

## **Certification Exhibit**

### FCC ID: R7PWGRS4

### FCC Rule Part: 15.247

### ACS Report Number: 09-0421.W03.11.A

Manufacturer: Cellnet Technology Inc. Model: Gridstream Wangate

# **RF Exposure**

#### **General Information:**

| Applicant:       | Cellnet Technology Inc.                  |
|------------------|------------------------------------------|
| ACS Project:     | 09-0421                                  |
| Device Category: | Mobile                                   |
| Environment:     | General Population/Uncontrolled Exposure |

#### **Technical Information:**

Antenna Type: Omnidirectional Dipole Antenna Gain: 5.5dBi Maximum Transmitter Conducted Power: 29.79 dBm, 953mW Maximum System EIRP: 35.29 dBm, 3381 mW Exposure Conditions: Greater than 22 centimeters

#### MPE Calculation

The Power Density (mW/cm<sup>2</sup>) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

| MPE Calculator for Mobile Equipment<br>Limits for General Population/Uncontrolled Exposure* |                         |                                    |                        |                          |                             |                  |                            |  |
|---------------------------------------------------------------------------------------------|-------------------------|------------------------------------|------------------------|--------------------------|-----------------------------|------------------|----------------------------|--|
| Transmit<br>Frequency<br>(MHz)                                                              | Radio<br>Power<br>(dBm) | Power<br>Density Limit<br>(mW/Cm2) | Radio<br>Power<br>(mW) | Antenna<br>Gain<br>(dBi) | Antenna<br>Gain (mW<br>eq.) | Distance<br>(cm) | Power Density<br>(mW/cm^2) |  |
| 902.3                                                                                       | 29.77                   | 0.60                               | 948.42                 | 5.5                      | 3.548                       | 22               | 0.553                      |  |
| 904                                                                                         | 29.79                   | 0.60                               | 952.80                 | 5.5                      | 3.548                       | 22               | 0.556                      |  |
| 915                                                                                         | 29.76                   | 0.61                               | 946.24                 | 5.5                      | 3.548                       | 22               | 0.552                      |  |
| 927.8                                                                                       | 29.75                   | 0.62                               | 944.06                 | 5.5                      | 3.548                       | 22               | 0.551                      |  |
| 927.9                                                                                       | 29.75                   | 0.62                               | 944.06                 | 5.5                      | 3.548                       | 22               | 0.551                      |  |

#### Installation Guidelines

The installation manual should contain text similar to the following advising how to install the equipment to maintain compliance with the FCC RF exposure requirements:

#### **RF Exposure**

In accordance with FCC requirements of human exposure to radio frequency fields, the radiating element shall be installed such that a minimum separation distance of 22 centimeters will be maintained.

#### **Conclusion**

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.