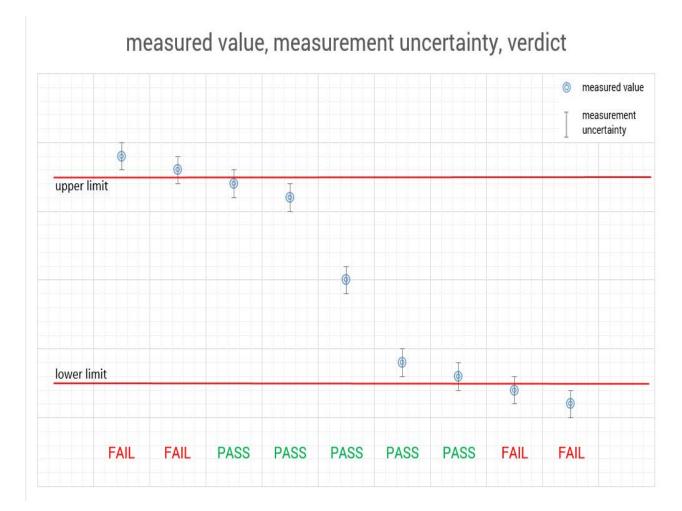
*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description			
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices			
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- _AN) Devices			
Guidance	Version	Description			
KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of			
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz			
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			
Accreditation	Description	n			
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf				
D-PL-12076-01-05		Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf			


ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9 but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	20 °C during room temperature tests No testing under extreme temperature conditions required No testing under extreme temperature conditions required
Relative humidity content	:		50 %
Barometric pressure :			Not relevant for this kind of testing
Power supply	:	V _{nom} V _{max}	3.3 V DC by external power supply No testing under voltage temperature conditions required
		V _{min}	No testing under voltage temperature conditions required

6 Test item

6.1 General description

Kind of test item :	Radio Module with BT LE + WLAN			
Model name :	tephano-I / 2617011025000			
HMN :	N/A			
PMN :	1701102			
HVIN :	1701102			
FVIN :	N/A			
S/N serial number :	Rad. r_rf1			
	Cond. c_rf1			
Hardware status :	/4.0			
Software status :	Test Software			
Firmware status :	Test Software			
Frequency band : 2400 MHz to 2483.5 MHz				
Type of radio transmission :	DSSS, OFDM			
Use of frequency spectrum :				
Type of modulation :	CCK, (D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM			
Number of channels :	11 (20 MHz), 7 (40 MHz)			
Antenna :	Integrated antenna			
Power supply :	3.3 V DC by external power supply			
Temperature range :	-40°C to 85°C			

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-4723_22-02-01_AnnexA 1-4723_22-02-01_AnnexB 1-4723_22-02-01_AnnexD

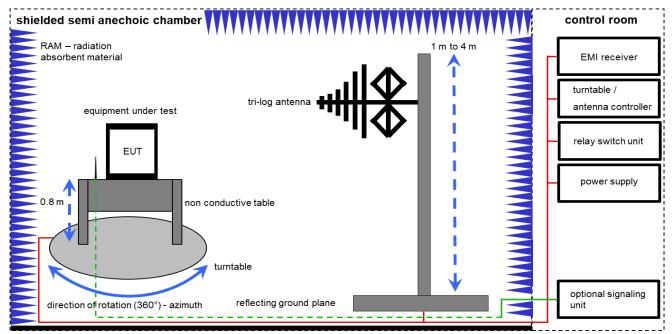
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

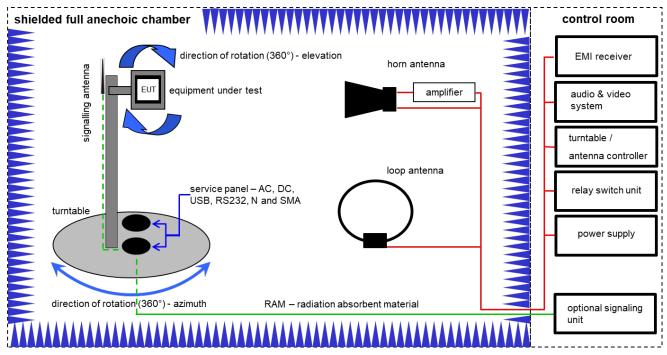
- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	30.09.2021	29.09.2023
7	Α	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
8	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
9	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023

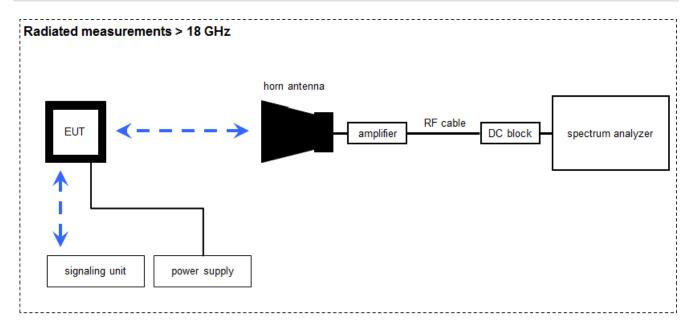
7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

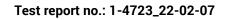

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vlKl!	02.08.2021	31.08.2023
2	С	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	31.07.2023
3	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	В	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
6	A, B, C	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
7	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
8	A, B, C	Computer	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A54 21	300004591	ne	-/-	-/-
9	A, B, C	NEXIO EMV-Software	BAT EMC V2022.0.22.0	Nexio	-/-	300004682	ne	-/-	-/-
10	A, B, C	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
11	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	13.12.2022	31.12.2023
12	В	RF-Amplifier	AMF-6F06001800-30- 10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

cetecom advanced

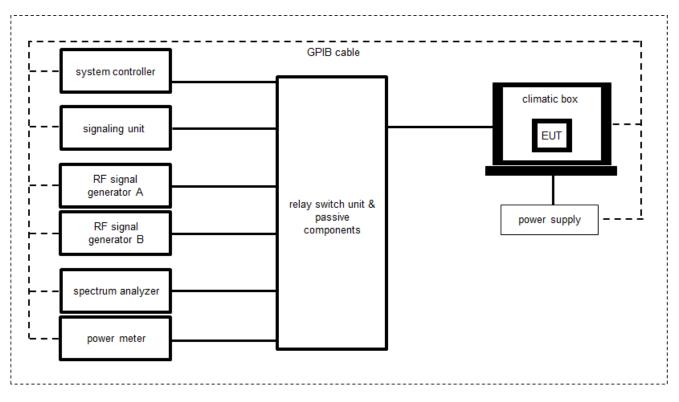
7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm


FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

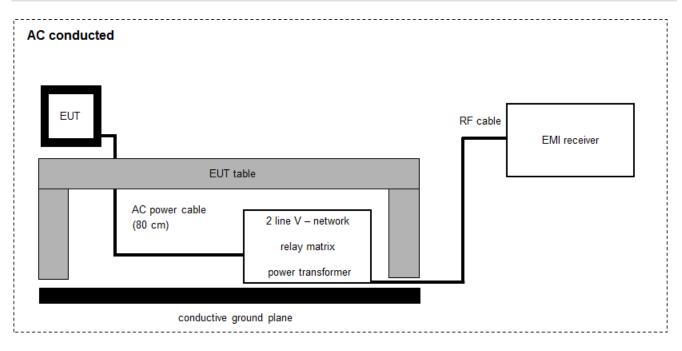

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

No.	Setup	Equipment	Туре	Manufacturer	Manufacturer Serial No.		Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	8205	300002442	k	17.01.2022	31.01.2024
3	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	12.12.2022	31.12.2023
4	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

7.4 Conducted measurements system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)


Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А. В	Switch / Control Unit (including DC- Block, Splitter)	3488A	HP	-/-	300000929	ne	-/-	-/-
2	A. B	Hygro-Thermometer	-/-, 5-45C, 20-100rF	Thies Clima	-/-	40000080	ev	15.09.2022	14.09.2024
3	А	Signal analyzer	FSV30	Rohde&Schwarz	1321.3008K30/ 103170 300004855		vlKl!	09.12.2022	31.12.2024
4	A. B	USB-GPIB-Interface	82357B	Agilent Technologies	MY54323070	300004852	ne	-/-	-/-
5	A. B	Tester Software C.BER	Version 5.0	CTC advanced GmbH	0001	400001379	ne	-/-	-/-
6	A. B	Switch matrix	RSM 1.1	CTC advanced GmbH	31534892	400001456	ev	20.09.2022	19.09.2023
7	В	USB Wideband Power Sensor (50MHz - 18GHz)	U2021XA	Keysight	MY591900010	300005802	k	07.12.2022	06.12.2023

7.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

<u>Example calculation:</u> FS [dBµV/m] = 37.62 [dBµV/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dBµV/m] (244.06 µV/m)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vIKI!	14.12.2021	31.12.2023
2	А	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	Α	PC	TecLine	F+W	-/-	300003532	ne	-/-	-/-
5	А	EMI Test Receiver 3.6 GHz	ESR3	Rohde & Schwarz	102981	300006318	k	09.12.2022	31.12.2023

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty								
Test case	Uncer	Uncertainty						
Antenna gain	± 3	dB						
Power spectral density	± 1.5	56 dB						
DTS bandwidth	± 100 kHz (depend	s on the used RBW)						
Occupied bandwidth	± 100 kHz (depend	s on the used RBW)						
Maximum output power conducted	± 1.5	56 dB						
Detailed spurious emissions @ the band edge - conducted	± 1.5	± 1.56 dB						
Band edge compliance radiated	± 3 dB							
	> 3.6 GHz	± 1.56 dB						
Spurious emissions conducted	> 7 GHz	± 1.56 dB						
Spundus emissions conducted	> 18 GHz	± 2.31 dB						
	≥ 40 GHz	± 2.97 dB						
Spurious emissions radiated below 30 MHz	± 3	dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3	dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB							
Spurious emissions radiated above 12.75 GHz	± 4.5 dB							
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.	6 dB						

10 Summary of measurement results

	No deviations from the	e technical spe	cifications w	ere asce	rtained								
	There were deviations	from the tech	nical specifica	ations as	scertain	ed							
		Fhis test report is only a partial test report. Fhe content and verdict of the performed test cases are listed below.											
TC Identifier	Dese	cription		Verdi	ct	Dat	e	Remark					
RF-Testing		Part 15 47, Issue 2		See tal	ole!	2023-0	8-29	-/-					
Test specification clause	Test case	Guideline	Temperature & voltage conditions	С	NC	NA	NP	Remark					
§15.247(b)(4) RSS - 247 / 5.4 (f)(ii)	Antenna gain	-/-	Nominal		-	/-		-/-					
§15.35	Duty cycle	-/-	Nominal		-	/-		-/-					
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 8.4	Nominal	\boxtimes				-/-					
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth	KDB 558074 DTS clause: 8.2	Nominal	\boxtimes				-/-					
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	\boxtimes				-/-					
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	KDB 558074 DTS clause: 8.3.1.3	Nominal	\boxtimes				-/-					
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge – cond.	-/-	Nominal	\boxtimes				-/-					
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance cond. or rad.	KDB 558074 DTS clause: 8.7.3	Nominal	\boxtimes				-/-					
§15.247(d) RSS - 247 / 5.5	TX spurious emissions cond.	KDB 558074 DTS clause: 8.5	Nominal	\boxtimes				-/-					
§15.209(a) RSS-Gen	TX spurious emissions rad. below 30 MHz	-/-	Nominal	\boxtimes				-/-					
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	\boxtimes				-/-					
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. above 1 GHz	-/-	Nominal	\boxtimes				-/-					
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	\boxtimes				-/-					

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

11 Additional information and comments

Reference documents:	1-4723_22-01 Customer Questionnaire (002) CE_Certification_Guide_EN Test report no. 1-4723_22-02-10
Co-applicable documents:	1-4723_22-02-07_Annex_MR.pdf
Special test descriptions:	The DUT has been controlled by the software EspRfTesttool with version 2.9. "TX continues" mode has been used for the tests.

Configuration descriptions:

Test mode:	Data rate:	Power setting:
b-mode (SISO)	1	Maximum (0dB Attenuation)
g-mode (SISO)	6	Maximum (0dB Attenuation)
n20-mode (SISO)	MCS0	Maximum (0dB Attenuation)
n40-mode (SISO)	MCS0	Maximum (0dB Attenuation)

EUT selection:

Only one device available

Devices selected by the customer

Devices selected by the laboratory (Randomly)

Provided channels:

Channels with 20 MHz channel bandwidth:

channel number & center frequency													
channel	1	2	3	4	5	6	7	8	9	10	11	12	13
f₀ / MHz	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472

Channels with 40 MHz channel bandwidth:

				chan	nel num	nber & c	enter fr	equency	/				
channel	-/-	-/-	3	4	5	6	7	8	9	10	11	-/-	-/-
fc / MHz	-/-	-/-	2422	2427	2432	2437	2442	2447	2452	2457	2462	-/-	-/-

Note: The channels used for the tests are marked in bold in the list.

 \boxtimes

12 Additional EUT parameter

Test mode:		No test mode available Iperf was used to ping another device with the largest support packet size
	\boxtimes	Test mode available Special software is used. EUT is transmitting pseudo random data by itself
Modulation types:	X	Wide Band Modulation (None Hopping – e.g. DSSS, OFDM)
		Frequency Hopping Spread Spectrum (FHSS)
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		 Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		 Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

13 Measurement results

13.1 Antenna gain

Limits:

FCC	ISED
6 dBi / > 6 dBi output power and power density reduction required	

<u>Results:</u> Measured and extracted from test report no. 1-4723_22-02-10

	2412MHz	2442MHz	2472MHz
Gain [dBi] / Calculated	-10.2	-8.0	-9.5

13.2 Identify worst case data rate

Description:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Measurement:

Measurement parameter		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	3 MHz	
Trace mode	Max hold	
Test setup	See chapter 7.4 setup A	
Measurement uncertainty	See chapter 9	

Results:

Modulation scheme / bandwidth		
DSSS / b – mode	1 Mbit/s	
OFDM / g – mode	6 Mbit/s	
OFDM / n HT20 – mode	MCS0	
OFDM / n HT40 – mode	MCS0	

* Worst case data rate or modulation scheme declared by the manufacturer

13.3 Maximum output power

Description:

Measurement of the maximum conducted peak output power. The measurements are performed using the data rate identified in the previous chapter.

Measurement:

Measurement parameter		
According to DTS clause: 8.3.1.3		
Peak power meter		
External result file(s) 1-4723_22-02-07_Annex_MR.pdf		
Test setup	See chapter 7.4 setup B	
Measurement uncertainty	See chapter 9	

<u>Limits:</u>

FCC	ISED
Conducted 1.0 W / 30 dBm with an antenna gain of max. 6 dBi	

	maximum output power / dBm		
	lowest channel	middle channel	highest channel
Output power conducted DSSS / b – mode	24.3	23.3	24.3
Output power conducted OFDM / g – mode	27.7	27.2	27.5
Output power conducted OFDM / n HT20 – mode	27.6	26.9	27.3
Output power conducted OFDM / n HT40 – mode	27.1	26.7	27.1

13.4 Duty cycle

Measurement:

Measurement parameter		
Detector	Peak	
Resolution bandwidth	10 MHz	
Video bandwidth	10 MHz	
Trace mode	Max hold	
Test setup	See chapter 7.4 setup A	
Measurement uncertainty	See chapter 9	

<u>Limits:</u>

FCC	ISED
No limitation!	

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel
DSSS / b	o – mode	100% / 0.0 dB	100% / 0.0 dB	100% / 0.0 dB
OFDM / g	g – mode	100% / 0.0 dB	100% / 0.0 dB	100% / 0.0 dB
OFDM / n HT20 – mode		100% / 0.0 dB	100% / 0.0 dB	100% / 0.0 dB
OFDM / n HT40 – mode		100% / 0.0 dB	100% / 0.0 dB	100% / 0.0 dB

13.5 Peak power spectral density

Description:

Measurement of the peak power spectral density of a digital modulated system. The PSD shows the strength of the variations as a function of the frequency.

Measurement:

Measurement parameter		
According to DTS clause: 8.4		
Detector	Positive Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	30 MHz	
Trace mode	Max. hold (allow trace to fully stabilize)	
External result file(s)	1-4723_22-02-07_Annex_MR.pdf	
Test setup	See chapter 7.4 setup A	
Measurement uncertainty	See chapter 9	

<u>Limits:</u>

FCC	ISED
8 dBm / 3 kH	z (conducted)

measured	peak power spectral density / dBm @ 3 kHz		
	Lowest channel	Middle channel	Highest channel
DSSS / b – mode	-3.7	-2.9	-2.7
OFDM / g – mode	-6.4	-7.1	-7.3
OFDM / n HT20 – mode	-7.1	-8.0	-7.3
OFDM / n HT40 – mode	-10.6	-10.5	-10.8

13.6 6 dB DTS bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter		
According to DTS clause: 8.2		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	500 kHz	
Span	30 MHz / 50 MHz	
Trace mode	Single count with 200 counts	
External result file(s)	1-4723_22-02-07_Annex_MR.pdf	
Test setup	See chapter 7.4 setup A	
Measurement uncertainty	See chapter 9	

<u>Limits:</u>

FCC	ISED	
Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.		

	6 dB DTS bandwidth / kHz		
	lowest channel	middle channel	highest channel
DSSS / b – mode	10016	9552	10004
OFDM / g – mode	16332	16344	16332
OFDM / n HT20 – mode	17584	17580	17592
OFDM / n HT40 – mode	32608	32584	32592

13.7 Occupied bandwidth – 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement:

Measurement parameter		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	300 kHz	
Video bandwidth	1 MHz	
Span	30 MHz / 50 MHz	
Measurement procedure	Measurement of the 99% bandwidth using the integration function of the analyzer	
Trace mode	Single count with 200 counts	
External result file(s)	1-4723_22-02-07_Annex_MR.pdf	
Test setup	See chapter 7.4 setup A	
Measurement uncertainty	See chapter 9	

<u>Usage:</u>

-/-	ISED	
OBW is necessary for Emission Designator		

	99% emission bandwidth / kHz		
	lowest channel	middle channel	highest channel
DSSS / b – mode	13039	13047	13043
OFDM / g – mode	18138	18094	18190
OFDM / n HT20 – mode	18658	18654	18674
OFDM / n HT40 – mode	34381	34405	34373

13.8 Occupied bandwidth – 20 dB bandwidth

Description:

Measurement of the 20 dB bandwidth of the modulated carrier.

Measurement:

Measurement parameter		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	500 kHz	
Span	30 MHz / 50 MHz	
Trace mode	Single count with min. 200 counts	
External result file(s)	1-4723_22-02-07_Annex_MR.pdf	
Test setup	See chapter 7.4 setup A	
Measurement uncertainty	See chapter 9	

<u>Usage:</u>

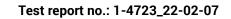
-/-	ISED
The complete bandwidth has to be within the frequency range of the band.	

	20 dB bandwidth / MHz		
	lowest channel	middle channel	highest channel
DSSS / b – mode	15096	15056	15068
OFDM / g – mode	20968	20964	21048
OFDM / n HT20 – mode	21164	21220	21188
OFDM / n HT40 – mode	37944	37888	37904

13.9 Band edge compliance radiated

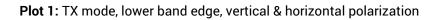
Description:

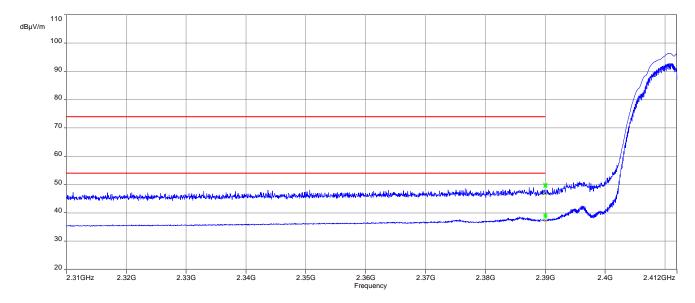
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3 meter.

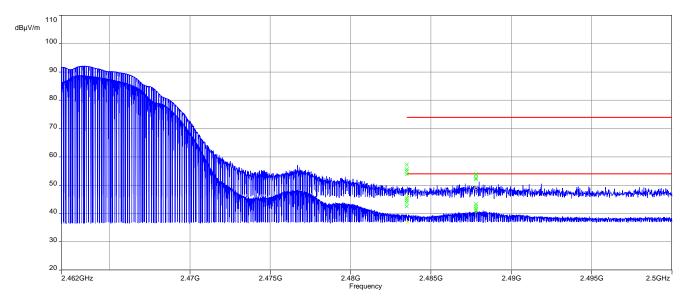

Measurement:

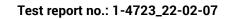
	Measurement parameter for peak measurements	Measurement parameter for average measurements
	measurements	According to DTS clause: 8.7.3
Detector	Peak	RMS
Sweep time	Auto	Auto
Resolution bandwidth	1 MHz	100 kHz
Video bandwidth	3 MHz	300 kHz
Span	See plot	2 MHz
Trace mode	Max. hold	RMS Average over 101 sweeps
Analyzer function	-/-	Band power function (Compute the power by integrating the spectrum over 1 MHz)
Test setup	See chapter 7.2 setup B	
Measurement uncertainty	See chapter 9	

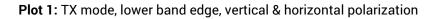
<u>Limits:</u>


FCC	ISED
74 dBμV/m @ 3 m (Peak) 54 dBμV/m @ 3 m (AVG)	

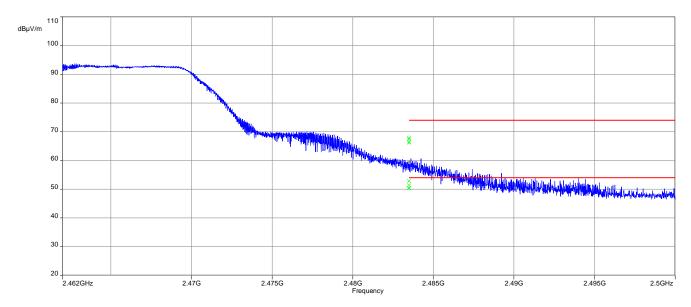

band edge compliance radiated / (dBµV / m) @ 3 m					
	b-mode	g-mode	n20-mode	n40-mode	
Lower	50.0 (Peak)	66.7 (Peak)	63.6 (Peak)	61.0 (Peak)	
band edge	39.4 (AVG)	50.8 (AVG)	49.0 (AVG)	44.3 (AVG)	
Upper	57.3 (Peak)	67.8 (Peak)	66.6 (Peak)	64.6 (Peak)	
band edge	45.4 (AVG)	52.8 (AVG)	51.3 (AVG)	49.6 (AVG)	

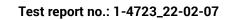


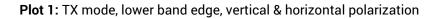

Plots: DSSS - peak / average

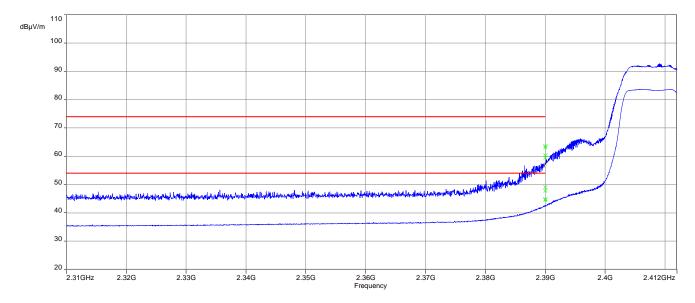

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

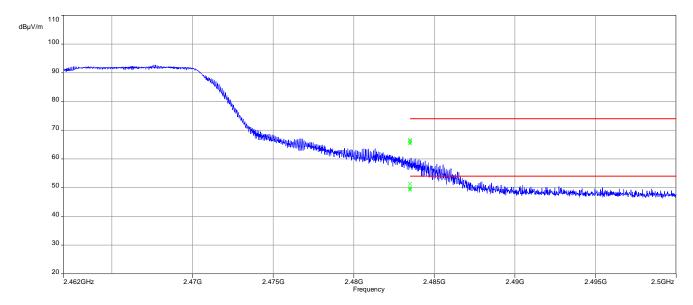




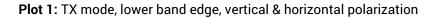

Plots: g-mode (20 MHz bandwidth) - peak / average

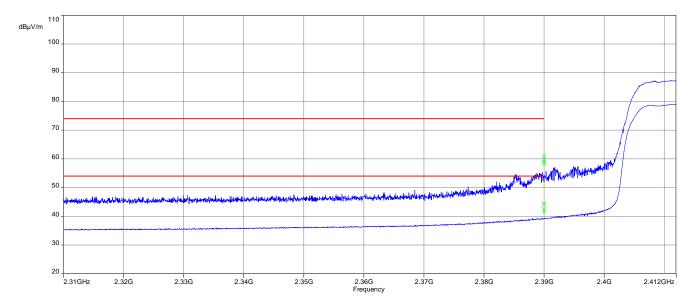

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

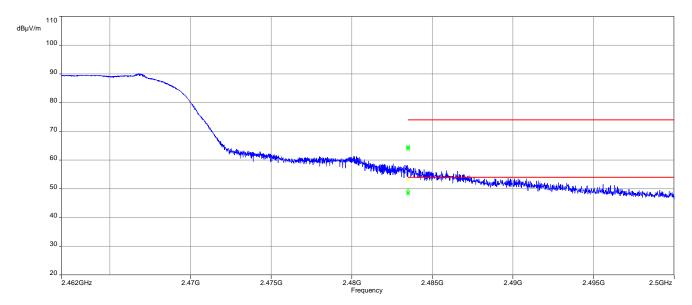




Plots: n20-mode (20 MHz bandwidth) - peak / average




Plot 2: TX mode, upper band edge, vertical & horizontal polarization



Plots: OFDM (40 MHz bandwidth) - mode peak / average

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

13.10 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The measurement is performed at the lowest; the middle and the highest channel.

Measurement:

Measurement parameter			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	500 kHz		
Span	9 kHz to 25 GHz		
Trace mode	Max Hold		
External result file(s)	1-4723_22-02-07_Annex_MR.pdf		
Test setup	See chapter 7.4 setup A		
Measurement uncertainty	See chapter 9		

<u>Limits:</u>

FCC	ISED	
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated		
intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall		

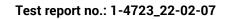
intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Results: Compliant (see external result file)

13.11 Spurious emissions radiated below 30 MHz

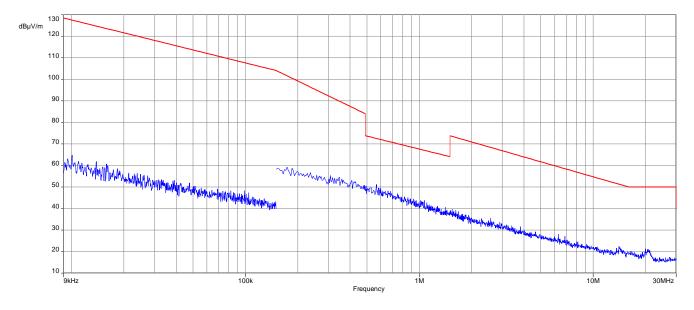
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

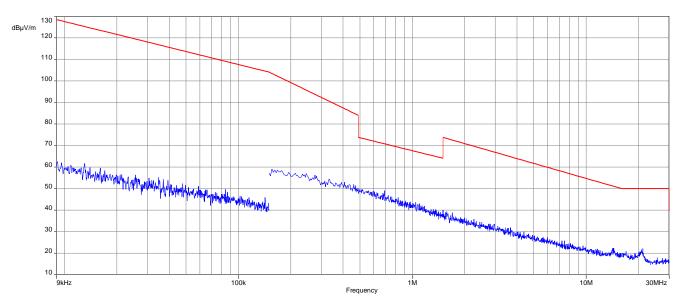

Measurement:

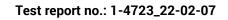
Measurement parameter			
Detector	Peak / Quasi Peak		
Sweep time	Auto		
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span	9 kHz to 30 MHz		
Trace mode	Max Hold		
Measured modulation	 ☑ DSSS b - mode ☑ OFDM g - mode □ OFDM n HT20 - mode ☑ OFDM n HT40 - mode 		
Test setup	See chapter 7.2 setup A		
Measurement uncertainty	See chapter 9		

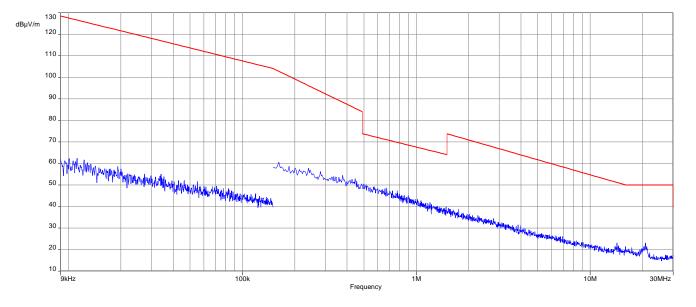
Limits:

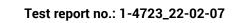

FCC		ISED	
Frequency / MHz	Field Strength / (dBµV / m)		Measurement distance / m
0.009 - 0.490	2400/F(kHz)		300
0.490 - 1.705	24000/F(kHz)		30
1.705 - 30.0	30		30

TX spurious emissions radiated < 30 MHz / (dBμV / m) @ 3 m			
Frequency / MHz	Detector	Level / (dBµV / m)	
All detected peaks are more than 20 dB below the limit.			

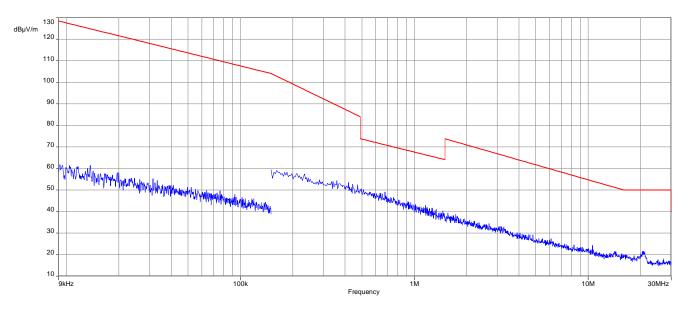


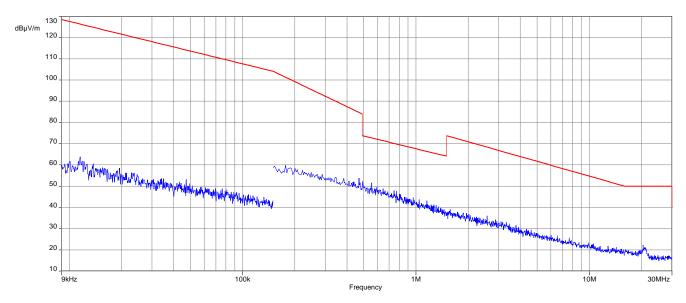

Plots: DSSS

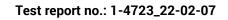


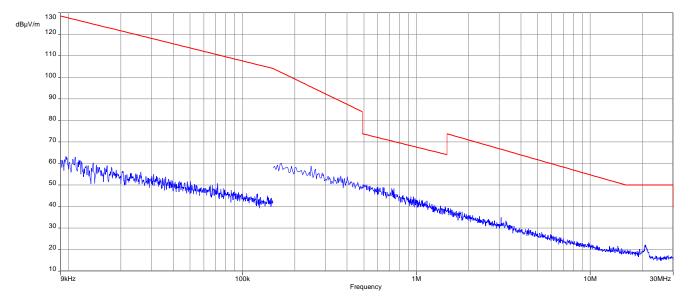


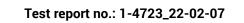
Plot 3: 9 kHz to 30 MHz, highest channel



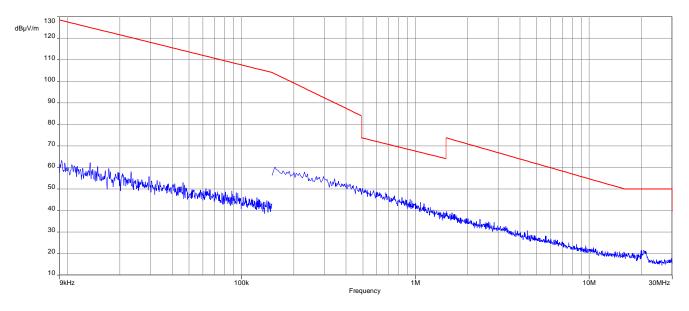


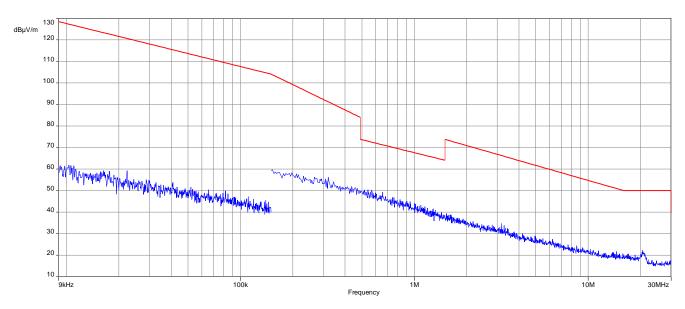

Plots: OFDM (20 MHz nominal channel bandwidth)

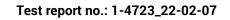


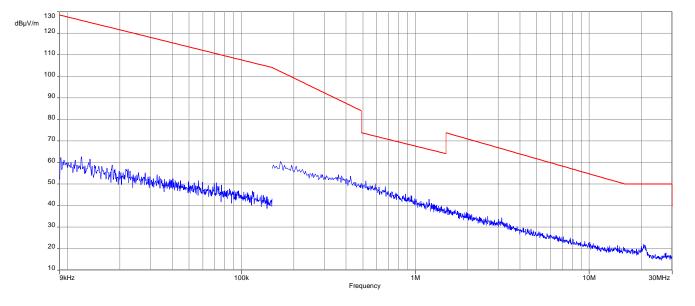


Plot 3: 9 kHz to 30 MHz, highest channel






Plots: OFDM (40 MHz nominal channel bandwidth)


Plot 2: 9 kHz to 30 MHz, middle channel

Plot 3: 9 kHz to 30 MHz, highest channel

13.12 Spurious emissions radiated 30 MHz to 1 GHz

Description:

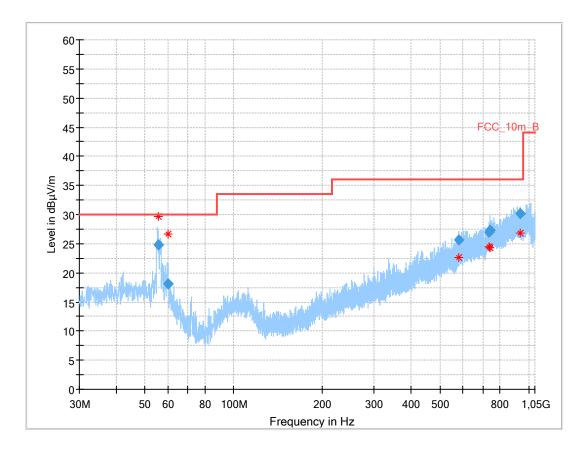
Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

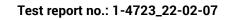
Measurement parameter					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	120 kHz				
Video bandwidth	3 x RBW				
Span	30 MHz to 1 GHz				
Trace mode	Max Hold				
Measured modulation	 DSSS b - mode OFDM g - mode OFDM n HT20 - mode OFDM n HT40 - mode 				
Test setup	See chapter 7.1 setup A				
Measurement uncertainty	See chapter 9				

<u>Limits:</u>

FCC			ISED						
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shal be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the genera limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)									
Frequency / MHz	(see §15.205(c)). Frequency / MHz Field Strength / (dBµV / m) Measurement distance / m								
20 - 99 20 0 10									

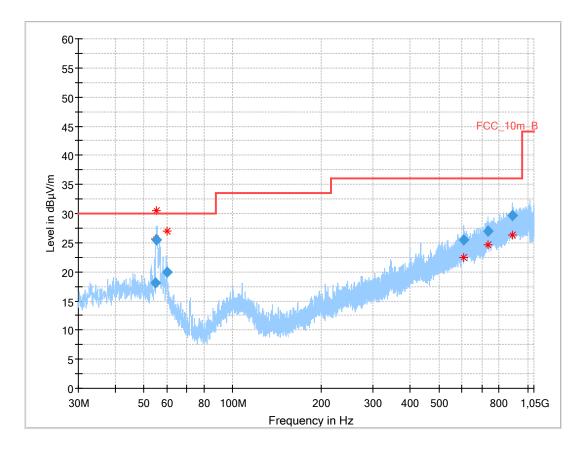

Frequency / MHZ	Field Strength / (dBµV / m)	Measurement distance / m
30 - 88	30.0	10
88 - 216	33.5	10
216 – 960	36.0	10

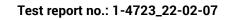
Test report no.: 1-4723_22-02-07



Plot: DSSS

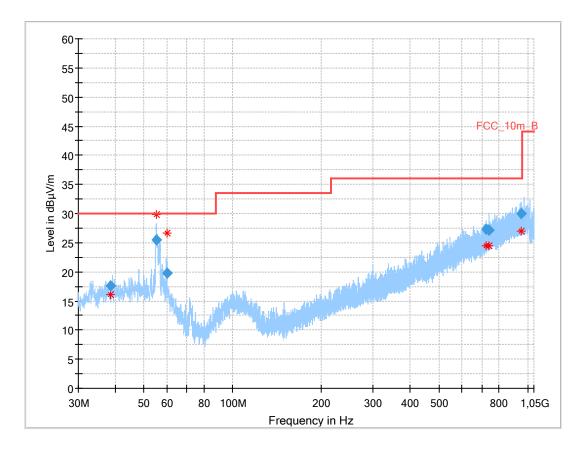
Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, valid for all channels


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
55.443	24.85	30.0	5.2	1000	120.0	118.0	v	283	16
59.871	18.16	30.0	11.8	1000	120.0	115.0	v	288	14
579.198	25.65	36.0	10.4	1000	120.0	195.0	н	80	21
732.872	27.00	36.0	9.0	1000	120.0	104.0	v	52	23
741.728	27.28	36.0	8.7	1000	120.0	195.0	v	52	24
938.331	30.09	36.0	5.9	1000	120.0	195.0	н	291	26



Plot: OFDM (20 MHz nominal channel bandwidth)

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, valid for all channels


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
54.733	18.13	30.0	11.9	1000	120.0	195.0	v	293	15
55.284	25.49	30.0	4.5	1000	120.0	195.0	v	259	16
59.945	19.96	30.0	10.0	1000	120.0	195.0	v	278	14
608.862	25.45	36.0	10.6	1000	120.0	195.0	v	142	22
733.780	26.90	36.0	9.1	1000	120.0	195.0	v	232	23
887.835	29.69	36.0	6.3	1000	120.0	144.0	v	26	25

Plot: OFDM (40 MHz nominal channel bandwidth)

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, valid for all channels

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.704	17.62	30.0	12.4	1000	120.0	195.0	v	119	15
55.241	25.48	30.0	4.5	1000	120.0	101.0	v	299	15
59.857	19.80	30.0	10.2	1000	120.0	195.0	v	232	14
721.986	27.32	36.0	8.7	1000	120.0	195.0	v	142	23
741.628	27.23	36.0	8.8	1000	120.0	184.0	н	232	24
948.447	30.02	36.0	6.0	1000	120.0	171.0	н	-7	25

13.13 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measurement parameter						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max Hold					
	⊠ DSSS b – mode					
Measured modulation	🖾 OFDM g – mode					
	🗆 OFDM n HT20 – mode					
	🛛 OFDM n HT40 – mode					
Test setup	See chapter 7.2 setup B & 7.3 setup A					
Measurement uncertainty	See chapter 9					

<u>Limits:</u>

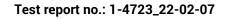
FCC			ISED
intentional radiator is operating, the be at least 30 dB below that in the desired power, based on either an F limits specified in Section 15.209(a)	e radio frequency p 100 kHz bandwidth RF conducted or a i is not required. In	ower that is produ n within the band th radiated measuren addition, radiated e	ead spectrum or digitally modulated ced by the intentional radiator shall nat contains the highest level of the nent. Attenuation below the general emissions which fall in the restricted ission limits specified in §15.209(a)
Frequency / MHz	Field Strengtl	n / (dBµV / m)	Measurement distance / m

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m		
Above 060	54.0 (AVG)	2		
Above 960	74.0 (peak)	3		

Results: DSSS b-mode

	TX spurious emissions radiated / dBµV/m @ 3 m													
lo	lowest channel middle channel highest channel													
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m						
4924	Peak	59.1	4074	Peak	57.5	4024	Peak	57.2						
4824	AVG	53.3	4874	AVG	50.9	4924	AVG	50.5						

<u>Results:</u> OFDM g-mode (20 MHz nominal channel bandwidth)

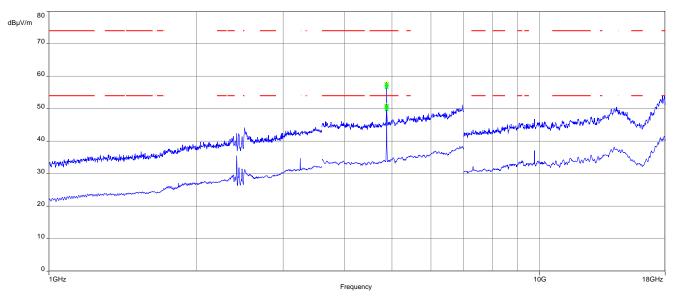

	TX spurious emissions radiated / dBµV/m @ 3 m												
lo	lowest channel middle channel highest channel												
f / MHz	Detector	Level / dBµV/m	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m						
1001	Peak	60.2	4874	Peak	58.4	4924	Peak	58.3					
4024	4824 AVG 47.3		4074	AVG	45.1	4924	AVG	45.5					

<u>Results:</u> OFDM n20-mode (20 MHz nominal channel bandwidth)

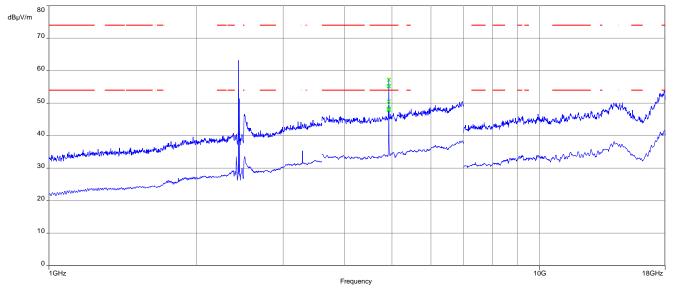
	TX spurious emissions radiated / dBµV/m @ 3 m													
lo	lowest channel middle channel highest channel													
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m						
4024	Peak	57.4	4074	Peak	57.4	4004	Peak	56.6						
4824	AVG	45.6	4874	AVG	44.6	4924	AVG	44.0						

Results: OFDM n40-mode (40 MHz nominal channel bandwidth)

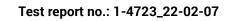
TX spurious emissions radiated / dBµV/m @ 3 m									
lo	lowest channel			middle channel			highest channel		
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	
4844	Peak	52.5	4874	Peak	52.6	4904	Peak	52.3	
	AVG	40.7		AVG	40.0		AVG	40.4	


Plots: DSSS

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

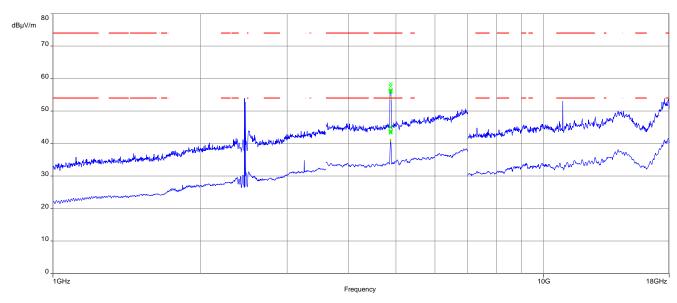

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

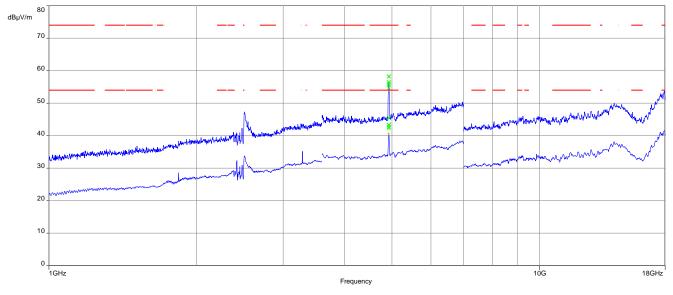

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 3: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

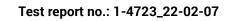
The carrier signal is notched with a 2.4 GHz band rejection filter.



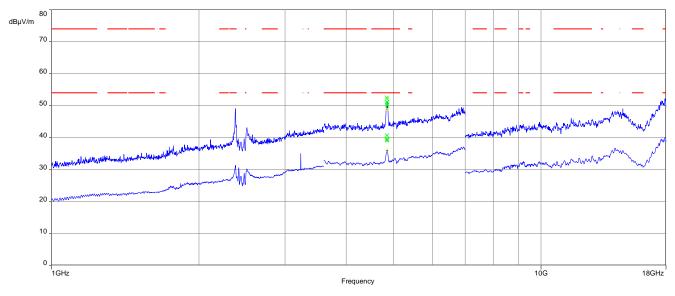
Plots: OFDM (20 MHz bandwidth)

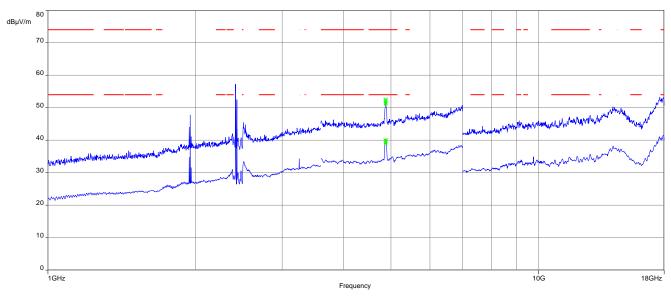

The carrier signal is notched with a 2.4 GHz band rejection filter.

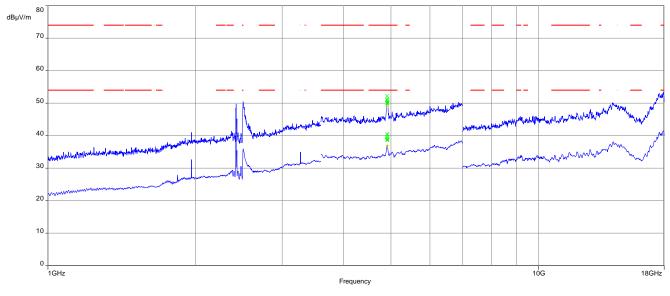
Plot 2: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 3: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

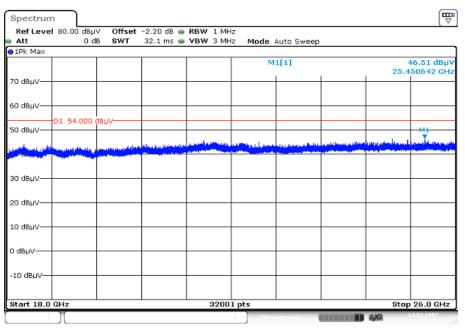

The carrier signal is notched with a 2.4 GHz band rejection filter.


Plots: OFDM (40 MHz bandwidth)


The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.



Plot 3: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: 18 GHz to 26 GHz, vertical & horizontal polarization, valid for all channels and modes

Date: 14.JAN 2007 01:05:54

13.14 Spurious emissions conducted below 30 MHz (AC conducted)

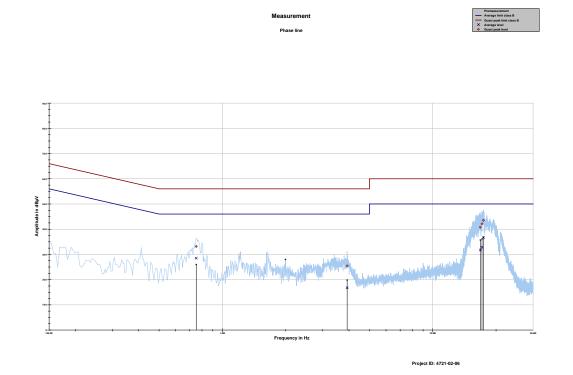
Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

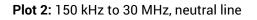
Measurement:

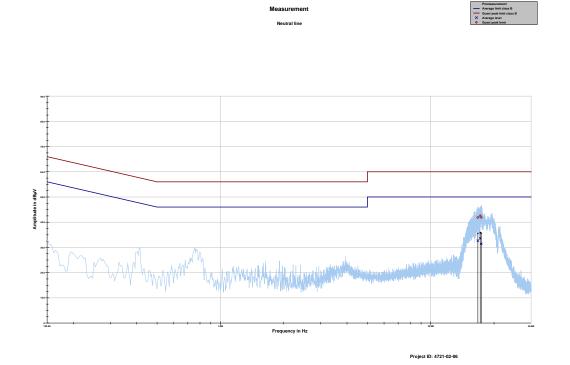
Measurement parameter				
Detector	Peak - Quasi Peak / Average			
Sweep time	Auto			
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span	9 kHz to 30 MHz			
Trace mode	Max. hold			
Test setup	See chapter 7.5 setup A			
Measurement uncertainty	See chapter 9			

<u>Limits:</u>


FCC		ISED		
Frequency / MHz)	Quasi-Peak ,	/ (dBµV / m)	Average / (dBµV / m)	
0.15 - 0.5	66 to	o 56*	56 to 46*	
0.5 - 5	5	6	46	
5 - 30.0	6	0	50	

*Decreases with the logarithm of the frequency


Plots:


Plot 1: 150 kHz to 30 MHz, phase line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.750731	33.19	22.81	56.000	28.49	17.51	46.000
3.918563	25.43	30.57	56.000	16.76	29.24	46.000
16.836150	40.80	19.20	60.000	31.72	18.28	50.000
17.149575	42.12	17.88	60.000	32.81	17.19	50.000
17.418225	43.55	16.45	60.000	36.63	13.37	50.000

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
16.754062	41.87	18.13	60.000	32.64	17.36	50.000
17.186888	42.52	17.48	60.000	33.60	16.40	50.000
17.380913	41.91	18.09	60.000	31.44	18.56	50.000

14 Observations

No observations except those reported with the single test cases have been made.

15 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing

16 Document history

Version	Applied changes	Date of release
-/-	Initial release	2023-08-29

17 Accreditation Certificate – D-PL-12076-01-04

first page	last page
Every extraction of DN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Stards	Office Retin Spittelmarkt 10 10117 Berlin Office Frankfort am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 33116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number 0-Pt-13076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: b-PL-12076-01-01 . However, the state of 0 pages are sheet and the following annex with a total of 07 pages. Registration number of the certificate: b-PL-12076-01-01 . However, the state of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: b-PL-12076-01-01 . However, the state of the st	The publication of extracts of the accorditation certificate is subject to the prior written approval by Deutsche Akkreditisrungsstolle GmbH (DAkks). Exempted is the unchanged down of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkdS. The accreditation attested by DAkdS. The accreditation attested by DAkdS. So and the Regulation (EV to 755,000 of the furgeant parliament and of the Council of 9 July 2008 setting out the requirements for accreditation attested works is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EV, No 755,000, p. 20), DAkkS is a signatory to the Multilateral Agreements for Forum (AF) and Internitional Liaboratory Accreditation Cooperation (UA, The signatories to these agreements recognise each other's accreditations. The user-other state state of membership can be retrieved from the following websites: EA: woww.european.accreditation.org UA; www.iaf.nu

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://cetecomadvanced.com/files/pdfs/d-pl-12076-01-04_canada_tcemc.pdf

18 Accreditation Certificate – D-PL-12076-01-05

first page	last page
Every	Office Berlin Spittelmark 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAMAS). Exempted is the unchanged form of separate disterminations of the core related is the unchanged form of separate disterminations of the core related is the unchanged form of separate
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate together with its ansex reflects the status at the time of the date of saue. The current status of the scope of accredition can be found in the database of accredition and a function to the scope of accredition can be found in the database of accredited basies dibasche Akkreditorougustelle Gmoin. http://www.datks.do/w/content/bccredited-badies-datas	No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (fredeal 1 p. 2625) and the Regulation (EC) No 785/2008 of the European Parliament and of the Council of 9 July 2008 esting out the regulation (EC) No 785/2008 of the Supparament Parliament and of the Council of 9 July 2008, p. 301, AbAKS is a scheduler of the scheduler of the scheduler of the Supparament Parliament of Accreditation (EA), International Accreditation forum (NP) and International Laboratory Accreditation Cooperation (UAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.uia.com; IAF: www.iaf.com; IAF: www.iaf.com; IAF: www.iaf.nu;

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://cetecomadvanced.com/files/pdfs/d-pl-12076-01-05_tcb_usa.pdf