

Certification Exhibit

FCC ID: R7PEG1R1S6

FCC Rule Part: 15.247

ACS Project Number(s): 15-0242

Manufacturer: Landis+Gyr Technology, Inc. Model: G5 Integrated Focus AXe

RF Exposure

General Information:

Applicant:	Landis+Gyr Technology, Inc.			
Device Category:	Mobile			
Environment:	General Population/Uncontrolled Exposure			
Required Separation Distance: 20 cm				

The 900 MHz frequency hopping spread spectrum radio is collocated and transmits simultaneously with the separate on-board Landis+Gyr direct sequence spread spectrum 2.4 GHz Zigbee radio.

Technical Information:

	Landis+Gyr LAN radio 900 MHz	Landis+Gyr Zigbee radio 2.4 GHz		
Antenna Type	PIFA	PIFA		
Antenna Gain	6 dBi	6 dBi		
Conducted Power	677.64 mW	68.23 mW		
Maximum EIRP	2697.74 mW	271.64 mW		

Table 1: Technical Information

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)	Radio
902.2	28.31	0.60	677.64	6	3.981	20	0.537	А
2405	18.34	1.00	68.23	6	3.981	20	0.054	В

Table 2: MPE Calculation (Including Collocated Devices)

<u>Summation of MPE Ratios – Simultaneous Transmissions</u> This device contains multiple transmitters which can operate simultaneously; therefore MPE compliance is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is ≤ 1.0.

	Scenario 1		
Radio A (900 MHz LAN)	х		
Radio B (2.4 GHz Zigbee)	х		
Radio A MPE Ratio	0.90		
Radio B MPE Ratio	0.05		
MPE Ratio Summation:	0.95		

Table 3: Summation of MPE Ratios