

Certification Exhibit

FCC ID: R7PNG0R1S2 IC: 5294A-NG0R1S2

FCC Rule Part: 15.247
IC Radio Standards Specification: RSS-210

ACS Project Number: 12-0182

Manufacturer: Landis+Gyr Technology, Inc. Model: Gridstream S4 Modular SCADA/DA

RF Exposure

Model: Gridstream S4 Modular SCADA/DA FCC ID: R7PNG0R1S2 IC: 5294A-NG0R1S2

General Information:

Applicant: Landis+Gyr Technology, Inc.

Device Category: Mobile

Environment: General Population/Uncontrolled Exposure

<u>Technical Information – External Antenna:</u>

Antenna Type: Whip Antenna Gain: 5dBi

Maximum Transmitter Conducted Power: 29.06 dBm, 805.378 mW

Maximum System EIRP: 34.06 dBm, 2546.83 mW Exposure Conditions: Greater than 20 centimeters

<u>Technical Information – Internal Antenna:</u>

Antenna Type: F-Antenna Antenna Gain: 0dB

Maximum Transmitter Conducted Power: 29.06 dBm, 805.378 mW

Maximum System EIRP: 29.06 dBm, 805.378 mW Exposure Conditions: Greater than 20 centimeters

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

MPE Calculator for Mobile Equipment Limits for General Population/Uncontrolled Exposure*										
Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)			
915	29.06	0.61	805.38	5	3.162	20	0.507			

MPE Calculator for Mobile Equipment										
Limits for General Population/Uncontrolled Exposure*										
Transmit	Radio	Power	Radio	Antenna	Antenna	Dietanas	Power			
Frequency	Power	Density Limit	Power	Gain	Gain	Distance	Density			
(MHz)	(dBm)	(mW/Cm2)	(mW)	(dBi)	(mW eq.)	(cm)	(mW/cm^2)			
915	29.06	0.61	805.38	0	1.000	20	0.160			

Installation Guidelines

The installation manual should contain text similar to the following advising how to install the equipment to maintain compliance with the FCC RF exposure requirements:

RF Exposure

In accordance with FCC requirements of human exposure to radio frequency fields, the radiating element shall be installed such that a minimum separation distance of 20 centimeters will be maintained.

Conclusion

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.