

Certification Exhibit

FCC ID: R7PER6R2S2

FCC Rule Part: 47 CFR Part 2.1091

Project Number: 72169401

Manufacturer: Landis+Gyr Technology, Inc. Model: M125

RF Exposure

General Information:

Applicant:	Landis & Gyr Technology, Inc.
Device Category:	Mobile
Environment:	General Population/Uncontrolled Exposure

Technical Information (900MHz radio):

Antenna Type:Metal planar inverted "F" TypeAntenna Gains:0dBiMaximum Transmitter Conducted Power: 28.14dBm, 651.63mWMaximum System EIRP: 28.14dBm, 651.63mWExposure Conditions: 20 centimeters

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

- G = power gain of the antenna in the direction of interest relative to an isotropic radiator
- R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/cm ²)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm ²)
902.4	28.14	0.60	651.63	0	1.000	20	0.12964

Table 1: MPE Calculation (900MHz Radio)