## Report on the Testing of the

Landis + Gyr Technology, Inc. T1501 Series-5 Mesh

In accordance with: FCC 47 CFR part 15.249 ISED RSS-210 Issue 10, December 2019

Prepared for: Landis + Gyr Technology, Inc.

30000 Mill Creek Ave., Suite 100

Alpharetta, GA 30022



Add value. Inspire trust.

## **COMMERCIAL-IN-CONFIDENCE**

Document Number: AT72172744.2C0

| SIGNATURE    |                                                                                   |                      |            |
|--------------|-----------------------------------------------------------------------------------|----------------------|------------|
|              |                                                                                   |                      |            |
| NAME         | JOB TITLE                                                                         | RESPONSIBLE FOR      | ISSUE DATE |
| Kirby Munroe | Wireless / EMC Technical and Certification<br>Manager, NA<br>TUV SUD America Inc. | Authorized Signatory | 11/17/2021 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD America, Inc. document control rules.

FCC Accreditation Designation Number 967699

Innovation, Science, and Economic Development Canada Accreditation 23932

### **EXECUTIVE SUMMARY**

A2LA Cert. No. 2955.09

A sample of this product was tested and found to be compliant with the standards listed above.





#### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America. © TÜV SÜD.

#### ACCREDITATION

Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.

TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 3005 Phone: 678-341-5900 www.tuv-sud-america.com







# Contents

| 1     | Report Summary                           |                             |
|-------|------------------------------------------|-----------------------------|
| 1.1   | Report Modification Record               |                             |
| 1.2   | Introduction                             |                             |
| 1.3   | Brief Summary of Results                 |                             |
| 1.4   | Product Information                      | 6                           |
| 1.5   | Deviations from the Standard             | 8                           |
| 1.6   | EUT Modification Record                  |                             |
| 1.7   | Test Location                            | (                           |
| 2     | Test Details                             | 10                          |
| 2.1   | Antenna Requirement                      |                             |
| 2.2   | Power Line Conducted Emissions           |                             |
| 2.3   | 20dB / 99% Bandwidth                     |                             |
| 2.4   | Fundamental Field Strength               |                             |
| 2.5   | Radiated Spurious Emissions              | 21                          |
| 2.6   | Test Equipment Used                      | 27                          |
| 3     | Diagram of Test Set-ups                  | 28                          |
| 4     | Accreditation, Disclaimers and Copyright | 30                          |
| Appen | ndix A: Test Setup Photos                | Error! Bookmark not defined |



## 1 Report Summary

#### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Table 1.1-1 - Modification Record

| Issue | Description of Change |            |
|-------|-----------------------|------------|
| 0     | First Issue           | 11/17/2021 |

#### 1.2 Introduction

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations Section 15.249 and Innovation Science and Economic Development Canada's Radio Standards Specification RSS-210 for the tests documented herein.

Applicant Tim Walters

Manufacturer Landis + Gyr Technology, Inc
Applicant's Email Address <u>Tim.walters@landisgyr.com</u>

Model Number(s) T1501 Series-5 Mesh

Serial Number(s) LAN ID: 9160F62C (Conducted and Field strength

measurement)

LAN ID: 9160F63C (Radiated measurement)

FCC ID R7PNG0R1S5LP

ISED Certification Number 5294A-NG0R1S5LP

Hardware Version(s) N/A
Software Version(s) N/A
Number of Samples Tested 1

Test Specification/Issue/Date US Code of Federal Regulation (CFR): Title 47, Part 15,

Subpart C: Radio Frequency Devices, Intentional

Radiators, 2021

Innovation, Science and Economic Development Canada Radio Standards Specification: RSS-210 – License-Exempt

Radio Apparatus: Category I Equipment, Issue 10,

December 2019

Order Number 72172746

Date of Receipt of EUT 2021-October-11
Start of Test 2021-October-13
Finish of Test 2021-October-15



Related Document(s)

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device.

US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2021. ISED Canada Radio Standards Specification: RSS-GEN – General Requirements for Compliance of Radio Apparatus, Issue 5, Amendment 1 (March 2019), Amendment 2 (February 2021)

## 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC Part 15.249 and ISED Canada's RSS-210 is shown below.

**Table 1.3-1: Test Result Summary** 

| Test Parameter                 | Test Plan<br>(Yes/No) | Test<br>Result | FCC 47 CFR<br>Rule Part | ISED Canada's<br>RSS | Test<br>Report<br>Page No |
|--------------------------------|-----------------------|----------------|-------------------------|----------------------|---------------------------|
| Antenna Requirement            | Yes                   | Pass           | 15.203                  |                      | 10                        |
| Power Line Conducted Emissions | Yes                   | Pass           | 15.207                  | RSS-GEN 8.8          | 11                        |
| 20 dB Bandwidth                | Yes                   | Pass           | 15.215(c)               | RSS-GEN 6.7          | 13                        |
| 99% Bandwidth                  | Yes                   | Pass           |                         | RSS-GEN 6.7          | 13                        |
| Fundamental Field Strength     | Yes                   | Pass           | 15.249(a)               | RSS-210 B.10         | 19                        |
| Radiated Spurious Emissions    | Yes                   | Pass           | 15.249(a)(d)(e)         | RSS-210 B.10         | 21                        |

## 1.4 Product Information

## 1.4.1 Technical Description

The Series-5 RF proprietary protocol supports baud rates up to 115.2 kbps. operation in the Sub-GHz band. There are 2 types of RF proprietary protocol radios with Mesh wide band and narrow band modes.

**Table 1.4-1 – Wireless Technical Information** 

| Detail                      | Description                       |
|-----------------------------|-----------------------------------|
| FCC ID                      | R7PNG0R1S5LP                      |
| ISED ID                     | 5294A-NG0R1S5LP                   |
| Transceiver Model #         | T1501 Series-5 Mesh               |
| Modulation Format           | Proprietary FSK                   |
| Antenna Type / Description: | Monopole chip antenna / 1dBi Gain |

A full description and detailed product specification details are available from the manufacturer.



Photo 1.4.1-1 - Front view of the EUT

Photo 1.4.1-2 - Back view of the EUT



Photo 1.4.1-3 -EUT with USB cable

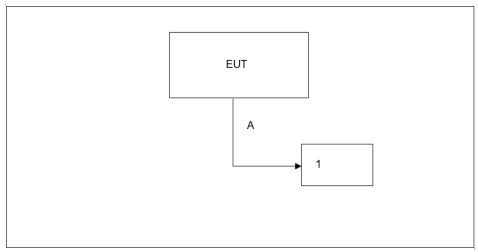



Figure 1.4.1-4 – Test Setup Block Diagram

Table 1.4.1-1 - Cable Descriptions

| Item | Cable/Port | Description |
|------|------------|-------------|
| А    | USB        | Power Cable |

Table 1.4.1-2 - Support Equipment Descriptions

| Item | Item Make/Model Desc |                                                                        |
|------|----------------------|------------------------------------------------------------------------|
| 1    | Lenovo               | Laptop used for configuring wireless module –<br>Landis + Gyr provided |

#### 1.4.2 Modes of Operation

T1501 Series-5 Mesh model provides 2 distinct proprietary modes of operation using DXT (Low Power mode) classifications as outlined below.

| Mode of Operation | Frequency<br>Range<br>(MHz) | Number of Channels | Channel<br>Separation<br>(kHz) | Stack / Mode                        | Data Rates<br>Supported<br>(kbps) | Classification |
|-------------------|-----------------------------|--------------------|--------------------------------|-------------------------------------|-----------------------------------|----------------|
| 1                 | 902.3 - 927.8               | 86                 | 300                            | Mesh (Wide band)<br>FSK Low Power   | 9.6, 19.2, 38.4,<br>115.2         | DXT            |
| 2                 | 904.0 - 927.8               | 239                | 100                            | Mesh (Narrow band)<br>FSK Low Power | 9.6, 19.2, 38.4                   | DXT            |

### 1.4.3 Monitoring of Performance

For radiated emissions, the EUT was evaluated in three orthogonal orientations. The worst-case orientation was X-position. See test setup photos for more information. The EUT was programmed to generate a continuously modulated signal on each channel evaluated.

For RF Conducted measurements, the EUT was connected to the test equipment with a MMCX to SMA connector.

Worst case mode for all other parameters measured listed below:

| Mode | Classification | 20dB / 99% Fundamental Field<br>Bandwidth Strength |                  | Radiated Spurious<br>Emissions |
|------|----------------|----------------------------------------------------|------------------|--------------------------------|
|      |                |                                                    | Data Rate (kbps) |                                |
| 1    | DXT            | 9.6, 19.2, 38.4, 115.2                             | 9.6              | 9.6                            |
| 2    | DXT            | *                                                  | 9.6              | *                              |

<sup>\*</sup> Addressed by mode 1

Power setting during test: Mode of operation 1 & 2: -10 dBm

#### 1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

#### 1.6 EUT Modification Record

The table below details modifications made to the EUT during the test program. The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State | Modification State Description of Modification still fitted to EUT |  | Date Modification<br>Fitted |
|--------------------|--------------------------------------------------------------------|--|-----------------------------|
| 0                  | Initial State                                                      |  |                             |

The equipment was tested as provided without any modifications.

### 1.7 Test Location

TÜV SÜD conducted the following tests at our Alpharetta, GA test laboratory.

| Test Name                      | Name of Engineer(s)   | Accreditation |
|--------------------------------|-----------------------|---------------|
| Antenna Requirement            | Divya Adusumilli      | A2LA          |
| Power Line Conducted Emissions | Divya Adusumilli      | A2LA          |
| 20dB / 99% Bandwidth           | Divya Adusumilli      | A2LA          |
| Fundamental Field Strength     | Divya Adusumilli      | A2LA          |
| Radiated Spurious Emissions    | Bhagyashree Chaudhary | A2LA          |

Office address: TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 30005, USA

## 2 Test Details

## 2.1 Antenna Requirement

## 2.1.1 Specification Reference

FCC Section: 15.203

## 2.1.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

#### 2.1.3 Date of Test

10/13/2021

#### 2.1.4 Test Method

N/A

#### 2.1.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa

Ambient Temperature 22.3 °C
Relative Humidity 53.8 %
Atmospheric Pressure 972.2 mbar

#### 2.1.6 Test Results

The EUT utilizes monopole chip antenna with peak gain 1 dBi which is mounted on the bottom side of the printed circuit board, therefore satisfying the requirements of Section 15.203.

#### 2.2 Power Line Conducted Emissions

#### 2.2.1 Specification Reference

FCC Section: 15.207

ISED Canada: RSS-Gen 8.8

## 2.2.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

#### 2.2.3 Date of Test

10/14/2021

#### 2.2.4 Test Method

ANSI C63.10 section 6 was the guiding documents for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Corrected Reading - Applicable Limit

#### 2.2.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C Relative Humidity 53.8 % Atmospheric Pressure 972.2 mbar

#### 2.2.6 Test Results

Table 2.2.6-1: Conducted EMI Results-Avg - Line 1

| Frequency<br>(MHz) | Avg Limit | Avg Level<br>Corrected | Avg Level | Correction Fact. | Avg Margin | Result |
|--------------------|-----------|------------------------|-----------|------------------|------------|--------|
| 0.15               | 56        | 42.3                   | 32.6      | 9.682            | -13.7      | PASS   |
| 0.8                | 46        | 22.3                   | 12.6      | 9.668            | -23.7      | PASS   |
| 1.6                | 46        | 23.4                   | 13.7      | 9.662            | -22.6      | PASS   |
| 1.64               | 46        | 22.2                   | 12.6      | 9.663            | -23.8      | PASS   |
| 1.68               | 46        | 23.2                   | 13.5      | 9.664            | -22.8      | PASS   |
| 2.47               | 46        | 22.8                   | 13.1      | 9.689            | -23.2      | PASS   |

Table 2.2.6-2: Conducted EMI Results-QP - Line 1

| Frequency<br>(MHz) | QP Limit | QP Level<br>Corrected | QP Level | Correction Fact. | QP Margin | Result |
|--------------------|----------|-----------------------|----------|------------------|-----------|--------|
| 0.15               | 66       | 50.7                  | 41.1     | 9.682            | -15.3     | PASS   |
| 0.8                | 56       | 29.5                  | 19.8     | 9.668            | -26.5     | PASS   |
| 1.6                | 56       | 29.5                  | 19.8     | 9.662            | -26.5     | PASS   |
| 1.64               | 56       | 29.3                  | 19.6     | 9.663            | -26.7     | PASS   |
| 1.68               | 56       | 29.4                  | 19.8     | 9.664            | -26.6     | PASS   |
| 2.47               | 56       | 29.1                  | 19.4     | 9.689            | -26.9     | PASS   |

Table 2.2.6-3: Conducted EMI Results-Avg – Line 2

| Frequency<br>(MHz) | Avg Limit | Avg Level<br>Corrected | Avg Level | Correction Fact. | Avg Margin | Result |
|--------------------|-----------|------------------------|-----------|------------------|------------|--------|
| 0.15               | 56        | 40.5                   | 30.8      | 9.675            | -15.5      | PASS   |
| 0.5                | 46.1      | 26.4                   | 16.7      | 9.631            | -19.8      | PASS   |
| 1.34               | 46        | 20.2                   | 10.5      | 9.667            | -25.8      | PASS   |
| 1.52               | 46        | 21.8                   | 12.1      | 9.67             | -24.2      | PASS   |
| 1.96               | 46        | 21.8                   | 12.1      | 9.661            | -24.2      | PASS   |
| 3.13               | 46        | 21.7                   | 12        | 9.693            | -24.3      | PASS   |

Table 2.2.6-4: Conducted EMI Results-QP - Line 2

| Frequency<br>(MHz) | QP Limit | QP Level<br>Corrected | QP Level | Correction Fact. | QP Margin | Result |
|--------------------|----------|-----------------------|----------|------------------|-----------|--------|
| 0.15               | 66       | 49.2                  | 39.5     | 9.675            | -16.8     | PASS   |
| 0.5                | 56.1     | 29.1                  | 19.4     | 9.631            | -27.1     | PASS   |
| 1.34               | 56       | 25.5                  | 15.9     | 9.667            | -30.5     | PASS   |
| 1.52               | 56       | 26.4                  | 16.7     | 9.67             | -29.6     | PASS   |
| 1.96               | 56       | 26.2                  | 16.5     | 9.661            | -29.8     | PASS   |
| 3.13               | 56       | 25.7                  | 16       | 9.693            | -30.3     | PASS   |

#### 2.3 20dB / 99% Bandwidth

#### 2.3.1 Specification Reference

FCC Sections: 15.215(c) ISED Canada: RSS-GEN 6.7

### 2.3.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

#### 2.3.3 Date of Test

10/13/2021

#### 2.3.4 Test Method

The RF output port of the EUT was directly connected to the input of the spectrum analyzer with suitable attenuation. The span of the spectrum analyzer display was set between two times and five times the occupied bandwidth (OBW) of the emission. The RBW of the spectrum analyzer was set to approximately 1 % to 5 % of the OBW. The trace was set to max hold with a peak detector active. The Delta and ndB down functions of the analyzer were utilized to determine the 20 dB bandwidth of the emission.

The occupied bandwidth measurement function of the spectrum analyzer was used to measure the 99% bandwidth. The span of the analyzer was set to capture all products of the modulation process, including the emission sidebands. The resolution bandwidth was set to 1% to 5% of the occupied bandwidth. The video bandwidth was set to 3 times the resolution bandwidth. A peak detector was used.

#### 2.3.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C
Relative Humidity 53.8 %
Atmospheric Pressure 972.2 mbar

#### 2.3.6 Test Results

Test Summary: EUT was set to transmit mode.

**Test Results: Pass** 

See data below for detailed results.

Table 2.3.6-1: 20dB / 99% Bandwidth

| Frequency<br>[MHz] | 20dB Bandwidth (kHz) | 99% Bandwidth<br>(kHz) | Data Rate<br>(kbps) | Mode(s) |
|--------------------|----------------------|------------------------|---------------------|---------|
| 902.3              | 21.371               | 20.866                 | 9.6                 | 1       |
| 902.3              | 41.864               | 43.489                 | 19.2                | 1       |
| 902.3              | 84.829               | 88.940                 | 38.4                | 1       |
| 902.3              | 235.389              | 227.418                | 115.2               | 1       |
| 915.2              | 21.577               | 20.895                 | 9.6                 | 1       |
| 915.2              | 41.851               | 45.120                 | 19.2                | 1       |
| 915.2              | 86.035               | 91.785                 | 38.4                | 1       |
| 915.2              | 235.085              | 226.592                | 115.2               |         |
| 927.8              | 21.609               | 20.946                 | 9.6                 | 1       |
| 927.8              | 41.445               | 45.186                 | 19.2                | 1       |
| 927.8              | 86.054               | 94.972                 | 38.4                | 1       |
| 927.8              | 235.514              | 227.218                | 115.2               | 1       |

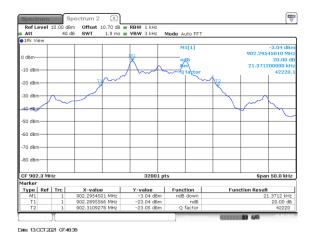



Figure 2.3.6-1: 20dB BW Low Channel - 9.6 kbps

Figure 2.3.6-2: 20dB BW Low Channel - 19.2 kbps

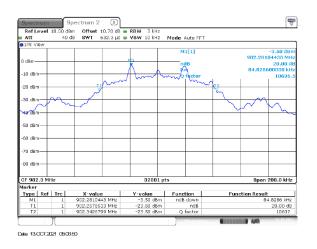





Figure 2.3.6-3: 20dB BW Low Channel - 38.4 kbps

Figure 2.3.6-4: 20dB BW Low Channel - 115.2 kbps

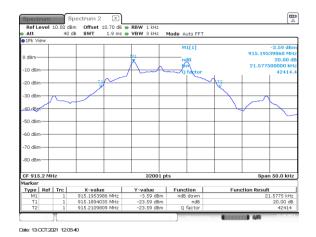



Figure 2.3.6-5: 20dB BW Mid Channel - 9.6 kbps

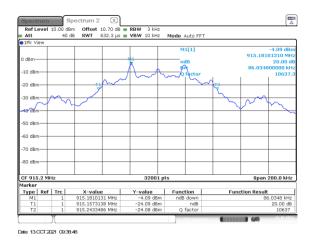



Figure 2.3.6-7: 20dB BW Mid Channel - 38.4 kbps

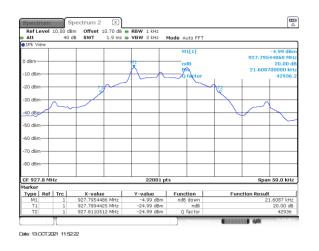



Figure 2.3.6-9: 20dB BW High Channel - 9.6 kbps



Figure 2.3.6-6: 20dB BW Mid Channel - 19.2 kbps

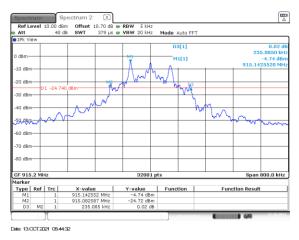



Figure 2.3.6-8: 20dB BW Mid Channel - 115.2 kbps



Figure 2.3.6-10: 20dB BW High Channel - 19.2 kbps

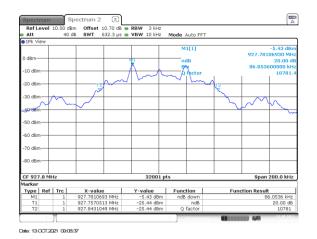



Figure 2.3.6-11: 20dB BW High Channel – 38.4 kbps

Figure 2.3.6-12: 20dB BW High Channel - 115.2 kbps

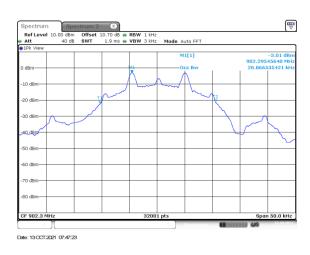





Figure 2.3.6-13: 99% BW Low Channel - 9.6 kbps

Figure 2.3.6-14: 99% BW Low Channel - 19.2 kbps

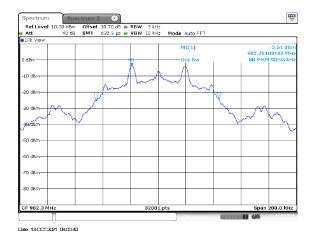





Figure 2.3.6-15: 99% BW Low Channel - 38.4 kbps

Figure 2.3.6-16: 99% BW Low Channel - 115.2 kbps

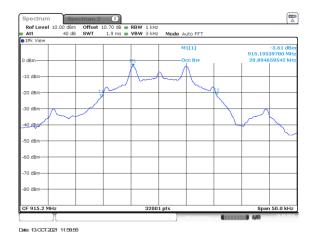



Figure 2.3.6-17: 99% BW Mid Channel - 9.6 kbps

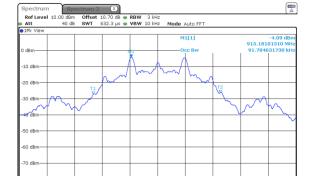



Figure 2.3.6-18: 99% BW Mid Channel - 19.2 kbps

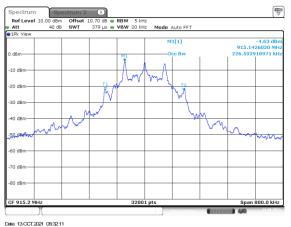



Figure 2.3.6-19: 99% BW Mid Channel - 38.4 kbps



Figure 2.3.6-20: 99% BW Mid Channel - 115.2 kbps

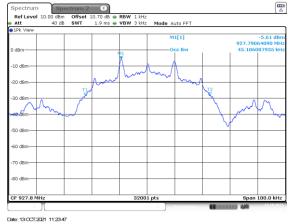



Figure 2.3.6-21: 99% BW High Channel - 9.6 kbps

Figure 2.3.6-22: 99% BW High Channel - 19.2 kbps

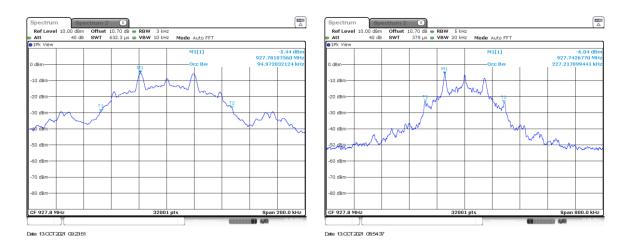



Figure 2.3.6-23: 99% BW High Channel – 38.4 kbps Figure 2.3.6-24: 99% BW High Channel – 115.2 kbps

## 2.4 Fundamental Field Strength

#### 2.4.1 Specification Reference

FCC Sections: 15.249(a)(d)(e). ISED Canada RSS – 210 B.10

## 2.4.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

#### 2.4.3 Date of Test

10/14/2021 to 10/19/2021

#### 2.4.4 Test Method

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. Quasi-peak measurements were made with RBW and VBW of 100 kHz and 300 kHz respectively.

#### 2.4.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C Relative Humidity 53.8 % Atmospheric Pressure 972.2 mbar

## 2.4.6 Test Results

Test Summary: EUT was set to transmit mode.

**Test Results: Pass** 

See data below for detailed results.

Table 2.4.6-1: Fundamental Field Strength - Mode 1

| Frequency<br>(MHz) | · Jabat) |         | Antenna<br>Polarity | Correction<br>Factors | Corrected Level<br>(dBuV/m) |         |    |         | Margin<br>(dB) |         |
|--------------------|----------|---------|---------------------|-----------------------|-----------------------------|---------|----|---------|----------------|---------|
| (141112)           | pk       | Qpk/Avg | (H/V)               | (dB)                  | pk                          | Qpk/Avg | pk | Qpk/Avg | pk             | Qpk/Avg |
| 902.30             |          | 89.40   | Н                   | 2.35                  |                             | 91.75   |    | 94.0    |                | 2.2     |
| 902.30             |          | 85.80   | V                   | 2.35                  |                             | 88.15   |    | 94.0    |                | 5.8     |
| 915.20             |          | 88.60   | Н                   | 2.15                  |                             | 90.75   |    | 94.0    |                | 3.2     |
| 915.20             |          | 85.90   | V                   | 2.15                  |                             | 88.05   |    | 94.0    |                | 5.9     |
| 927.80             |          | 86.60   | Н                   | 2.41                  |                             | 89.01   |    | 94.0    |                | 5.0     |
| 927.80             |          | 85.20   | V                   | 2.41                  |                             | 87.61   |    | 94.0    |                | 6.4     |

Table 2.4.6-1: Fundamental Field Strength - Mode 2

| Tunio II in |                 |         |                     |                       |                             |         |    |         |    |            |
|-------------------------------------------------|-----------------|---------|---------------------|-----------------------|-----------------------------|---------|----|---------|----|------------|
| Frequency<br>(MHz)                              | Level<br>(dBuV) |         | Antenna<br>Polarity | Correction<br>Factors | Corrected Level<br>(dBuV/m) |         |    |         |    | rgin<br>B) |
| (WITZ)                                          | pk              | Qpk/Avg | (H/V)               | (dB)                  | pk                          | Qpk/Avg | pk | Qpk/Avg | pk | Qpk/Avg    |
| 904.00                                          |                 | 90.50   | Н                   | 2.32                  |                             | 92.82   |    | 94.0    |    | 1.2        |
| 904.00                                          |                 | 87.90   | V                   | 2.32                  |                             | 90.22   |    | 94.0    |    | 3.8        |
| 915.00                                          |                 | 91.50   | Н                   | 2.15                  |                             | 93.65   |    | 94.0    |    | 0.3        |
| 915.00                                          |                 | 85.70   | V                   | 2.15                  |                             | 87.85   |    | 94.0    |    | 6.1        |
| 927.80                                          |                 | 89.60   | Н                   | 2.41                  |                             | 92.01   |    | 94.0    |    | 2.0        |
| 927.80                                          |                 | 85.60   | V                   | 2.41                  |                             | 88.01   |    | 94.0    |    | 6.0        |

#### 2.5 Radiated Spurious Emissions

### 2.5.1 Specification Reference

FCC Sections: 15.249(d). ISED Canada RSS – 210 B.10

#### 2.5.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

#### 2.5.3 Date of Test

10/13/2021 to 10/15/2021

#### 2.5.4 Test Method

Section 15.33(a)(4) specifies, if the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to frequency specified in 15.33(b)(1) for unintentional radiators. The upper frequency range for the digital device is 10GHz which greater than the 10<sup>th</sup> harmonic of the fundamental frequency. The upper frequency range measured was 10GHz.

Measurements below 30MHz were performed in a semi-anechoic chamber with a 3meter separation distance between the EUT and measurement antenna. The EUT was rotated 360° and the loop antenna rotated through three orthogonal axes. The magnetic loop receiving antenna was positioned with its lowest point 1 meter above the ground.

The spectrum analyzer's resolution and video bandwidth were set to 200 Hz and 1 kHz respectively for frequencies below 150 kHz and 9 kHz and 30 kHz respectively for frequencies above 150 kHz and below 30 MHz For measurements in the frequency bands 9-90 kHz and 110-490 kHz, a peak detector was used. When average measurements are specified, the peak emissions were also compared to a limit corresponding to 20 dB above the maximum permitted average limit according to Part 15.35. All other emissions were measured using a peak detector.

Measurements above 30 MHz were performed in a semi-anechoic chamber with a 3meter separation distance between the EUT and measurement antenna. The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000 MHz, quasi-peak measurements were made using a resolution bandwidth (RBW) of 120 kHz and a video bandwidth (VBW) of 300 kHz. For frequencies above 1000 MHz, peak and average measurements were made using a resolution bandwidth (RBW) of 1 MHz and a video bandwidth (VBW) of 3 MHz.

For measurements of fundamental emissions where average measurements are specified, the spectrum analyzer's resolution bandwidth (RBW) was adjusted equal to or greater than the emission bandwidth (EBW).

#### Distance Correction for Measurements Below 30 MHz - Part 15.31

Radiated measurements were performed at a distance closer than 300 meters and 30m as required, according to Part 15. 209. Therefore a correction factor was applied to account for propagation loss at the specified distance. The propagation loss was determined by using the square of an inverse linear distance extrapolation factor (40dB/decade) according to 15.31. A sample calculation of the distance correction factor is shown below for limits expressed at a 300m measurement distance and a 30m measurement distance.

Distance correction factor (300m Specified Test Distance) = 40\*Log (Test Distance/300)

= 40\*Log (3/300)

 $= -80 \, dB$ 

Distance correction factor (30m Specified Test Distance) = 40\*Log (Test Distance/30)

= 40\*Log (3/30)

 $= -40 \, dB$ 

#### 2.5.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C
Relative Humidity 53.8 %
Atmospheric Pressure 972.2 mbar

## 2.5.6 Test Results

Test Summary: EUT was set to transmit mode.

**Test Results: Pass** 

See data below for detailed results.

Table 2.5.6-1: Radiated Spurious Emissions Tabulated Data - Mode 1

| Frequency<br>(MHz) |       | vel<br>luV) | Antenna<br>Polarity | Antenna<br>Height | Turntable<br>Position | Correction<br>Factors |       |         |      | mit<br>ıV/m) | Margin<br>(dB) |         |
|--------------------|-------|-------------|---------------------|-------------------|-----------------------|-----------------------|-------|---------|------|--------------|----------------|---------|
|                    | pk    | Qpk/Avg     | (H/V)               | (cm)              | (o)                   | (dB)                  | pk    | Qpk/Avg | pk   | Qpk/Avg      | pk             | Qpk/Avg |
|                    | LCH   |             |                     |                   |                       |                       |       |         |      |              |                |         |
| 2706.9             | 41.80 | 27.80       | Н                   | 150               | 0                     | 5.55                  | 47.35 | 33.35   | 74.0 | 54.0         | 26.6           | 20.6    |
| 2706.9             | 42.10 | 27.80       | V                   | 150               | 0                     | 5.55                  | 47.65 | 33.35   | 74.0 | 54.0         | 26.3           | 20.6    |
|                    |       |             |                     |                   |                       | MCH                   |       |         |      |              |                |         |
| 2745.6             | 42.30 | 27.80       | Н                   | 150               | 0                     | 5.65                  | 47.95 | 33.45   | 74.0 | 54.0         | 26.1           | 20.6    |
| 2745.6             | 41.90 | 27.80       | V                   | 150               | 0                     | 5.65                  | 47.55 | 33.45   | 74.0 | 54.0         | 26.5           | 20.6    |
|                    | НСН   |             |                     |                   |                       |                       |       |         |      |              |                |         |
| 2783.4             | 42.50 | 27.90       | Н                   | 150               | 0                     | 5.74                  | 48.24 | 33.64   | 74.0 | 54.0         | 25.8           | 20.4    |
| 2783.4             | 42.20 | 27.80       | V                   | 150               | 0                     | 5.74                  | 47.94 | 33.54   | 74.0 | 54.0         | 26.1           | 20.5    |

## **Sample Calculation:**

 $R_C = R_U + CF_T$ 

Where:

CF<sub>T</sub> = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

Ru = Uncorrected Reading
Rc = Corrected Level
AF = Antenna Factor
CA = Cable Attenuation
AG = Amplifier Gain

DC = Duty Cycle Correction Factor

**Example Calculation: Peak** 

Corrected Level: 42.50 + 5.74 = 48.24 dBuV/m Margin: 74dBuV/m - 48.24 dBuV/m = 25.8 dB

**Example Calculation: Average** 

Corrected Level: 27.90 + 5.74 = 33.64 dBuV/mMargin: 54 dBuV/m - 33.64 dBuV/m = 20.4 dB

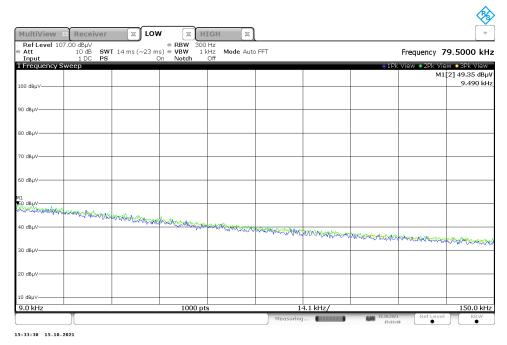



Figure A-1: Reference plot for Radiated Spurious Emissions – 9 kHz – 150 kHz

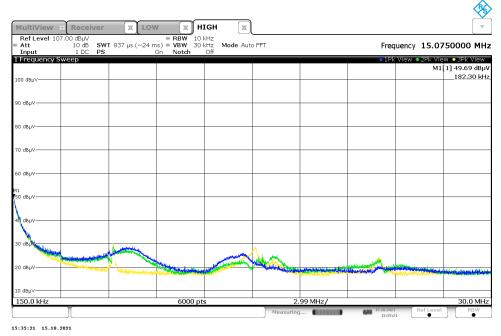



Figure A-2: Reference plot for Radiated Spurious Emissions – 150kHz - 30MHz Note: Emissions above the noise floor are ambient not associated with the EUT.

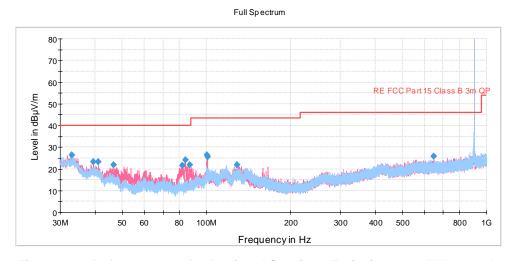



Figure A-3: Reference plot for Radiated Spurious Emissions – 30MHz - 1GHz

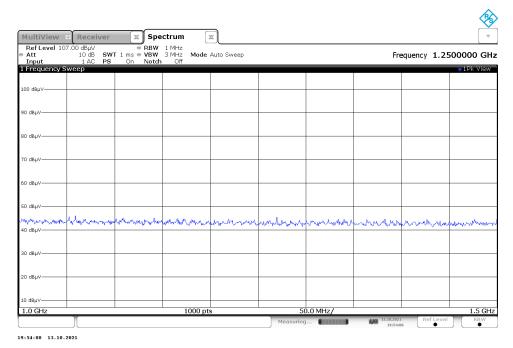



Figure A-4: Reference plot for Radiated Spurious Emissions – 1GHz – 1.5 GHz

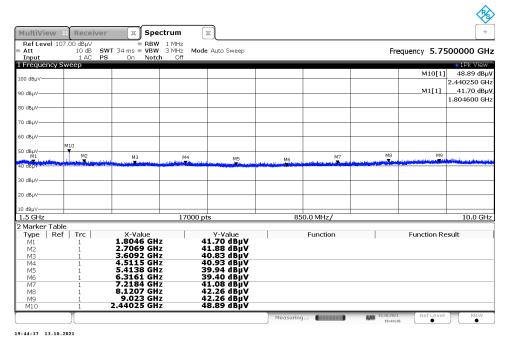



Figure A-5: Reference plot for Radiated Spurious Emissions – 1.5 GHz – 10 GHz

Note: Emissions in and around 2.4 GHz are ambient noise and not associated with the EUT.

## 2.6 Test Equipment Used

Table 2.6-1 - Equipment List

| Table 2.0-1 -Equipment List |                            |                |                                                                  |               |                          |                 |  |  |
|-----------------------------|----------------------------|----------------|------------------------------------------------------------------|---------------|--------------------------|-----------------|--|--|
| Asset ID                    | Manufacturer               | Model          | Equipment Type                                                   | Serial Number | Last Calibration<br>Date | Calibration Due |  |  |
| 628                         | EMCO                       | 6502           | Active Loop Antenna 10kHz-30MHz                                  | 9407-2877     | 6/8/2021                 | 6/8/2023        |  |  |
| 857                         | ETS Lindgren               | 3117           | Horn Antenna 1-18GHz                                             | 00153608      | 11/12/2019               | 11/12/2021      |  |  |
| DEMC3161                    | Ametek CTS Germany<br>GmbH | CBL 6112D      | Bilog Antenna; Attenuator                                        | 51323         | 3/19/2021                | 3/19/2022       |  |  |
| 213                         | TEC                        | PA 102         | Amplifier                                                        | 44927         | 7/30/2021                | 7/30/2022       |  |  |
| 22                          | Hewlett Packard            | 8449B          | High Frequency Pre-Amp                                           | 3008A00526    | 11/19/2020               | 11/19/2021      |  |  |
| 331                         | Microwave Circuits         | H1G513G1       | Microwave Bandpass Filter                                        | 31417         | 6/9/2021                 | 6/9/2022        |  |  |
| 827                         | (-)                        | 997 Rack Cable | TS8997 Rack Cable Set                                            | N/A           | 9/4/2020                 | 12/4/2021       |  |  |
| 267                         | Hewlett Packard            | N1911A         | Power Meter                                                      | MY45100129    | 7/27/2021                | 7/27/2023       |  |  |
| 882                         | Rohde & Schwarz            | ESW44          | Test Receiver                                                    | 111961        | 6/24/2021                | 6/24/2022       |  |  |
| 836                         | ETS Lindgren               | SAC Cable Set  | SAC Cable Set includes 620, 837, 838                             | N/A           | 5/11/2021                | 5/11/2022       |  |  |
| 3010                        | Rohde & Schwarz            | ENV216         | Two-Line V-Network                                               | 3010          | 6/23/2021                | 6/23/2022       |  |  |
| 872                         | Agilent                    | E7402A         | EMC Spectrum Analyzer                                            | US40240258    | 6/22/2021                | 6/22/2022       |  |  |
| 861                         | Com-Power Corporation      | LI-1100C       | Line Impedance Stabilization Network                             | 20180038      | 2/26/2021                | 2/26/2022       |  |  |
| 862                         | Com-Power Corporation      | LI01100C       | Line Impedance Stabilization Network                             | 20180039      | 2/26/2021                | 2/26/2022       |  |  |
| 703                         | Hewlett Packard            | 8594E          | Spectrum Analyzer                                                | 3523A02134    | NCR                      | NCR             |  |  |
| 856                         | Huber & Suhner             | Multiflex 104  | Blue Cable                                                       | 326050        | NCR                      | NCR             |  |  |
| 691                         | Com-Power Corp.            | 691            | E-Field Fine Tip (100kHz to 5GHz), H-<br>Field Loop (9kHz to 5GH | 151514        | NCR                      | NCR             |  |  |
| 494                         | Omega                      | iBTHX-W        | Environmental Sensor                                             | 9460211       | 11/3/2020                | 11/3/2021       |  |  |
| 813                         | PMM                        | 9010           | EMI Receiver; RF Input 50ohm; 10Hz-<br>50MHz; 10Hz-30MHz         | 697WW30606    | 6/8/2021                 | 6/8/2022        |  |  |
| 168                         | Hewlett Packard            | 11947A         | Transient Pulse Limiter                                          | 44829         | 3/3/2021                 | 3/3/2022        |  |  |
|                             |                            |                |                                                                  |               |                          |                 |  |  |

N/A – Not Applicable NCR – No Calibration Required

# 3 Diagram of Test Set-ups

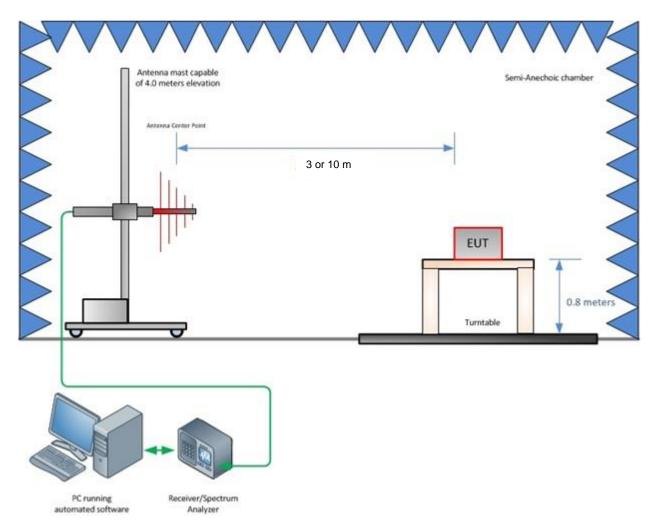



Figure 3-1 – Radiated Emissions Test Setup up to 1 GHz

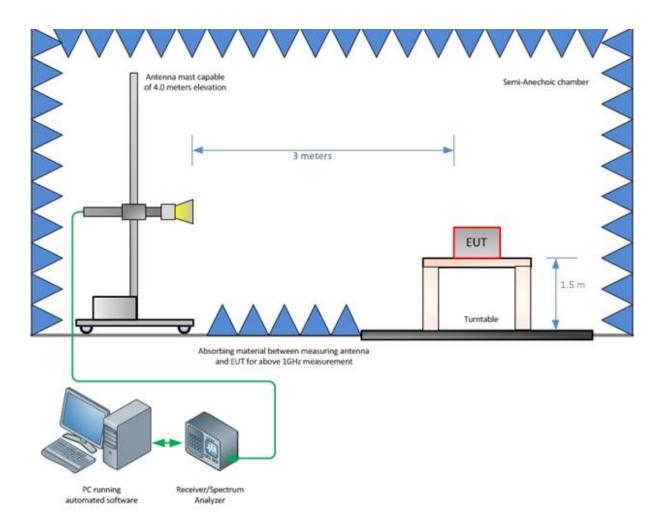



Figure 3-2 – Radiated Emissions Test Setup above 1 GHz

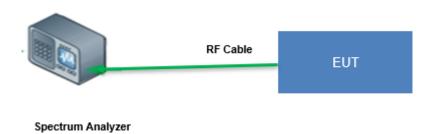



Figure 3-3 – Conducted Test Setup: Antenna Port measurement

## 4 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

#### STATEMENT OF MEASUREMENT UNCERTAINTY

The expanded laboratory measurement uncertainty figures ( $U_{Lab}$ ) provided below correspond to an expansion factor (coverage factor) k = 1.96 which provide confidence levels of 95%.

**Table 4-1: Estimation of Measurement Uncertainty** 

| Parameter                         | U <sub>lab</sub>           |
|-----------------------------------|----------------------------|
| Occupied Channel Bandwidth        | ± 0.009 %                  |
| RF Conducted Output Power         | ± 0.349 dB                 |
| Power Spectral Density            | ± 0.372 dB                 |
| Antenna Port Conducted Emissions  | ± 1.264 dB                 |
| Radiated Emissions ≤ 1 GHz        | ± 5.814 dB                 |
| Radiated Emissions > 1 GHz        | ± 4.318 dB                 |
| Temperature                       | ± 0.860 °C                 |
| Radio Frequency                   | ± 2.832 x 10 <sup>-8</sup> |
| AC Power Line Conducted Emissions | ± 3.360 dB                 |

## **TEST EQUIPMENT**

All measurement instrumentation is traceable to the National Institute of Standards and Technology and is calibrated to meet test method standard requirements and/or manufacturer's specifications