

Certification Exhibit

FCC ID: R7PER6R1S4

FCC Rule Part: 47 CFR Part 2.1091

ACS Project Number: 15-0421

Manufacturer: Landis+Gyr Technology, Inc. Model: 26-7500

RF Exposure

General Information:

Applicant:	Landis+Gyr Technology, Inc.
Device Category:	Mobile
Environment:	General Population/Uncontrolled Exposure

The 26-7500 is collocated and transmits simultaneously with the Sierra Wireless SL8080 (FCC ID: N7NSL8080) radio.

Technical Information:

	2.4GHz Zigbee Radio	Sierra Wireless Cellular Radio
Frequency Band(s) (MHz)	2405-2475	824.2 – 848.8 MHz 826.4 – 846.6 MHz 1850.2 – 1909.8 MHz 1852.4 – 1907.6 MHz
Antenna Type(s)	IFA	824 – 849MHz: Custom 1850 – 1910 MHz: Custom
Antenna Gain (dBi)	-3.07	824 – 849MHz: -3.16dBi 1850 – 1910 MHz: -2.41dBi
Conducted Power (dBm)	21.59	824.2 – 848.8MHz: 32.41 dBm 1850.2 – 1909.8 MHz: 29.19 dBm
Conducted Power (mW)	144.21	824.2 – 848.8MHz: 1741.81mW 1850.2 – 1909.8 MHz: 829.85mW
Maximum Peak EIRP (mW)	71.12	824.2 – 848.8MHz: 841.40mW 1850.2 – 1909.8 MHz: 476.43mW
Maximum Peak ERP (mW)	43.35	824.2 – 848.8MHz: 512.86mW 1850.2 – 1909.8 MHz: 290.40mW

 Table 1: Technical Information

* Power for Sierra Wireless SL8080 radio is power as listed on the FCC grant and measured in the original certification filing. For the purpose of this application, the highest power for each frequency band was utilized.

MPE Calculation:

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 2. Mil E Galdalation (moldaling Goliocated Devices)								
Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)	Radio
824	32.41	0.55	1741.81	-3.16	0.483	20	0.167	А
1950	29.19	1.00	829.85	-2.41	0.574	20	0.095	В
2405	21.59	1.00	144.21	-3.07	0.493	20	0.014	С

Table 2: MPE Calculation (Including Collocated Devices)

Summation of MPE ratios – Simultaneous Transmissions

This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is \leq 1.0.

	Scenario 1	Scenario 2			
Radio A	х				
Radio B		х			
Radio C	x	x			
Radio A MPE Ratio	0.305				
Radio B MPE Ratio		0.095			
Radio C MPE Ratio	0.014	0.014			
MPE Ratio Summation:	0.319	0.109			

Table 3: Summation of MPE Ratios