Report on the Testing of the Landis + Gyr Technology, Inc. Series-5 MCM0 modular radio

In accordance with: FCC 47 CFR part 15.247 ISED RSS-247 Issue 2, February 2017

Prepared for: Landis + Gyr Technology, Inc. 30000 Mill Creek Ave., Suite 100 Alpharetta, GA 30022

COMMERCIAL-IN-CONFIDENCE

Document Number: AT72172663.1P0

SIGNATURE				
9				
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE	
Kirby Munroe	Wireless / EMC Technical and Certification Manager, NA TUV SUD America Inc.	Authorized Signatory	1/25/2022	
Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD America, Inc. document control rules.				
FCC Accreditation Designation Number US1233 FCC Test Site Registration Number 967699 Innovation, Science, and Economic Development Canada Lab Code 23932				
EXECUTIVE SUMMARY				
A sample of this product w	as tested and found to be compliant with the stand	ards listed above.		
DISCLAIMER AND COPYRIGHT This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America.				

© TÜV SÜD.

ACCREDITED

A2LA Cert. No. 2955.09

Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.

TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 3005 Phone: 678-341-5900 www.tuv-sud-america.com

Contents

1	Report Summary	3
1.1	Report Modification Record	3
1.2	Introduction	
1.3	Brief Summary of Results	5
1.4	Product Information	6
1.5	Deviations from the Standard	9
1.6	EUT Modification Record	
1.7	Test Location	10
2	Test Details	11
2.1	Antenna Requirement	
2.2	Power Line Conducted Emissions	
2.3	Radiated Spurious Emissions into Restricted Frequency Bands	
2.4	Test Equipment Used	20
3	Diagram of Test Set-ups	21
4	Accreditation, Disclaimers and Copyright	23

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
0	First Issue	1/25/2022

Table 1.1-1 – Modification Record

1.2 Introduction

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations Section 15.247 and Innovation Science and Economic Development Canada's Radio Standards Specification RSS-247 for the tests documented herein to support a permissive change by adding new antenna / host combination to the S5 MCMO pre-certified single module.

The host detailed in this report contains the integral antenna, therefore compliance for use with this antenna is limited to the host identified.

Applicant	Goteti Raghav
Manufacturer	Landis + Gyr Technology, Inc
Applicant's Email Address	Raghav.Goteti@landisgyr.com
Host Model / Marketing Name	G5i Streetlight V2 G5 Streetlight V2
Module Model Number(s)	S5-MCM0
Module FCC ID	R7PNG0R1S7
Module ISED Certification Number	5294A-NG0R1S7
Hardware Version(s)	G5i Streetlight V2: M1250
	G5 Streetlight V2: 40-2586
Software Version(s)	N/A
Number of Samples Tested	1
Test Specification/Issue/Date	US Code of Federal REgulation (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2021
	ISED Canada Radio Standards Specification: RSS-247 – Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices, Issue 2, February 2017.

Order Number	72172663
Date of Receipt of EUT	11/16/2021
Start of Test	11/16/2021
Finish of Test	11/17/2021
Related Document(s)	ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device.
	FCC OET KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, April 2, 2019
	US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2021.
	ISED Canada Radio Standards Specification: RSS-GEN – General Requirements for Compliance of Radio Apparatus, Issue 5, Amendment 1 (March 2019), Amendment 2 (February 2021)

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC Part 15.247 and ISED Canada's RSS-247 is shown below.

Test Parameter	Test Plan (Yes/No)	Test Result	FCC 47 CFR Rule Part	ISED Canada's RSS	Test Report Page No
Antenna Requirement	Yes	Pass	15.203		12
Power Line Conducted Emissions	Yes	Pass	15.207	RSS-GEN 8.8	13
Carrier Frequency Separation	No	Not Tested	15.247(a)(1)	RSS-247 5.1(b)	
Number of Hopping Channels	No	Not Tested	15.247(a)(1)(i)	RSS-247 5.1(c)	
Channel Dwell Time	No	Not Tested	15.247(a)(1)(i)	RSS-247 5.1(c)	
20 dB Bandwidth	No	Not Tested	15.247(a)(1)(i)	RSS-247 5.1(c)	
99% Bandwidth	No	Not Tested		RSS-GEN 6.7	
Peak Output Power	No	Not Tested	15.247(b)(2)	RSS-247 5.4(a)	
Avg Output Power	No	Not Tested	15.247(b)(3)	RSS-247 5.4(a)	
Band-Edge Compliance of RF Conducted Emissions	No	Not Tested	15.247(d)	RSS-247 5.5	
RF Conducted Spurious Emissions	No	Not Tested	15.247(d)	RSS-247 5.5	
Radiated Spurious Emissions into Restricted Frequency Bands	Yes	Pass	15.205, 15.209	RSS-GEN 8.9, 8.10	16
Power Spectral Density	No	Not Tested	15.247(e)	RSS-247 5.2(b)	
Duty Cycle	No				

Table 1.3-1: Test Result Summary

1.4 **Product Information**

1.4.1 Technical Description

Modulation Format

Antenna Type / Description:

The S5-MCM0 manufactured by Landis+ Gry Technology, Inc. is a fully functional, radio on a chip that is enabled for simple sensor device integration.

The host device which includes the integral antenna is the Gen-2 LRL Series-5 Streetlight Adapter which employs the Series-5 MCM0, a multi-chip module.

Detail	Description		
Module FCC ID	R7PNG0R1S7		
Module IC ID	5294A-NG0R1S7		
Host Marketing / Model Name	G5i Streetlight V2: Series-5 MCM0 with SBS firmware		

Table 1.4-1 – Wireless Technical Information

G5 Streetlight V2: Series-5 MCM0 with GSP firmware

FSK

Planar Inverted-F Antenna / -4dBi

A full description and detailed product specification	n details are available from the manufacturer.
---	--

Figure 1.4.1-1 –Host front view of the EUT

Figure 1.4.1-2– Host back view of the EUT

Figure 1.4.1-4 – Test Setup Block Diagram

Table 1.4.1	-1 – Cable	• Descriptions
-------------	------------	----------------

Item	Cable/Port	Description
А	USB	Power Cable

Table 1.4.1-2 – Support Equipment Descriptions	Table 1.4.1-2 –	Support	Equipment	Descriptions
--	-----------------	---------	-----------	--------------

Item	Make/Model	Description
1	Lenovo	Laptop used for configuring wireless module – Landis + Gyr provided

1.4.2 Modes of Operation

Mode of Operation	Frequency Range (MHz)	Number of Channels	Channel Separation (kHz)	Data Rates Supported (kbps)	
1	902.3 - 927.8	86	300	9.6, 19.2, 38.4, 115.2	
2	904.0 - 927.8	239	100	9.6, 19.2, 38.4	
3	902.4 - 927.6	64	400	10.0, 20.0, 50.0, 150.0, 200.0	
4	902.2 - 927.8	129	200	50.0, 150.0	

The module model S5-MCM0 provides 4 distinct frequency hopping modes of operation as outlined below.

1.4.3 Monitoring of Performance

For radiated emissions, the EUT was evaluated in three orthogonal orientations. The worst-case orientation was X-position. See test setup photos for more information. The EUT was programmed to generate a continuously modulated signal on each channel evaluated.

The data presented in this report represents the worst case where applicable. The worst-case mode and data rate for the radiated emission measurements was Mesh with 9.6kbps.

Power setting during test: Mode of operation 1: 27 dBm

1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test program. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	Initial State		

The equipment was tested as provided without any modifications.

1.7 Test Location

TÜV SÜD conducted the following tests at our Alpharetta, GA test laboratory.

Test Name	Name of Engineer(s)	Accreditation
Antenna Requirement	Divya Adusumilli	A2LA
Power Line Conducted Emissions	Divya Adusumilli	A2LA
Radiated Spurious Emissions into Restricted Frequency Bands	Bhagyashree Chaudhary	A2LA

Office address: TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 30005, USA

2 Test Details

2.1 Antenna Requirement

2.1.1 Specification Reference

FCC Section: 15.203

2.1.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.1.3 Date of Test

11/16/2021

2.1.4 Test Method

N/A

2.1.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature	23 °C
Relative Humidity	53 %

2.1.6 Test Results

The EUT utilizes host integrated Planar Inverted-F (PIFA) antenna with gain -4 dBi, therefore satisfying the requirements of Section 15.203.

2.2 Power Line Conducted Emissions

2.2.1 Specification Reference

FCC Section: 15.207 ISED Canada: RSS-Gen 8.8

2.2.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.2.3 Date of Test

11/17/2021

2.2.4 Test Method

ANSI C63.10 section 6 was the guiding documents for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Corrected Reading - Applicable Limit

2.2.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature23 °CRelative Humidity53 %

2.2.6 Test Results

Table 2.2.6-1: Conducted EMI Results-Avg – Line 1

Frequency (MHz)	Avg Limit	Avg Level Corrected	Avg Level	Correction Fact.	Avg Margin	Result
1.31	46	15.2	5.5	9.668	-30.8	PASS
1.95	46	17.8	8.2	9.669	-28.2	PASS
2.75	46	13.9	4.2	9.69	-32.1	PASS
3.97	46	12.4	2.7	9.68	-33.6	PASS
6.44	50	12.9	3.2	9.71	-37.1	PASS
22.9	50	11.4	1.5	9.89	-38.6	PASS

Frequency (MHz) QP Limit		QP Level Corrected	QP Level	Correction Fact.	QP Margin	Result
1.31	56	19.2	9.5	9.668	-36.8	PASS
1.95	56	22.2	12.5	9.669	-33.8	PASS
2.75	56	18	8.3	9.69	-38	PASS
3.97	56	16.5	6.9	9.68	-39.5	PASS
6.44	60	16.5	6.8	9.71	-43.5	PASS
22.9	60	15.4	5.5	9.89	-44.6	PASS

Table 2.2.6-2: Conducted EMI Results-QP – Line 1

Table 2.2.6-3: Conducted EMI Results-Avg – Line 2

Frequency (MHz)	Avg Limit	Avg Level Corrected	Avg Level	Correction Fact.	Avg Margin	Result
0.5	46.1	14.7	5.1	9.63	-31.3	PASS
0.55	46	15.7	6	9.633	-30.3	PASS
2.07	46	17.2	7.5	9.661	-28.8	PASS
3.3	46	12.7	3	9.696	-33.3	PASS
11.84	50	11.1	1.2	9.878	-38.9	PASS
24.07	50	12.2	2.2	9.99	-37.8	PASS

Table 2.2.6-4: Conducted EMI Results-QP – Line 2

Frequency (MHz)	QP Limit	QP Level Corrected	QP Level	Correction Fact.	QP Margin	Result
0.5	56.1	18.8	9.2	9.63	-37.3	PASS
0.55	56	19.9	10.3	9.633	-36.1	PASS
2.07	56	21.3	11.6	9.661	-34.7	PASS
3.3	56	16.8	7.1	9.696	-39.2	PASS
11.84	60	15.5	5.6	9.878	-44.5	PASS
24.07	60	16.1	6.1	9.99	-43.9	PASS

Last Data Update 01:52:38 PM, Wednesday, November 17, 2021

Figure 2: Conducted Emission Plot – Nuetral

2.3 Radiated Spurious Emissions into Restricted Frequency Bands

2.3.1 Specification Reference

FCC Sections: 15.205, 15.209. ISED Canada: RSS – Gen 8.9/8.10

2.3.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.3.3 Date of Test

11/16/2021 to 11/17/2021

2.3.4 Test Method

Radiated emissions tests were made over the frequency range of 9 kHz to 10 GHz, 10 times the highest fundamental frequency of 900 MHz Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in Section 15.209.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 150 kHz, quasipeak measurements were made using a resolution bandwidth RBW of 300 Hz and a video bandwidth VBW of 1 kHz and frequencies between 150 kHz and 30MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 30 kHz. For frequencies between 30 MHz and 1000 MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 300 kHz. For frequencies between 30 MHz and a video bandwidth VBW of 300 kHz, quasi-peak measurements were made using a resolution bandwidth RBW of 10 kHz and a video bandwidth VBW of 30 kHz. For frequencies above 1000 MHz, peak and average measurements were made with RBW of 1 MHz and VBW of 3 MHz.

2.3.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature	23 °C
Relative Humidity	53 %

2.3.6 Test Results

Test Summary: EUT was set to transmit mode.

Test Results: Pass

See data below for detailed results.

Table 2.3.6-1: Radiated Spurious Emissions Tabulated Data

Frequency	Le (dE	evel BuV)	Antenna Polarity	Correction Factors	Correct (dBu	ed Level ıV/m)	Li (dBı	mit uV/m)	Ma (c	rgin IB)
(11112)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
				Low Chann	el - 902.3N	ЛНz				
2706.9	51.10	47.70	Н	-3.84	47.26	43.86	74.0	54.0	26.7	10.1
2706.9	52.30	48.60	V	-3.84	48.46	44.76	74.0	54.0	25.5	9.2
3609.2	43.00	36.60	Н	0.34	43.34	36.94	74.0	54.0	30.7	17.1
3609.2	40.10	31.30	V	0.34	40.44	31.64	74.0	54.0	33.6	22.4
				Middle Chan	nel - 915.0	MHz				
2745	50.80	41.40	Н	-3.69	47.11	37.71	74.0	54.0	26.9	16.3
2745	50.40	40.20	V	-3.69	46.71	36.51	74.0	54.0	27.3	17.5
3660	47.50	36.50	Н	0.60	48.10	37.10	74.0	54.0	25.9	16.9
3660	47.00	34.70	V	0.60	47.60	35.30	74.0	54.0	26.4	18.7
High Channel - 927.8MHz										
2783.4	50.10	40.30	Н	-3.54	46.56	36.76	74.0	54.0	27.4	17.2
2783.4	50.10	40.30	V	-3.54	46.56	36.76	74.0	54.0	27.4	17.2

Sample Calculation:

 $R_{C} = R_{U} + CF_{T}$

Where:

- CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)
- Ru = Uncorrected Reading
- Rc = Corrected Level
- AF = Antenna Factor
- CA = Cable Attenuation
- AG = Amplifier Gain
- DC = Duty Cycle Correction Factor

Example Calculation: Peak

Corrected Level: 51.10 + -3.84 = 47.26 dBuV/m

Margin: 74dBuV/m - 47.26dBuV/m = 26.74dB

Example Calculation: Average

Corrected Level: 47.70+ -3.84- 0 = 43.86dBuV

Margin: 54dBuV - 43.86dBuV = 10.14dB

COMMERCIAL-IN-CONFIDENCE

	ICCCOLACI								Ľ
Ref Level 107.) Att	10 dB SW	∎ 14 ms (~23 m	● RBW 300 s) ● VBW 1 k	Hz Hz Mode Auto	FFT			Frequency 7	79.5000 kH
requency Sw	eep		n Noten	on			● 1Pk	: View 🏮 2Pk Vie	ew o3Pk View
dBµV									
dBuV									
dBµV									
dBµV									
dBµV									
dBµV-	have no portion to a contraction of the	-							
dBµV			and and a second se	and the second of the second o	histochanhal	mhonicoppingles	n frank marken	and the second second second	Donald become
dBµV									
dBµV									
dBuV-									

16:52:13 17.11.2021

Figure 2: Reference plot for Radiated Spurious Emissions– 150 kHz – 30 kHz Note: Emissions above the noise floor are ambient not associated with the EUT.

Figure 3: Reference plot for Radiated Spurious Emissions – 30 MHz – 1 GHz Note: Emissions above the noise floor do not falls within restricted bands.

Receiver	Spe	ctrum 🗷								
Ref Level	Ref Level 117/00 dBpV RBW 1 MHz									
🖷 Att	/ALL 250B SWT51µs ● VBW 3 MHZ Mode AutoFFT Input 1 AC									
PS DIEk Maw										
OTEX 10W						MI	[1]			49.37 dBuV
1						112	(4)			1.500000 GHz
110-00-02										
110 0800										
1										
100 dBµV										
90 GBDA										
80 dBµV										
70 dBµV										
1										
60 dBµV										
month that	what a	- marchana ta ca	and so a							
SU dBpV		12 m	an ar a fraith an an a b	and the production	MAR MANAGER	material and an	word & summer for the	Mary Mr. Martin	WWW. WWWWWWW	profiling and and the second the
1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5			
40 dBµ√										
1										
30 dBµV										
1										
1										
20 dBµV										
start 1.0 GH	z				1000	pts				Stop 1.5 GHz
									Measuring	14:39:30

Date: 16.NOV.2021 14:39:30

Receiver	Spectr	rum 🗈								
Ref Level 103	i2.00 dBµ∨		RBW 1 MHz							
Att	10 dB	SWT 25.5 ms	VBW 3 MHz Mode Auto 9	Sweep Input	1 AC					
PS										
O TEK AIGM							-			10.00.40.41
100 dBµV							1)			43.82 UBHV
						M1[11			64 26 dBuV
										1.804600 GHz
90 dBµV									1	
30 dBµV										
70 dBuV										
20 clope										
The second se										
60 GBUV										
		M2								
50 dBµV										A
AND FULL STREET	الل القرائدة المقال	ويرويان والطفي ألاقت أكرفته	ر بر مار بر اور بر رو <mark>لگار به با همار اور ا</mark> ین و	to a dista Milita con	- 114 h - 1	and the following star	ւ, ս անո	فأحصاء الماعم الطبابيس عليقات الطاعاة وسيترديان	ويرككك الغلالة ويعتر أليس ويراس	المتنابيك ويرجع المتنازيل
and the distance of the second se	and soft fits	at a multiple star	the she before the set of the set of the set	a cash da bita .	and the second	aliff all and a state of a sector of a	and the state of the	بالمراجع والمراجع والمتحد والمتحد والمتحد والمتحد والمحاد والمحاد	and a debito sea differences	which the test states are substituted in
40 dBµV			de la disertita da la seconda de	a second second second	And the star life and a black of a set of star star star		Weath Income Manada			
30 dBµV										
20. dBuV										
1.0 dtures										
Start 1.5 City					13000) ote				Stop 10.0 CU:s
Markan					17000	, prs				3(0) 10:0 GH2
Tuno	Rof	Tec	Y-ualuo	1	Y-ualuo	Eunct	ion		Eunction Posult	
M1	1501	1	1	8046 GHz	64.25 (IBUV			r unction resourc	
M2		1	2	7069 GHz	50.53	iBµV				
M3		1	3.	6067 GHz	43.82	iBµV				
M4		1	4	5115 GHz	43.67 (івµУ				
MS		1	5.	4138 GHz	40.29 0	18µY				
Mb		1	8	1207 GHZ	42.72 0	18UV				
				A DECK DECK	THE REPORT OF A	and the second sec				
										B 410 16.11.2021

Data 16.NOV.2021 14:13:51

Figure 5: Reference plot for Radiated Spurious Emissions – 1.5 GHz – 10 GHz Note: Emissions above the noise floor that falls within restricted bands were only evaluated.

2.4 Test Equipment Used

Asset ID	Manufacturer	Model	Equipment Type	Serial Number	Last Calibration Date	Calibration Due Date
628	EMCO	6502	Active Loop Antenna 10kHz-30MHz	9407-2877	6/8/2021	6/8/2023
1956	Fei Teng Wireless Technology	HA-07M18G-NF	Horn Antenna 1-18GHz	2013120203	05/12/2021	05/12/2022
852	Teseq	CBL 6112D	Bilog Antenna; Attenuator	51617	10/13/2020	10/13/2022
213	TEC	PA 102	Amplifier	44927	7/30/2021	7/30/2022
338	Hewlett Packard	8449B	High Frequency Pre-Amp	3008A01111	06/22/2021	06/22/2023
331	Microwave Circuits	H1G513G1	Microwave Bandpass Filter	31417	6/9/2021	6/9/2022
882	Rohde & Schwarz	ESW44	Test Receiver	111961	6/24/2021	6/24/2022
836	ETS Lindgren	SAC Cable Set	SAC Cable Set includes 620, 837, 838	N/A	5/11/2021	5/11/2022
3010	Rohde & Schwarz	ENV216	Two-Line V-Network	3010	6/23/2021	6/23/2022
872	Agilent	E7402A	EMC Spectrum Analyzer	US40240258	6/22/2021	6/22/2022
861	Com-Power Corporation	LI-1100C	Line Impedance Stabilization Network	20180038	2/26/2021	2/26/2022
862	Com-Power Corporation	LI01100C	Line Impedance Stabilization Network	20180039	2/26/2021	2/26/2022
703	Hewlett Packard	8594E	Spectrum Analyzer	3523A02134	NCR	NCR
856	Huber & Suhner	Multiplex 104	Blue Cable	326050	NCR	NCR
813	PMM	9010	EMI Receiver; RF Input 50ohm; 10Hz-50MHz; 10Hz-30MHz	697WW3060 6	6/8/2021	6/8/2022
168	Hewlett Packard	11947A	Transient Pulse Limiter	44829	3/3/2021	3/3/2022

Table 2.4-1 – Equipment List

N/A – Not Applicable NCR – No Calibration Required

3 Diagram of Test Set-ups

Figure 3-1 – Radiated Emissions Test Setup up to 1 GHz

Figure 3-2 – Radiated Emissions Test Setup above 1 GHz

4 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

STATEMENT OF MEASUREMENT UNCERTAINTY

The expanded laboratory measurement uncertainty figures (U_{Lab}) provided below correspond to an expansion factor (coverage factor) k = 1.96 which provide confidence levels of 95%.

Parameter	U _{lab}		
Radiated Emissions ≤ 1 GHz	± 5.814 dB		
Radiated Emissions > 1 GHz	± 4.318 dB		
Temperature	± 0.860 °C		
Radio Frequency	± 2.832 x 10 ⁻⁸		
AC Power Line Conducted Emissions	± 3.360 dB		

Table 4-1: Estimation of Measurement Uncertainty

TEST EQUIPMENT

All measurement instrumentation is traceable to the National Institute of Standards and Technology and is calibrated to meet test method standard requirements and/or manufacturer's specifications