

Certification Exhibit

FCC ID: R7PEG1R1S5 IC: 5294A-EG1R1S5

FCC Rule Part: 15.247 IC Radio Standards Specification: RSS-210

ACS Project Number: 14-0179

Manufacturer: Landis+Gyr Technology, Inc. Model: G5 26-1905

RF Exposure

General Information:

Applicant:	Landis+Gyr Technology, Inc.
Environment:	General Population/Uncontrolled Exposure
Exposure Conditions:	Mobile

Technical Information – 900MHz Gridstream Radio:

Antenna Type: Inverted F Antenna Gain: 3dBi Maximum Transmitter Conducted Power: 29.63 dBm, 918.33 mW Maximum System EIRP: 32.63 dBm, 1832.32 mW

Technical Information – Zigbee Radio:

Antenna Type: Inverted F Antenna Gain: 5dBi Maximum Transmitter Conducted Power: 20.71 dBm, 117.76 mW Maximum System EIRP: 25.71 dBm, 372.39 mW

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

MPE Calculator for Mobile Equipment Limits for General Population/Uncontrolled Exposure								
Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)	
902.2	29.63	0.60	918.33	3	1.995	20	0.365	
2405	20.71	1.00	117.76	5	3.162	20	0.074	

Summation of Power Densities – Simultaneous Transmissions

This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is \leq 1.0.

The summation of MPE ratios is as follows:

900 LAN MPE Ratio + Zigbee MPE Ratio (0.365 / 0.60) + (0.074 / 1.0) = (0.608) + (0.074) = 0.682 0.682 < 1

RF Exposure

In accordance with FCC requirements of human exposure to radio frequency fields, the radiating element shall be installed such that a minimum separation distance of 20 centimeters will be maintained.

Conclusion

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.