Report on the Testing of the Landis + Gyr Technology, Inc WFM200LG1

In accordance with: FCC 47 CFR part 15.247 ISED RSS-247 Issue 2, February 2017

Prepared for: Landis Gyr Technology, Inc 30000 Mill Creek Avenue, Suite 100 Alpharetta, Georgia 30022 USA

COMMERCIAL-IN-CONFIDENCE

Document Number: AT72174490.3P0

SIGNATURE					
9					
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE		
Kirby Munroe	Nireless / EMC Technical and Certification Manager, NA FUV SUD America Inc.	Authorized Signatory	2/17/2022		
Signatures in this approval box have	e checked this document in line with the requirements of TÜV	SÜD America, Inc. document co	ontrol rules.		
FCC Accreditation Designation Number US1233 FCC Test Site Registration Number 967699 Innovation, Science, and Economic Development Canada Lab Code 23932 EXECUTIVE SUMMARY					
A sample of this product was tested and found to be compliant with the standards listed above.					
DISCLAIMER AND COPYRIGHT This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America. © TÜV SÜD.					
A2LA Cert. No. 2955.09	ACCREDITATION A2LA Cert. No. 2955.09 Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.				

TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 3005 Phone: 678-341-5900 www.tuv-sud-america.com

SUC

America

Add value.

Inspire trust.

Contents

1	Report Summary	3
1.1	Report Modification Record	3
1.2	Report Modification Record	3
1.3	Brief Summary of Results	5
1.4	Product Information	6
1.5	Deviations from the Standard	
1.6	EUT Modification Record	
1.7	Test Location	9
2	Test Details	10
2.1	Antenna Requirement	
2.2	Power Line Conducted Emissions	
2.3	Radiated Spurious Emissions into Restricted Frequency Bands	14
2.4	Test Equipment Used	22
3	Diagram of Test Set-ups	23
	Accreditation, Disclaimers and Copyright	

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
0	First Issue	2/17/2022

Table 1.1-1 –	Modification Record
---------------	----------------------------

1.2 Introduction

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations Section 15.247 and Innovation Science and Economic Development Canada's Radio Standards Specification RSS-247 for the tests documented herein to support Class II Permissive change by adding new antenna to Wi-Fi module WFM200S.

Applicant	Raghav Goteti
Manufacturer	Landis + Gyr Technoloy, Inc.
Applicant's Email Address	raghav.goteti@landisgyr.com
Module Model Number(s)	WFM200LG1
Module FCC ID	R7PWFM200
Module ISED Certification Number	5294A-WFM200
Hardware Version(s)	WFM200SN
Software Version(s)	Release 5 / EIC -6.13.12.86-jenkins-Dev_Nightly-86
Number of Samples Tested	1
Test Specification/Issue/Date	US Code of Federal REgulation (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2021
	ISED Canada Radio Standards Specification: RSS-247 – Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices, Issue 2, February 2017.
Order Number	72174064
Date of Receipt of EUT	11/29/2021
Start of Test	12/2/2021
Finish of Test	12/6/2021

Related Document(s)

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device.

FCC OET KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, April 2, 2019 US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2021. ISED Canada Radio Standards Specification: RSS-GEN – General Requirements for Compliance of Radio Apparatus, Issue 5, Amendment 1 (March 2019), Amendment 2 (February 2021)

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC Part 15.247 and ISED Canada's RSS-247 is shown below.

Test Parameter	Test Plan (Yes/No)	Test Result	FCC 47 CFR Rule Part	ISED Canada's RSS	Test Report Page No
Antenna Requirement	Yes	Pass	15.203		10
6 dB Bandwidth	No	Not Tested	15.247(a)(2)	RSS-247 5.2(a)	
99% Bandwidth	No	Not Tested		RSS-GEN 6.7	
Fundamental Emission Output Power	No	Not Tested	15.247(b)(3)	RSS-247 5.4(d)	
Band-Edge Compliance of RF Conducted Emissions	No	Not Tested	15.247(d)	RSS-247 5.5	
RF Conducted Spurious Emissions	No	Not Tested	15.247(d)	RSS-247 5.5	
Radiated Spurious Emissions into Restricted Frequency Bands	Yes	Pass	15.205, 15.209	RSS-GEN 8.9, 8.10	14
Power Spectral Density	No	Not Tested	15.247(e)	RSS-247 5.2(b)	
Power Line Conducted Emissions	Yes	Pass	15.207	RSS-GEN 8.8	11

Table 1.3-1: Test Result Summary

1.4 Product Information

1.4.1 Technical Description

The WFM200S is an Ultra-Low Power Wi-Fi® transceiver or network co-processor (NCP) SiP (System in Package) module. It operates in the 2.4 GHz to 2.5 GHz ISM band. The very compact 6.5mm x 6.5mm WFM200S SiP module contains a high frequency crystal and shield. The WFM200S integrates a balun, T/R switch, LNA and PA for the best possible RF performance.

WFM200S supports both the 802.11 split MAC architecture and the 802.11 full MAC software architecture.

The WFM200S feeds directly into an on-board printed Inverted-F antenna located on the Revelo E360 host.

Detail	Description
Module FCC ID	R7PWFM200
Module IC ID	5294A-WFM200
Transceiver Model #	WFM200LG1
Operating Frequency Range	2412 – 2462 MHz
Modulation Format	IEEE 802.11 b/g/n DSSS CCK, OFDM, DBPSK, DQPSK, 16-QAM and 64-QAM for MCS0 to MCS7
Maximum Peak Output Power	16 dBm
Antenna Type / Description:	Printed Inverted-F Antenna / 1 dBi Gain

Table 1.4-1 – Wireless Module Technical Information

A full description and detailed product specification details are available from the manufacturer.

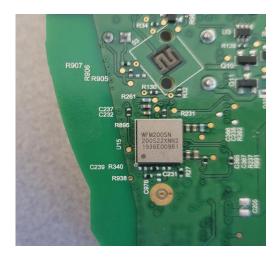
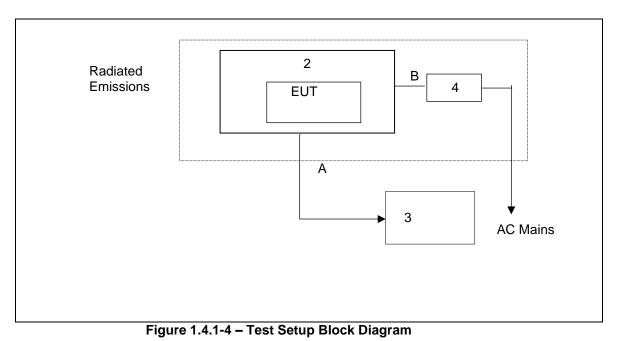



Photo 1.4.1-1 – Front view of the EUT

Photo 1.4.1-2 - Back view of the EUT

Table 1.4.1-1 – Cable Descriptions

Item Cable/Port		Description	
A USB Serial cable		Programming cable connected to laptop	
B Power Supply Cable		Power Supply connected to Isolation Transformer	

Table 1.4.1-2 – Support Equipment Descriptions

Item	Make/Model	Description
2	D013D65F	Evaluation Board (Revelo E360 Host PCB)
3	Lenovo	Laptop used for configuring wireless module – Landis + Gyr provided
4	N/A	IsolationTransformer

1.4.2 Modes of Operation

WFM200LG1 module provides 3 modes of operation using Wi-Fi classifications as outlined below.

Mode of Operation	Frequency Range (MHz)	Number of Channels	Data Rates / MCS	Classification
1	2412 – 2462	11	1-11 Mbps	Wi-Fi 802.11 b
2	2412 – 2462	11	6-54 Mbps	Wi-Fi 802.11 g
3	2412 – 2462	11	MCS 0-7	Wi-Fi 802.11 HT20

1.4.3 Monitoring of Performance

For radiated emissions, the EUT was evaluated in three orthogonal orientations. The worst-case orientation was Y-position. The EUT was programmed to generate a continuously modulated signal on each channel evaluated. The EUT was programmed to generate a continuously modulated signal on each channel evaluated.

Worst case mode for all parameters measured listed below:

Test case	Tested Frequency (MHz)	Modulation Mode	Data Rate	Module or module/host combination
Radiated Spurious Emission	2412 / 2437 / 2462 2412 / 2437 / 2462 2412 / 2437 / 2462	11b 11g HT20	1 Mbps 6 Mbps MCS0	Module
Conducted Emission	2437	11b	1 Mbps	Module

Power setting during test: Mode of operation 1: 16 dBm

1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test program. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	Initial State		

The equipment was tested as provided without any modifications.

1.7 Test Location

TÜV SÜD conducted the following tests at our Alpharetta, GA test laboratory.

Test Name	Name of Engineer(s)	Accreditation
AC Power Line Conducted Emissions	Arthur Sumner	A2LA
Radiated Spurious Emissions into Restricted Frequency Bands	Paul Villarreal	A2LA

Office address: TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 30005, USA

2 Test Details

- 2.1 Antenna Requirement
- 2.1.1 Specification Reference

FCC Section: 15.203, 15.204

2.1.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.1.3 Date of Test

12/3/2021

2.1.4 Test Method

N/A

2.1.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature	22.3 °C
Relative Humidity	53.8 %
Atmospheric Pressure	972.2 mbar

2.1.6 Test Results

The EUT utilizes Printed Inverted-F Antenna with peak gain 1 dBi which is mounted on the host printed circuit board, therefore satisfying the requirements of Section 15.203.

2.2 Power Line Conducted Emissions

2.2.1 Specification Reference

FCC Section: 15.207 ISED Canada: RSS-Gen 8.8

2.2.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.2.3 Date of Test

12/8/2021

2.2.4 Test Method

ANSI C63.10 section 6 was the guiding documents for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Corrected Reading - Applicable Limit

2.2.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature	22.3 °C
Relative Humidity	53.8 %
Atmospheric Pressure	972.2 mbar

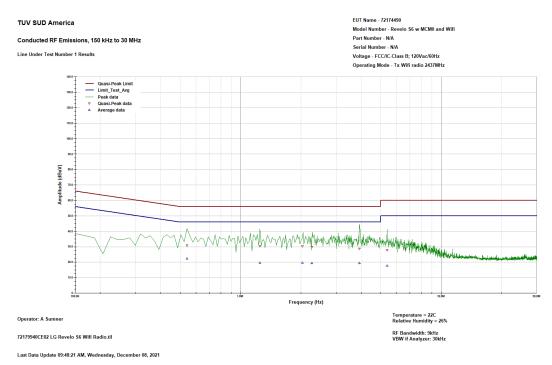
2.2.6 Test Results

Frequency (MHz)	Avg Limit	Avg Level Corrected	Avg Level	Correction Fact.	Avg Margin	Result
0.54	46	22.3	12.6	9.652	-23.7	PASS
1.25	46	19.6	9.9	9.67	-26.4	PASS
2.04	46	19.7	10	9.672	-26.3	PASS
2.26	46	19.3	9.7	9.68	-26.7	PASS
3.91	46	19.3	9.6	9.68	-26.7	PASS
5.38	50	17.8	8.1	9.72	-32.2	PASS

Table 2.2.6-1: Conducted EMI Results-Avg – Line 1

COMMERCIAL-IN-CONFIDENCE

Frequency (MHz)	QP Limit	QP Level Corrected	QP Level	Correction Fact.	QP Margin	Result
0.54	56	30.8	21.1	9.652	-25.2	PASS
1.25	56	30.3	20.6	9.67	-25.7	PASS
2.04	56	30.3	20.6	9.672	-25.7	PASS
2.26	56	29.9	20.3	9.68	-26.1	PASS
3.91	56	28.7	19.1	9.68	-27.3	PASS
5.38	60	27.7	18	9.72	-32.3	PASS


Table 2.2.6-2: Conducted EMI Results-QP – Line 1

Frequency (MHz)	Avg Limit	Avg Level Corrected	Avg Level	Correction Fact.	Avg Margin	Result
0.5	46.1	19.9	10.3	9.63	-26.2	PASS
0.54	46	23.7	14.1	9.633	-22.3	PASS
0.67	46	19.7	10.1	9.64	-26.3	PASS
1.26	46	15.5	5.8	9.665	-30.5	PASS
2.96	46	14.8	5.1	9.689	-31.2	PASS
3.58	46	14.4	4.7	9.7	-31.6	PASS

Table 2.2.6-4: Conducted EMI Results-QP – Line 2

Frequency (MHz)	QP Limit	QP Level Corrected	QP Level	Correction Fact.	QP Margin	Result
0.5	56.1	27.4	17.7	9.63	-28.7	PASS
0.54	56	32.1	22.4	9.633	-23.9	PASS
0.67	56	27.9	18.3	9.64	-28.1	PASS
1.26	56	20.7	11	9.665	-35.3	PASS
2.96	56	20.4	10.7	9.689	-35.6	PASS
3.58	56	20.1	10.4	9.7	-35.9	PASS

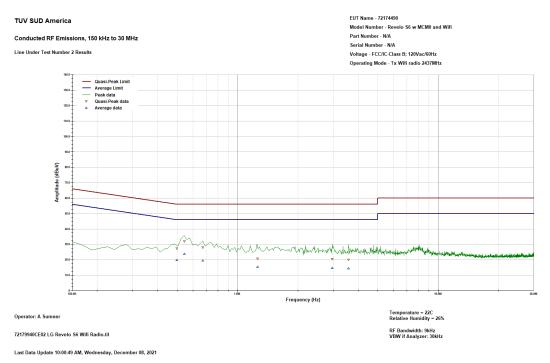


Figure 2: Conducted Emission Plot – Nuetral

2.3 Radiated Spurious Emissions into Restricted Frequency Bands

2.3.1 Specification Reference

FCC Sections: 15.205, 15.209. ISED Canada RSS – Gen 8.9/8.10

2.3.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.3.3 Date of Test

12/8/2021 to 12/14/2021

2.3.4 Test Method

Radiated emissions tests were made over the frequency range of 9 kHz to 26 GHz, 10 times the highest fundamental frequency of 2.4 GHz. Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in Section 15.209.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 150 kHz, quasipeak measurements were made using a resolution bandwidth RBW of 300 Hz and a video bandwidth VBW of 1 kHz and frequencies between 150 kHz and 30MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 10 kHz and a video bandwidth VBW of 30 kHz. For frequencies between 30 MHz and 1000 MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 100 kHz and a video bandwidth VBW of 300 kHz. For frequencies between 30 MHz and a video bandwidth VBW of 300 kHz, quasi-peak measurements were made using a resolution bandwidth RBW of 100 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak and average measurements were made with RBW of 1 MHz and VBW of 3 MHz.

2.3.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature	22.3 °C
Relative Humidity	53.8 %
Atmospheric Pressure	972.2 mbar

2.3.6 Test Results

Test Summary: EUT was set to transmit mode.

Test Results: Pass

See data below for detailed results.

Table 2.3.6-1: Radiated Spurious Emissions Tabulated Data – b mode

Frequency (MHz)	Level (dBuV)		Antenna Correction Polarity Factors		Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)		Note
(pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg	
LCH											
2390	51.10	37.80	Н	0.08	51.18	37.88	74.0	54.0	22.8	16.1	1
2390	50.20	37.30	V	0.08	50.28	37.38	74.0	54.0	23.7	16.6	1
4824	46.70	33.20	Н	3.13	49.83	36.33	74.0	54.0	24.2	17.7	
4824	46.60	34.10	V	3.13	49.73	37.23	74.0	54.0	24.3	16.8	
					MC	Н					
7312.1	46.20	33.10	н	7.92	54.12	41.02	74.0	54.0	19.9	13.0	
7311	47.30	35.40	V	7.92	55.22	43.32	74.0	54.0	18.8	10.7	
					HC	Н					
2483.5	53.30	42.60	Н	0.36	53.66	42.96	74.0	54.0	20.3	11.0	2
2483.5	54.10	43.60	V	0.36	54.46	43.96	74.0	54.0	19.5	10.0	2
4924	46.10	33.50	Н	3.20	49.30	36.70	74.0	54.0	24.7	17.3	
4924	47.00	33.90	V	3.20	50.20	37.10	74.0	54.0	23.8	16.9	
7386	46.60	33.00	Н	8.02	54.62	41.02	74.0	54.0	19.4	13.0	
7386	48.00	34.70	V	8.02	56.02	42.72	74.0	54.0	18.0	11.3	

Note 1: Lower BE Note 2: Upper BE

Table 2.3.6-2: Radiated Spurious Emissions Tabulated Data – g mode

Frequency (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)		Note	
(11112)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg	
LCH											
2390	63.90	43.30	Н	0.08	63.98	43.38	74.0	54.0	10.0	10.6	1
2390	64.10	43.50	V	0.08	64.18	43.58	74.0	54.0	9.8	10.4	1
					MC	Н					
			No radiated	spurious emis	ssion detecte	d within 20dB	of the limit.				
					HC	H					
2483.5	53.30	42.60	н	0.36	53.66	42.96	74.0	54.0	20.3	11.0	2
2483.5	54.10	43.60	V	0.36	54.46	43.96	74.0	54.0	19.5	10.0	2

Note 1: Lower BE Note 2: Upper BE

Frequency (dBuV) (MHz)		Antenna Polarity	Correction Factors			Limit (dBuV/m)		Margin (dB)		Note	
(11112)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg	
LCH											
2390	64.70	43.90	Н	0.08	64.78	43.98	74.0	54.0	9.2	10.0	1
2390	66.60	45.40	V	0.08	66.68	45.48	74.0	54.0	7.3	8.5	1
МСН											
			No radiated	spurious emis	ssion detecte	d within 20dB	of the limit.				
НСН											
2483.5	66.50	45.10	Н	0.36	66.86	45.46	74.0	54.0	7.1	8.5	2
2483.5	67.50	46.50	V	0.36	67.86	46.86	74.0	54.0	6.1	7.1	2
1											

Note 1: Lower BE Note 2: Upper BE

Sample Calculation:

 $R_C = R_U + CF_T$

Where:

- CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)
- Ru = Uncorrected Reading
- R_c = Corrected Level
- AF = Antenna Factor
- CA = Cable Attenuation
- AG = Amplifier Gain
- DC = Duty Cycle Correction Factor

Example Calculation: Peak – b mode

Corrected Level: $51.10 + 0.08 = 51.18 dB\mu V/m$ Margin: $74 dB\mu V/m - 51.18 dB\mu V/m = 22.8 dB$

Example Calculation: Average – b mode

Corrected Level: $37.80 + 0.08 - 0 = 37.88dB\mu V$ Margin: $54dB\mu V - 37.88dB\mu V = 16.1dB$

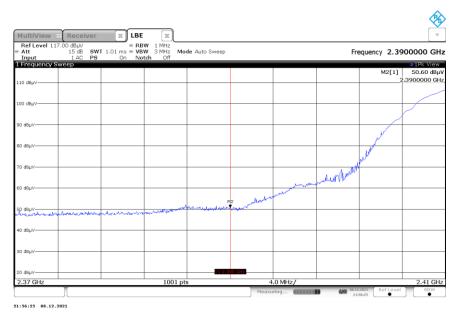


Figure 1: Reference plot Radiated Lower Band-edge – LCH – b mode

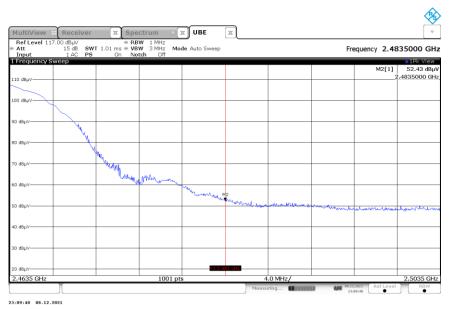


Figure 2: Reference plot Radiated Upper Band-edge – HCH – b mode

	BμV 0 dB SWT 14 ms (~23 . DC PS	■ RBW 300 F sms) = VBW 1 kF On Notch 0	z Mode Auto	FFT			Frequency 7	9.5000 k
Input 1 Frequency Sweep		Un Notch U	IT			• 1Pk	View • 2Pk Vie	w o3Pk Viev
							M1	[2] 48.84 dB
0 dBµV								12.170
dBµV								
dBµV								
dBµV								
dop :								
dBµV								
м1 ¥8µV								
	Manuflectratesting							
dBµV			hat considered	Alexandrichan	Shadoone hada			
					and a second	NAMMAN PROVINCIAN	wanter Minor	Aucuston
dBµV-	Mahanaliyalahan							
dBµV								
uph*								
dBµV								
0 kHz		1000 pts		1	4.1 kHz/			150.0 k

Figure 3: Reference plot for Radiated Spurious Emissions – 9 kHz – 150 kHz – b mode

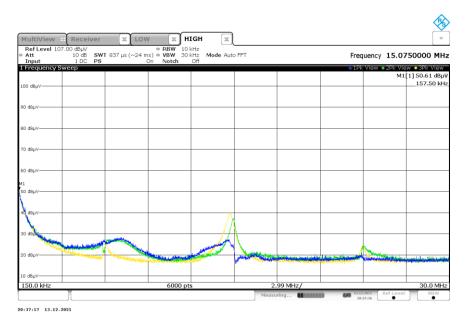
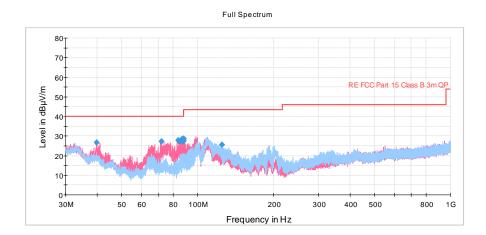



Figure 4: Reference plot for Radiated Spurious Emissions– 150 kHz – 30MHz – b mode Note: Emissions above the noise floor are ambient not associated with the EUT.

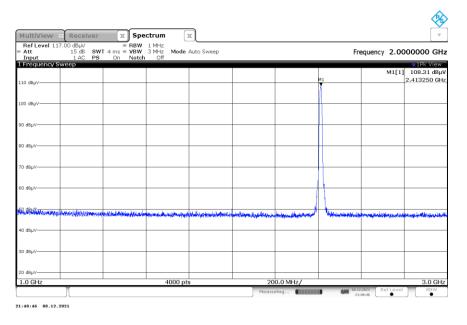


Figure 6: Reference plot for Radiated Spurious Emissions – 1 GHz – 3 GHz – b mode

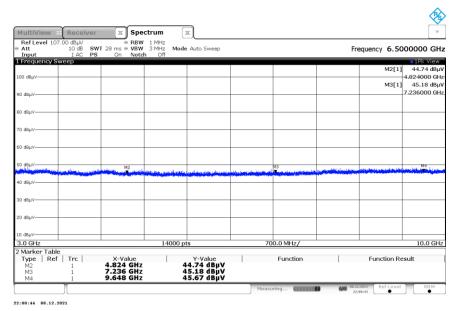


Figure 7: Reference plot for Radiated Spurious Emissions – 3 GHz – 10 GHz – b mode

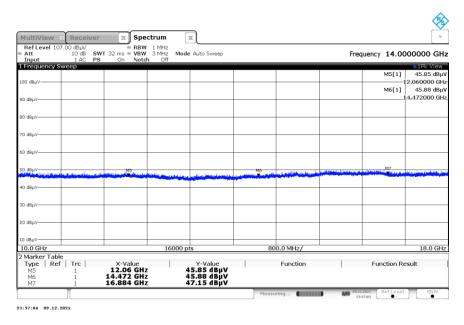


Figure 8: Reference plot for Radiated Spurious Emissions – 10 GHz – 18 GHz – b mode

Ref Level 10	7.00 dBµV		1 MHz						
Att Input	10 dB SW 1 AC PS	I 32 ms ⊕ VBW On Noto	3 MHz Moo h Off	de Auto Sweep			Fred	uency 22.00)00000 G
Frequency S	weep								●1Pk Viev
00 dBµV									
0 dBµV									
) dBµV									
) dBµV									
) dBµV									
I dBµY	MB			M9	and the second	ويترجع والالاطراف والمتعاد	M10	a ganden berenkung	
			and we have been as a second second						
) dBµV									
d8µV									
I dBµ∨									
BµV			16000			0.0 MHz/			26.0 G
Marker Tabl	e		10000	pts	80	0.0 MH27			20.0 G
	Trc	X-Value 19.296 GHz 21.708 GHz 24.12 GHz		Y-Value 48.00 dBµV 47.70 dBµV 50.41 dBµV		Function		Function Re	sult

Figure 9: Reference plot for Radiated Spurious Emissions – 18 GHz – 26 GHz – b mode

2.4 Test Equipment Used

Asset ID	Manufacturer	Model	Equipment Type	Serial Number	Last Calibration Date	Calibration Due Date
628	EMCO	6502	Active Loop Antenna 10kHz-30MHz	9407-2877	6/8/2021	6/8/2023
338	Hewlett Packard	8449B	High Frequency Pre-Amp	3008A01111	6/22/2021	6/22/2023
DEMC3161	Ametek CTS Germany GmbH	CBL 6112D	Bilog Antenna; Attenuator	51323	3/19/2021	3/19/2023
884	ETS Lindgren	3117	Horn Antenna	00240106	5/6/2021	5/6/2022
213	TEC	PA 102	Amplifier	44927	7/30/2021	7/30/2022
432	Microwave Circuits	H3G020G4	Highpass Filter	264066	6/9/2021	6/9/2022
882	Rohde & Schwarz	ESW44	Test Receiver	111961	6/24/2021	6/24/2022
836	ETS Lindgren	SAC Cable Set	SAC Cable Set includes 620, 837, 838	N/A	5/11/2021	5/11/2022
872	Agilent	E7402A	EMC Spectrum Analyzer	US40240258	6/22/2021	6/22/2022
871	Belden	RF Cable	RF Cable (CE Cable)	871	4/2/2021	4/2/2022
861	Com-Power	LI-1100C	Line Impedance Stabilization Network	20180038	2/26/2021	2/26/2022
862	Com-Power	LI01100C	Line Impedance Stabilization Network	20180039	2/26/2021	2/26/2022
144	Omega	RH411	Temp / Humidity Meter	H0103373	12/16/2020	12/16/2022

Table 2.4-1 – Equipment List

N/A – Not Applicable NCR – No Calibration Required

3 Diagram of Test Set-ups

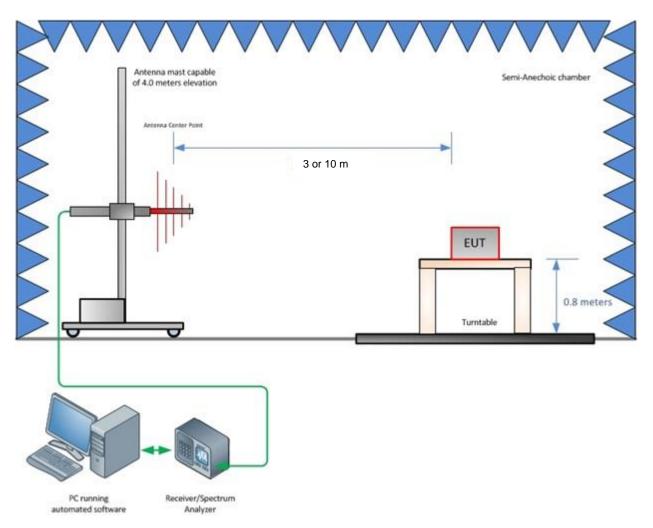


Figure 3-1 – Radiated Emissions Test Setup up to 1 GHz

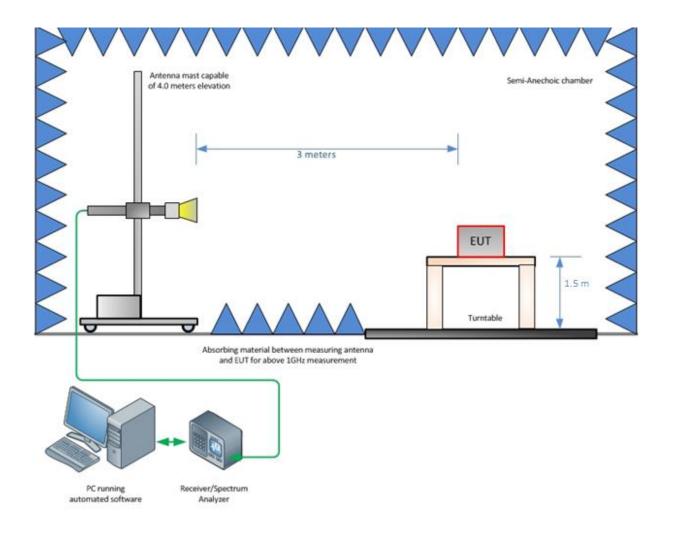
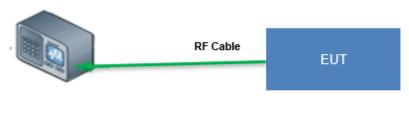



Figure 3-2 – Radiated Emissions Test Setup above 1 GHz

Spectrum Analyzer

4 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

STATEMENT OF MEASUREMENT UNCERTAINTY - Emissions

The expanded laboratory measurement uncertainty figures (U_{Lab}) provided below correspond to an expansion factor (coverage factor) k = 1.96 which provide confidence levels of 95%.

Parameter	U _{lab}
Occupied Channel Bandwidth	± 0.009 %
RF Conducted Output Power	± 0.349 dB
Power Spectral Density	± 0.372 dB
Antenna Port Conducted Emissions	± 1.264 dB
Radiated Emissions ≤ 1 GHz	± 5.814 dB
Radiated Emissions > 1 GHz	± 4.318 dB
Temperature	± 0.860 °C
Radio Frequency	± 2.832 x 10 ⁻⁸
AC Power Line Conducted Emissions	± 3.360 dB

Table 4-1: Estimation of Measurement Uncertainty

TEST EQUIPMENT

All measurement instrumentation is traceable to the National Institute of Standards and Technology and is calibrated to meet test method standard requirements and/or manufacturer's specifications.