

Certification Test Report

FCC ID: R7PEG1R1S1

FCC Rule Part: 15.247

ACS Report Number: 09-0075-15C-DTS

Manufacturer: Cellnet Technology, Inc. Model: Gridstream Focus AX Integrated

Test Begin Date: June 19, 2009 Test End Date: July 6, 2009

Report Issue Date: October 19, 2009

FOR THE SCOPE OF ACCREDITATION UNDER LAB Code 200612-0

This report is not be used to claim certification, approval, or endorsement by NVLAP, NIST or any government agency.

Prepared by:

Ken Rivers

Wireless Certifications Technician

ACS, Inc.

Reviewed by:

Kirby Munroe

Director, Wireless Certifications

ACS, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 26 pages

Table of Contents

1.0 General	3
1.1 Purpose	3
1.2 Product Description	3
1.2.1 General	3
1.2.2 Intended Use	3
1.3 Test Methodology and Considerations	3
2.0 Test Facilities	4
2.1 Location	4
2.2 Laboratory Accreditations/Recognitions/Certifications	4
2.3 Radiated Emissions Test Site Description	5
2.3.1 Semi-Anechoic Chamber Test Site	5
2.3.2 Open Area Tests Site (OATS)	6
2.4 Conducted Emissions Test Site Description	7
3.0 Applicable Standards and References	7
4.0 List of Test Equipment	8
5.0 Support Equipment	9
6.0 EUT Setup Block Diagram	9
7.0 Summary of Tests	10
7.1 Antenna Requirement	10
7.2 Power Line Conducted Emissions	10
7.2.1 Test Methodology	10
7.2.2 Test Results	10
7.3 Radiated Emissions (Unintentional Radiation)	13
7.3.1 Test Methodology	13
7.3.2 Test Results	13
7.4 6dB Bandwidth	14
7.4.1 Test Methodology	14
7.4.1 Test Results	14
7.5 Peak Output Power	16
7.5.1 Test Methodology	16
7.5.2 Test Results	16
7.6 Band-Edge Compliance and Spurious Emissions	18
7.6.1 Band-Edge Compliance	18
7.6.1.1 Test Methodology	18
7.6.1.2 Test Results	18
7.6.2 Conducted Spurious Emissions	19
7.6.2.1 Test Methodology 7.6.2.2 Test Results	19 19
7.6.2.2 Test Results 7.6.3 Radiated Spurious Emissions	23
·	23
7.6.3.1 Test Methodology	23
7.6.3.2 Duty Cycle Correction 7.6.3.3 Test Results	23 23
7.6.3.4 Sample Calculation	24
7.6.5.4 Sample Calculation 7.7 Power Spectral Density	24 24
7.7 Fower Spectral Density 7.7.1 Test Methodology	24 24
7.7.2 Test Results	24 24
8.0 CONCLUSION	2 4 26

Additional Exhibits Included In Filing

Internal Photographs
External Photographs
Test Setup Photographs
Product Labeling
RF Exposure – MPE Calculations

Installation/Users Guide Theory of Operation System Block Diagram Schematics

1.0 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations.

1.2 Product Description

The Gridstream Focus AX Integrated is an integrated solution with FOCUS AX advanced metering electronics the Gridstream AMR communication electronics combined together on a single PCB. It uses field-proven Digital Multiplication Measurement Technique to ensure a highly accurate load performance and dependability during the entire life of the product. It also offers a Service Disconnect option and ZigBee connectivity for HAN applications.

1.2.1 General

Manufacturer Information: Cellnet Technology, Inc. 30000 Mill Creek Ave., Suite 100 Alpharetta, GA 30022

Test Sample Serial Number(s): 1191

Test Sample Condition:

The test samples were provided in good working order with no visible defects.

Detailed photographs of the EUT are filed separately with this filing.

1.2.2 Intended Use

The Gridstream Focus AX Integrated is an integrated and cost effective solution with metrology and the communications together on a single PCB. This product supports all the metrology features that are presently offered by the modular Focus AX design combining it with the Gridstream RF mesh technology.

1.3 Test Methodology and Considerations

This device is considered a composite device by definition. The 900 MHz LAN radio and the 2.4 GHz Zigbee radios operate under CFR 47 Part 15.247 and IC RSS-210. This report addresses the 2400 MHz Zigbee radio only.

2.0 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions 5015 B.U. Bowman Drive Buford, GA 30518 Phone: (770) 831-8048

Fax: (770) 831-8598

2.2 Laboratory Accreditations/Recognitions/Certifications

The Semi-Anechoic Chamber Test Site, Open Area Test Site (OATS) and Conducted Emissions Site have been fully described, submitted to, and accepted by the FCC, Industry Canada and the Japanese Voluntary Control Council for Interference by information technology equipment. In addition, ACS is compliant to ISO 17025 as certified by the National Institute of Standards and Technology under their National Voluntary Laboratory Accreditation Program. The following certification numbers have been issued in recognition of these accreditations and certifications:

FCC Registration Number: 894540 Industry Canada Lab Code: IC 4175A-1

VCCI Member Number: 1831

VCCI OATS Registration Number R-1526

VCCI Conducted Emissions Site Registration Number: C-1608

NVLAP Lab Code: 200612-0

2.3 Radiated Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The Semi-Anechoic Chamber Test Site consists of a 20' x 30' x 18' shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is 101 x 101 x 19mm thick and weighs approximately 550 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 150cm in diameter and is located 160cm from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is all steel, flush mounted table installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a 3' x 6' x 4' deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4" PVC chases from the turntable to the pit that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit.

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3-1 below:

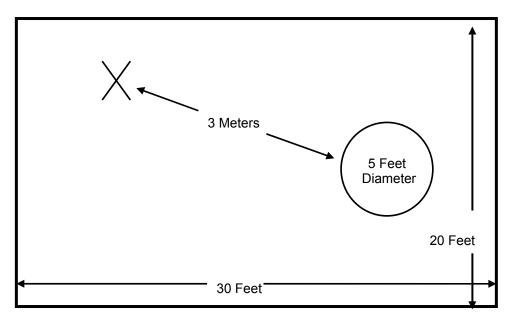


Figure 2.3-1: Semi-Anechoic Chamber Test Site

2.3.2 Open Area Tests Site (OATS)

The open area test site consists of a 40' x 66' concrete pad covered with a perforated electroplated galvanized sheet metal. The perforations in the sheet metal are 1/8" holes that are staggered every 3/16". The individual sheets are placed to overlap each other by 1/4" and are riveted together to provide a continuous seam. Rivets are spaced every 3" in a 3 x 20 meter perimeter around the antenna mast and EUT area. Rivets in the remaining area are spaced as necessary to properly secure the ground plane and maintain the electrical continuity.

The entire ground plane extends 12' beyond the turntable edge and 16' beyond the antenna mast when set to a 10 meter measurement distance. The ground plane is grounded via 4 - 8' copper ground rods, each installed at a corner of the ground plane and bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is an all aluminum 10' flush mounted table installed in an all aluminum frame. The table is remotely operated from inside the control room located 40' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Adjacent to the turntable is a 7' x 7' square and 4' deep concrete pit used for support equipment if necessary. The pit is equipped with 5 - 4" PVC chases from the pit to the control room that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit. The pit is covered with 2 sheets of 1/4" diamond style re-enforced steel sheets. The sheets are painted to match the perforated steel ground plane; however the underside edges have been masked off to maintain the electrical continuity of the ground plane. All reflecting objects are located outside of the ellipse defined in ANSI C63.4.

A diagram of the Open Area Test Site is shown in Figure 2.3-2 below:

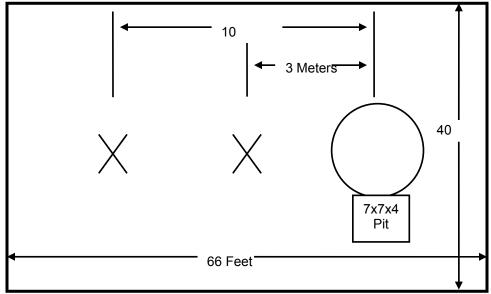


Figure 2.3-2: Open Area Test Site

2.4 Conducted Emissions Test Site Description

The AC mains conducted EMI site is located in the main EMC lab. It consists of an 8' x 8' solid aluminum horizontal group reference plane (GRP) bonded every 3" to an 8' X 8' vertical ground plane.

The site is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.4.

A diagram of the room is shown below in figure 4.1.3-1:

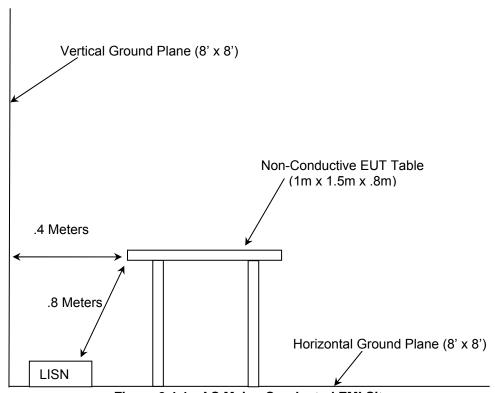


Figure 2.4-1: AC Mains Conducted EMI Site

3.0 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ANSI C63.4-2003: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9KHz to 40GHz
- US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2009.
- US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2009.
- FCC KDB Publication No. 558074 Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247), March 2005

FCC ID: R7PEG1R1S1

4.0 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

		Equipment Calik	oration Information		
ACS#	Mfg.	Eq. type	Model	S/N	Cal. Due
		Spectrum			
1	Rohde & Schwarz	Analyzers	ESMI - Display	833771/007	09-19-2009
		Spectrum			
2	Rohde & Schwarz	Analyzers	ESMI-Receiver	839587/003	09-19-2009
22	Agilent	Amplifiers	8449B	3008A00526	10-22-2009
25	Chase	Antennas	CBL6111	1043	08-22-2009
	Spectrum				
30	Technologies	Antennas	DRH-0118	970102	05-08-2010
40	Electro-Metrics	Antennas	3104	3211	01-22-2010
152	EMCO	LISN	Feb-25	9111-1905	03-25-2010
			Chamber EMI		
167	ACS	Cable Set	Cable Set	167	02-06-2010
400			440474		02-10-2010
168	Hewlett Packard	Attenuators	11947A	44829	(See Note2)
193	ACS	Cable Set	OATS cable Set	193	01-05-2010
211	Eagle	Filters	C7RFM3NFNM	HLC-700	01-05-2010
213	TEC	Amplifiers	PA 102	44927	12-22-2009
277	Emco	Antennas	93146	9904-5199	09-09-2009
282	Miaravia Ciravita	Filters	H2G020G4	74541	02-04-2010
202	Microwave Circuits	Spectrum	H2G020G4	74041	(See Note1)
283	Rohde & Schwarz	Analyzers	FSP40	1000033	09-19-2009
203	Nonue & Scriwarz	Allalyzers	SMRE-200W-	1000033	
291	Florida RF Cables	Cables	12.0-SMRE	None	11-24-2009 (See Note1)
201	Tionda Ni Odbics	Odbics	SMR-290AW-	THORIC	11-24-2009
292	Florida RF Cables	Cables	480.0-SMR	None	(See Note1)
321	Hewlett Packard	Amplifiers	HPC 8447D	1937A02809	10-08-2009
324	ACS	Cables	Belden	8214	07-28-2009
- 021	7.00	Cubico	Boldon	02.1	07-28-2009
331	Microwave Circuits	Filters	H1G513G1	31417	(See Note1)
	A4: 0: ''		114054604	000700	07-17-2010
337	Microwave Circuits	Filters	H1G513G1	282706	(See Note1)
338	Hewlett Packard	Amplifiers	8449B	3008A01111	10-22-2009
339	Aeroflex/Weinschel	Attenuators	AS-18	7142	07-08-2009
339	ACIONEX/WENISCHE	Allenualuis	SMS-200AW-	1144	(See Note2)
422	Florida RF	Cables	72.0-SMR	805	02-05-2010
444	T IUTIUA INF	Capies	12.0-SIVIN	000	(See Note1)

Note1: Items characterized on an annual cycle. The date shown indicates the next characterization due date

Note2: Items verified on an annual cycle. The date shown indicates the next verification due date.

5.0 SUPPORT EQUIPMENT

Table 5-1: Support Equipment

Item	Equipment Type	Manufacturer	Model Number	Serial Number
1	Meter Base Enclosure			NA
2	EUT	Cellnet, Inc.	Gridstream Focus AX Integrated	1191
3	Transformer	Sagamo Weston	Type T-6A	325827 002

6.0 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

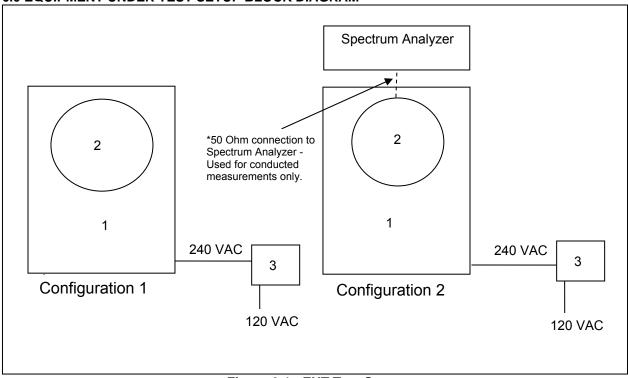


Figure 6-1: EUT Test Setup

7.0 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC: Section 15.203

The antenna is an integrated, printed Inverted F which can not be altered without destroying the device. This device is also professionally installed therefore meeting the requirements of CFR 47 Part 15.203.

7.2 Power Line Conducted Emissions – FCC: Section 15.207

7.2.1 Test Methodology

ANSI C63.4 sections 6 and 7 were the guiding documents for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Applicable Limit - Corrected Reading

7.2.2 Test Results

Results of the test are shown below in and Tables 7.2-1 to 7.2-8.

Table 7.2-1: Conducted EMI Results Line 1, Quasi-Peak, 240 VAC

Table 1.2-1.	Conducte	C LIVII INCOU	iits Eiiic i	, œuası-ı ca	K, ZTO V	٦0
Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dΒμV	dB	dΒμV	dB		
0.270000	54.70	10.0	61	6.4	L1	FLO
0.300000	54.40	10.0	60	5.8	L1	FLO
0.756000	48.70	10.1	56	7.3	L1	FLO
0.900000	50.80	10.0	56	5.3	L1	FLO
1.524000	45.40	10.0	56	10.6	L1	FLO
1.722000	47.30	10.0	56	8.7	L1	FLO
1.956000	46.30	10.0	56	9.7	L1	FLO
2.988000	36.00	9.9	56	20.0	L1	FLO
3.204000	38.30	9.9	56	17.7	L1	FLO
3.378000	39.10	9.9	56	16.9	L1	FLO

Table 7.2-2: Conducted EMI Results Line 1, Average, 240 VAC

				, ,		
Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dBµV	dB	dΒμV	dB		
0.294000	36.10	10.0	50	14.3	L1	FLO
0.348000	35.50	10.0	49	13.5	L1	FLO
0.744000	25.10	10.1	46	20.9	L1	FLO
0.978000	32.30	10.0	46	13.7	L1	FLO
1.500000	23.50	10.0	46	22.5	L1	FLO
1.698000	30.90	10.0	46	15.1	L1	FLO
1.956000	28.30	10.0	46	17.7	L1	FLO
2.928000	21.20	9.9	46	24.8	L1	FLO
3.144000	18.30	9.9	46	27.7	L1	FLO
3.426000	22.10	9.9	46	23.9	L1	FLO

Table 7.2-3: Conducted EMI Results Line 2, Quasi-Peak, 240 VAC

Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dBµV	dB	dBµV	dB		
0.294000	54.30	10.0	60	6.1	L2	FLO
0.306000	54.10	10.0	60	5.9	L2	FLO
0.726000	47.60	10.1	56	8.4	L2	FLO
0.894000	51.90	10.0	56	4.1	L2	FLO
0.906000	50.70	10.0	56	5.3	L2	FLO
1.098000	48.90	10.0	56	7.1	L2	FLO
1.512000	45.10	10.0	56	10.9	L2	FLO
1.704000	47.30	10.0	56	8.7	L2	FLO
1.734000	47.60	10.0	56	8.4	L2	FLO
1.932000	45.60	10.0	56	10.4	L2	FLO

Table 7.2-4: Conducted EMI Results Line 2, Average, 240 VAC

Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dΒμV	dB	dΒμV	ďB		
0.294000	36.20	10.0	50	14.2	L2	FLO
0.384000	35.10	10.1	48	13.1	L2	FLO
0.756000	25.30	10.1	46	20.7	L2	FLO
0.870000	31.00	10.0	46	15.0	L2	FLO
0.924000	32.10	10.0	46	13.9	L2	FLO
1.134000	33.80	10.0	46	12.2	L2	FLO
1.506000	23.20	10.0	46	22.8	L2	FLO
1.716000	30.00	10.0	46	16.0	L2	FLO
1.758000	30.20	10.0	46	15.8	L2	FLO
1.938000	28.90	10.0	46	17.1	L2	FLO

Table 7.2-5: Conducted EMI Results Line 1, Quasi-Peak, 120 VAC

				,		
Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dΒμV	dВ	dΒμV	dB		
0.192000	56.20	9.9	64	7.8	L1	GND
0.462000	52.50	10.0	57	4.2	L1	GND
0.486000	52.10	10.0	56	4.2	L1	GND
0.768000	48.20	10.1	56	7.8	L1	GND
1.176000	47.10	10.0	56	8.9	L1	GND
1.236000	47.00	10.0	56	9.0	L1	GND
1.590000	46.90	10.0	56	9.1	L1	GND
1.902000	43.50	10.0	56	12.5	L1	GND
2.004000	43.60	10.0	56	12.4	L1	GND
2.292000	42.10	10.0	56	13.9	L1	GND

Table 7.2-6: Conducted EMI Results Line 1, Average, 120 VAC

Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dΒμV	đВ	dΒμV	dB		
0.240000	34.80	9.9	52	17.3	L1	GND
0.462000	33.30	10.0	47	13.4	L1	GND
0.492000	33.20	10.0	46	12.9	L1	GND
0.822000	30.90	10.0	46	15.1	L1	GND
1.164000	28.30	10.0	46	17.7	L1	GND
1.242000	29.70	10.0	46	16.3	L1	GND
1.584000	28.60	10.0	46	17.4	L1	GND
1.938000	27.10	10.0	46	18.9	L1	GND
2.028000	26.40	10.0	46	19.6	L1	GND
2.292000	25.50	10.0	46	20.5	L1	GND

Table 7.2-7: Conducted EMI Results Line 2, Quasi-Peak, 120 VAC

Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dΒμV	đВ	dΒμV	đВ		
0.192000	56.60	9.9	64	7.4	L2	GND
0.462000	52.90	10.0	57	3.7	L2	GND
0.480000	52.70	10.0	56	3.6	L2	GND
0.504000	52.10	10.0	56	3.9	L2	GND
0.828000	50.00	10.0	56	6.0	L2	GND
0.900000	48.60	10.0	56	7.4	L2	GND
1.188000	48.00	10.0	56	8.0	L2	GND
1.602000	46.50	10.0	56	9.5	L2	GND
2.028000	43.90	10.0	56	12.1	L2	GND
2.304000	44.80	10.0	56	11.2	L2	GND

Table 7.2-8: Conducted EMI Results Line 2, Average, 120 VAC

Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dΒμV	đВ	dΒμV	dB		
0.246000	34.80	9.9	52	17.1	L2	GND
0.456000	34.10	10.0	47	12.7	L2	GND
0.480000	34.40	10.0	46	12.0	L2	GND
0.510000	34.10	10.0	46	11.9	L2	GND
0.828000	32.00	10.0	46	14.0	L2	GND
0.912000	31.60	10.0	46	14.4	L2	GND
1.236000	30.90	10.0	46	15.1	L2	GND
1.608000	29.80	10.0	46	16.2	L2	GND
2.082000	25.50	10.0	46	20.5	L2	GND
2.280000	25.60	10.0	46	20.4	L2	GND

FCC ID: R7PEG1R1S1

7.3 Radiated Emissions – FCC: Section 15.109(Unintentional Radiation)

7.3.1 Test Methodology

Radiated emissions tests were performed over the frequency range of 30MHz to 12.5GHz. Measurements of the radiated field strength were made at a distance of 3m from the boundary of the equipment under test (EUT) and the receiving antenna. The antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. Radiated measurements above 30MHz and below 1GHz were made with the Spectrum Analyzer's resolution bandwidth set to 120 KHz using a Quasi-peak detector. Above 1GHz, peak and average measurements are taken with the RBW and VBW were set to 1MHz and 3MHz respectively.

7.3.2 Test Results

Results of the test are given in Table 7.3-1 below:

Table 7.3-1: Radiated Emissions Tabulated Data

Frequency (MHz)		evel BuV)	Antenna Polarity	Correction Factors		ed Level uV/m)		imit uV/m)		argin dB)
(101112)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
34.177		42.47	Н	-10.92		31.55		40.0		8.45
63.85		55.93	V	-20.23		35.70		40.0		4.30
56.044		51.03	V	-19.21		31.82		40.0		8.18
80.822		46.71	Н	-18.59		28.12		40.0		11.88
289.644		45.32	V	-11.31		34.01		46.0		11.99
338.661		45.65	V	-9.65		36.00		46.0		10.00

^{*} Note: All emissions above 338.661 MHz were attenuated below the permissible limit.

FCC ID: R7PEG1R1S1

7.4 6dB Bandwidth - FCC: Section 15.247(a)(2)

7.4.1 Test Methodology

The 6dB bandwidth was measured in accordance with the FCC KDB Publication No. 558074 "Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)". The RBW of the spectrum analyzer was set to 100 kHz and VBW 300 kHz. Span was set large enough to capture the entire emissions and >> RBW.

The 99% occupied bandwidth was measured with the spectrum analyzer span set to 2 to 3 times the estimated bandwidth of the emission. The RBW was to ≥ 1% of the estimated emission bandwidth. The trace was set to max hold with a peak detector active.

7.4.2 Test Results

Results are shown below in table 7.4.2-1 and figure 7.4.2-1 to 7.4.2-3:

Table 7.4.2-1: 6dB Bandwidth

Frequency [MHz]	6dB Bandwidth [MHz]
2405	1.68
2445	1.58
2475	1.58

Figure 7.4.2-1: 6dB Bandwidth Plot – Low Channel

Figure 7.4.2-2: 6dB Bandwidth Plot – Mid Channel

Figure 7.4.2-3: 6dB Bandwidth Plot – High Channel

7.5 Peak Output Power Requirement - FCC Section 15.247(b)(3)

7.5.1 Test Methodology

The Peak Output Power was measured in accordance with the FCC KDB Publication No. 558074 "Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)" Power Option 1. The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer.

Data was collected with the EUT operating at maximum power.

7.5.2 Test Results

Results are shown below in Table 7.5.2-1 and Figures 7.5.2-1 to 7.5.2-3.

Table 7.5.2-1: Peak Output Power

Frequency (MHz)	Output Power (dBm)
2405	20.18
2445	20.27
2475	19.72

Figure 7.5.2-1: Output power – Low Channel

Figure 7.5.2-2: Output power – Mid Channel

Figure 7.5.2-3: Output power – High Channel

7.6 Band-Edge Compliance and Spurious Emissions - FCC Section 15.247(d)

7.6.1 Band-Edge Compliance of RF Emissions

7.6.1.1 Test Methodology

The EUT was investigated at the low and high channels of operation to determine band-edge compliance. All antenna types were evaluated. Because the upper band-edge coincides with a restricted band, band-edge compliance for the upper band-edge was determined using the radiated mark-delta method as outlined in FCC DA 00-705. The radiated field strength of the fundamental emission was first determined and then the mark-delta method was used to determine the field strength of the band-edge emissions.

The lower band-edge compliance was determined using the marker-delta method in which the radio frequency power that is produced by the EUT is at least 20 dB below that within the band that contains the highest level of desired power.

7.6.1.2 Test Results

Band-edge compliance is displayed in Table 7.6.1.2-1 and Figures 7.6.1.2-1 – 7.6.1.2-2.

Table 7.6.1.2-1: Upper Band-edge Marker Delta Method

Frequency (MHz)	Le (dB	vel uV)	Antenna Polarity	Correction Factors	Fundamental Field Strength (dBuV/m)		Strength		Strength		Strength		Strength		Strength		Strength		Delta- Marker	Stre	lge Field ngth IV/m)	Margin (dBu 74	
	pk	avg	(H/V)	(dB)	pk	avg	(dB)	pk	avg	pk	avg												
Fundamental Frequency																							
2475	123.15	117.71	Н	-4.28	118.87	105.90	52.51	66.36	53.39	7.64	0.61												
2475	123.81	118.04	٧	-4.09	119.72	106.41	52.96	66.76	53.45	7.24	0.55												

Figure 7.6.1.2-1: Upper Band-edge (Radiated)

Figure 7.6.1.2-2: Lower Band-edge (Conducted)

7.6.2 RF Conducted Spurious Emissions

7.6.2.1 Test Methodology

The RF Conducted Spurious Emissions were measured in accordance with the FCC KDB Publication No. 558074 "Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)". The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer. The EUT was investigated for conducted spurious emissions from 30MHz to 25GHz, 10 times the highest fundamental frequency. For each measurement, the spectrum analyzer's RBW was set to 100 kHz and the VBW was set to 300 kHz. The peak detector and Max Hold function of the analyzer were utilized.

7.6.2.2 Test Results

In a 100 kHz bandwidth, the radio frequency power that was produced by the EUT emissions is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power. RF Conducted Emissions are displayed in Figures 7.6.2.2-1 through 7.6.2.2-9.

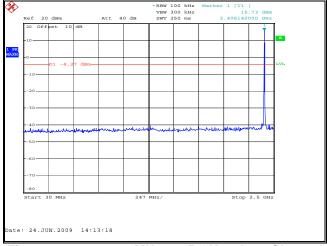


Figure 7.6.2.2-1: 30 MHz - 2.5 GHz - Low Channel

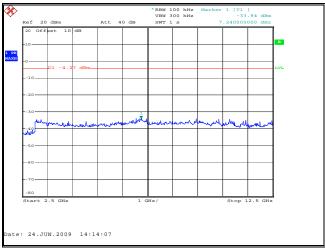


Figure 7.6.2.2-2: 2.5 GHz – 12.5 GHz – Low Channel

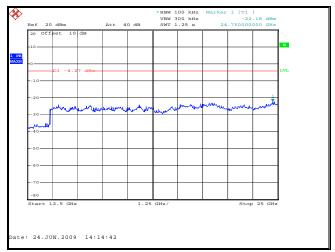


Figure 7.6.2.2-3: 12.5 GHz - 25 GHz - Low Channel

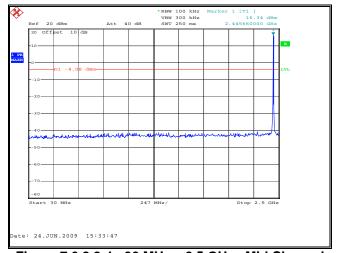


Figure 7.6.2.2-4: 30 MHz – 2.5 GHz – Mid Channel

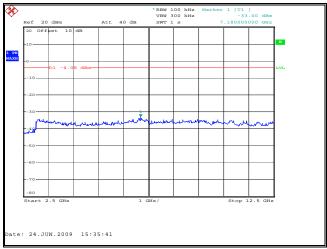


Figure 7.6.2.2-5: 2.5 GHz - 12.5 GHz - Mid Channel

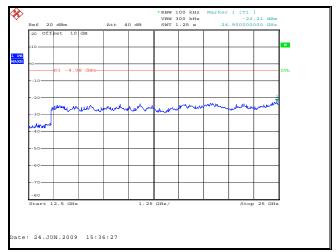


Figure 7.6.2.2-6: 12.5 GHz – 25 GHz – Mid Channel

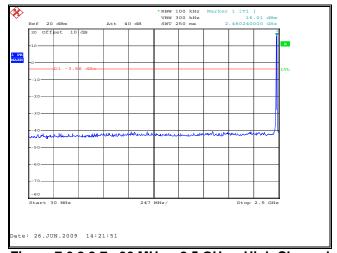


Figure 7.6.2.2-7: 30 MHz – 2.5 GHz – High Channel

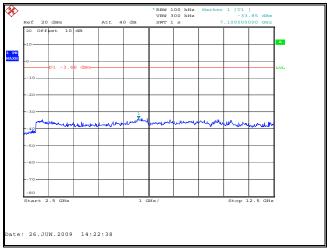


Figure 7.6.2.2-8: 2.5 GHz – 12.5 GHz – High Channel

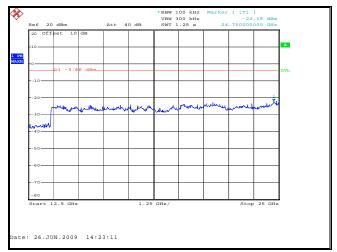


Figure 7.6.2.2-9: 12.5 GHz – 25 GHz – High Channel

7.6.3 Radiated Spurious Emissions (Restricted Bands) - FCC Section 15.205

7.6.3.1 Test Methodology

Radiated emissions tests were made over the frequency range of 30MHz to 25GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000MHz, peak and average measurements made with RBW and VBW of 1 MHz and 3MHz respectively. The average emissions were further corrected by applying the duty cycle correction of the EUT to the average measurements for comparison to the average limit.

Each emission found to be in a restricted band as defined by section 15.205, was compared to the radiated emission limits as defined in section 15.209.

7.6.3.2 Duty Cycle Correction

For average radiated measurements, the measured level was reduced by a factor 7.53dB to account for the duty cycle of the EUT. The packet transmissions length is 42ms. The duty cycle correction factor is determined using the formula: 20log (42/100) = -7.53dB. A detailed analysis of the duty cycle timing is provided in the Theory of Operation.

7.6.3.3 Test Results

Radiated spurious emissions found in the band of 30MHz to 25GHz are reported in Table 7.6.3.3-1.

Table 7.6.3.3-1: Radiated Spurious Emissions

Frequency (MHz)	Level (dBuV)		Antenna Correction Polarity Factors		Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
	Low Channel									
4810	56.10	46.30	Н	3.16	59.26	41.92	74.0	54.0	14.74	12.08
4810	53.58	40.34	V	3.44	57.02	36.25	74.0	54.0	16.98	17.75
Middle Channel										
4890	54.57	43.10	Н	3.53	58.10	39.10	74.0	54.0	15.90	14.90
4890	52.82	41.56	V	3.87	56.69	37.89	74.0	54.0	17.31	16.11
7335	52.16	37.82	Ι	7.68	59.84	37.96	74.0	54.0	14.16	16.04
7335	51.91	36.02	V	7.71	59.62	36.20	74.0	54.0	14.38	17.80
High Channel										
4950	55.23	43.61	Н	3.81	59.04	39.89	74.0	54.0	14.96	14.11
4950	54.24	40.23	V	4.18	58.42	36.88	74.0	54.0	15.58	17.12
7425	51.88	38.10	Н	7.63	59.51	38.19	74.0	54.0	14.49	15.81
7425	51.65	36.83	V	7.70	59.35	36.99	74.0	54.0	14.65	17.01

^{*} Note all other emissions were below the permissible limit

7.6.3.4 Sample Calculation:

 $R_C = R_U + CF_T$

Where:

CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

R_U = Uncorrected Reading
R_C = Corrected Level
AF = Antenna Factor
CA = Cable Attenuation
AG = Amplifier Gain

DC = Duty Cycle Correction Factor

Example Calculation: Peak

Corrected Level: 56.10+ 3.16 = 59.26dBuV/m Margin: 74dBuV/m - 59.26dBuV/m = 14.74dB

Example Calculation: Average

Corrected Level: 46.30+ 3.16 - 7.53 = 41.92dBuV

Margin: 54dBuV - 41.92dBuV = 12.08dB

7.7 Peak Power Spectral Density- FCC Section 15.247(e)

7.7.1 Test Methodology

The power spectral density was measured in accordance with the FCC KDB Publication No. 558074 "Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)". The emission peaks within the pass band were located and zoomed in on. The spectrum analyzer RBW was set to 3 kHz and VBW 10 kHz. Span was adjusted to 500 kHz and the sweep time was calculated to be 168s (Span/3 kHz).

7.7.2 Test Results

Results are shown below in table 7.7.2-1 and figures 7.7.2-1 - 7.7.2-3:

Table 7.7.2-1: Peak Power Spectral Density

Frequency (MHz)	PSD Level (dBm)
2405	5.85
2445	5.80
2475	5.38

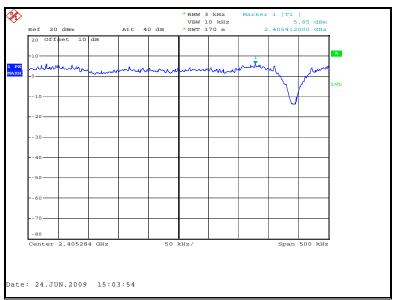


Figure 7.7.2-1: Power Spectral Density Plot – Low Channel

Figure 7.7.2-2: Power Spectral Density Plot – Mid Channel



Figure 7.7.2-3: Power Spectral Density Plot – High Channel

8.0 CONCLUSION

In the opinion of ACS, Inc. the Gridstream Focus AX Integrated, manufactured by Cellnet Technology, Inc. meets the requirements of FCC Part 15 subpart C.

END REPORT