FCC Part 90 & RSS-119 Test Report

For

Two-way Radio

Model Name: TC-518V

Brand Name: HYT

FCC ID: R74TC-518V, IC ID: 5465A-TC518V

Report No.: SZAGC003081202E6

Date of Issue: Jan.5, 2009

Prepared For

SHENZHEN HYT SCIENCE&TECHNOLOGY CO., LTD.

HYT TOWER, SHENZHEN HI-TECH INDUSTRIAL PARK NORTH,

BEIHUAN RD., NANSHAN DISTRICT, SHENZHEN, P.R.C.

TEX: 86-755-26972999

FAX: 86-755-86137130

Prepared By

Shenzhen Attestation of Global Compliance Science & Technology Co., Ltd.

2F, No.2 Building, ChaXi SanWei Industrial Zone, GuShu Community,

XiXiang Street, Bao'An, ShenZhen, China

Tel: 86-755-2974 2358

Fax: 86-755-2600 8484

VERIFICATION OF COMPLIANCE

Applicant:	SHENZHEN HYT SCIENCE & TECHNOLOGY CO., LTD.
	HYT TOWER, SHENZHEN HI-TECH INDUSTRIAL
	PARK NORTH, BEIHUAN RD., NANSHAN DISTRICT,
	SHENZHEN, P.R.C.
	SHENZHEN HYT SCIENCE & TECHNOLOGY CO., LTD.
Manufacturer:	HYT TOWER, SHENZHEN HI-TECH INDUSTRIAL
	PARK NORTH, BEIHUAN RD., NANSHAN DISTRICT,
	SHENZHEN, P.R.C.
Product Description:	Two-way Radio
Brand Name:	НҮТ
Model Number:	TC-518V
Model Difference:	N/A
File Number:	SZAGC003081202E6
Date of Test:	Jan.1 to Jan.4, 2009

We hereby certify that:

The above equipment was tested by Shenzhen Attestation of Global Compliance Science & Technology Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2003 and TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part 90 and RSS-119.

The test results of this report relate only to the tested sample identified in this report.

Prepared By:

Jekey Zhang

Jan.5, 2009

Tony Tian

Tony Tian

Jan.5, 2009

Kny Zhang

Authorized By

King Zhang

Jan.5, 2009

Report No.: SZAGC003081202E6 Page 1 of 53

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION	4
1.2 RELATED SUBMITTAL(S) / GRANT (S)	5
1.3 TEST METHODOLOGY	5
1.4 TEST FACILITY	5
1.5 SPECIAL ACCESSORIES	5
1.6 EQUIPMENT MODIFICATIONS	5
2. SYSTEM TEST CONFIGURATION	6
2.1 EUT CONFIGURATION	
2.2 EUT EXERCISE	6
2.3 GENERAL TECHNICAL REQUIREMENTS	6
2.4 CONFIGURATION OF TESTED SYSTEM	6
3. SUMMARY OF TEST RESULTS	7
4. DESCRIPTION OF TEST MODES	8
5. CONDUCTED LIMITS (NOT APPLICABLE)	9
5.1 PROVISIONS APPLICABLE	9
5.2 MEASUREMENT PROCEDURE	9
5.3 TEST SETUP BLOCK DIAGRAM	10
5.4 TEST EQUIPMENT USED	
5.5 TEST RESULT	11
6. FREQUENCY TOLERANCE	12
6.1 PROVISIONS APPLICABLE	12
6.2 MEASUREMENT PROCEDURE	12
6.3 TEST SETUP BLOCK DIAGRAM	13
6.4 TEST EQUIPMENT USED:	13
6.5 TEST RESULT	13
7. EMISSION BANDWIDTH	17
7.1 PROVISIONS APPLICABLE	17
7.2 MEASUREMENT PROCEDURE	17
7.3 TEST SETUP BLOCK DIAGRAM	17
7.4 MEASUREMENT EQUIPMENT USED:	17
7.5 MEASUREMENT RESULT:	18
8. UNWANTED RADIATION	20
8.1 PROVISIONS APPLICABLE	20
8.2 MEASUREMENT PROCEDURE	20
8.3 TEST SETUP BLOCK DIAGRAM	21

8.4 MEASUREMENT EQUIPMENT USED:	23
8.5 MEASUREMENT RESULTS:	23
8.6 EMISSION MASK PLOT	26
9. MODULATION CHARACTERISTICS	28
9.1 PROVISIONS APPLICABLE	_
9.2 MEASUREMENT METHOD	28
9.3 MEASUREMENT INSTRUMENTS	28
9.4 MEASUREMENT RESULT	29
10. MAXIMUMN TRANSMITTER POWER (CONDUCTED OUTPUT POWER)	35
10.1 PROVISIONS APPLICABLE	35
10.2 TEST PROCEDURE	35
10.3 TEST INSTRUMENTS	
10.4 TEST RESULT	35
10.5 CONDUCT SPURIOUS PLOT	38
11. RANSMITTER FREQUENCY BEHAVIOR	40
11.1 PROVISIONS APPLICABLE	40
11.2 TEST METHOD	40
11.3 TEST INSTRUMENTS	40
11.4 MEASURE RESULT	40
12. RADIATED EMISSION ON RECEIVING MODE	42
12.1 PROVISIONS APPLICABLE	43
12.2 TEST METHOD	43
12.3 TEST INSTRUMENTS	43
12.4 MEASURE RESULT (MEASURED AT 3M USING FCC PART15 B LIMITS)	43
APPENDIX I PHOTOGRAPHS OF SETUP	46
ADDENDIY II EYTEDNAL VIEW OF FUT	18

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a single channel Two-way Radio designed for voice communication. It is designed by way of utilizing the FM modulation achieves the system operating.

A major technical description of EUT is described as following:

Communication Type	Voice / Tone only		
Modulation	FM		
Emission Type	16K0F3E/11K0F3E		
Emission Bandwidth	10.34 KHz (Limit:11.25 KHz for 12.5 KHz channel separation)		
Emission Bandwidth	15.34 KHz (Limit: 20 KHz for 25 KHz channel Separation)		
Peak Frequency Deviation	1.73 KHz for 12.5 KHz Channel Separation (Limit<±2.5 KHz)		
Peak Frequency Deviation	3.63 KHz for 25 KHz Channel Separation (Limit<±5 KHz)		
Audio Frequency Response	2.17 KHz (Limit<3.125 KHz)		
Maximum Transmitter Power	36.78 dBm/36.78 dBm for 12.5 KHz/25.0KHz Channel Separation (5W) 32.75 dBm/32.88 dBm for 12.5 KHz/25.0KHz Channel Separation (2W)		
Output power Modification	5W / 2W		
Antenna Designation	Detachable		
Power Supply	DC 7.4V by battery		
Battery Endpoint	DC 6.4V		
	Frequency Range: 136 MHz to 174 MHz Channel Separation: 12.5KHz and 25KHz		
Operation Frequency	Top Channel: 173.875 MHz		
Range and Channel	Centre Channel: 155.125 MHz		
	Bottom Channel: 136.125 MHz		
Frequency Tolerance 1.09 ppm for 12.5 KHz Channel Separation 0.98 ppm for 25.0 KHz Channel Separation			

Report No.: SZAGC003081202E6

Page 4 of 53

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: R74TC-518V, IC ID: 5465A-TC518V filing to comply with the FCC Part 90 and RSS-119 requirements.

1.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI C 63.4: 2003; TIA/EIA 603 and FCC CFR 47 Rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057.

1.4 TEST FACILITY

The test site used to collect the radiated data is located on the address of World Standardization Certification & Testing Co., Ltd. 1-2/F, Dachong Keji Building, No.28 of Tonggu Road, Nanshan District, Shenzhen, China. The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003.

FCC register No.: 276008 and IC register No.: 7700

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Report No.: SZAGC003081202E6

Page 5 of 53

2. SYSTEM TEST CONFIGURATION

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.3 GENERAL TECHNICAL REQUIREMENTS

- (1). Section 15.207: Conducted Limits (Not applicable)
- (2). Section 90.205: Maximum ERP is dependent upon the station's antenna HAAT and required service area
- (3). Section 90.207: Modulation Characteristic
- (4). Section 90.209: Occupied Bandwidth
- (5). Section 90.210: Emission Mask
- (6). Section 90.213: Frequency Tolerance
- (7). Section 90.214: Transient Frequency Behavior

2.4 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

EUT

Table 2-1 Equipment Used in Tested System

Item	Equipment	Model No.	Identifier	Note
1	Two-way Radio	I IC:-518V	FCC ID: R74TC-518V, IC ID: 5465A-TC518V	EUT
	1			

Report No.: SZAGC003081202E6

Page 6 of 53

3. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.207	Conducted Emission	N/A
§90.205	Maximum Transmitter Power	Compliant
§90.207	Modulation Characteristic	Compliant
§90.209	Occupied Bandwidth	Compliant
§90.210	Emission Mask	Compliant
§90.213	Frequency Tolerance	Compliant
§90.214	Transient Frequency Behavior	Compliant

Report No.: SZAGC003081202E6 Page 7 of 53

4. DESCRIPTION OF TEST MODES

The EUT (Two-way Radio) has been tested under normal operating condition. Three channels (The top channel, the middle channel and the bottom channel) are chosen for testing at each channel separation (12.5 KHz/ 25 KHz).

Report No.: SZAGC003081202E6

Page 8 of 53

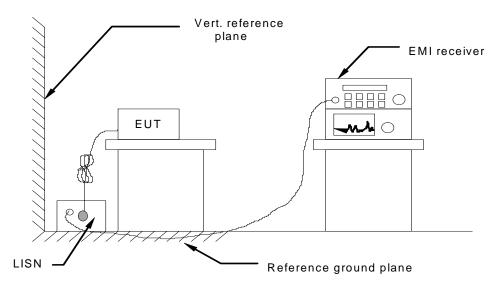
5. CONDUCTED LIMITS (NOT APPLICABLE)

5.1 PROVISIONS APPLICABLE

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the, the radio frequency voltage that is conducted back onto the AC power line on any frequencies within the band 150 KHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50uH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted Limit(dBuV)		
	Quasi-Peak	Average	
0.15 – 0.5	66 to 56 *	56 to 46 *	
0.5 – 5	56	46	
5 – 30	60	50	

^{*} Decreases with the logarithm of the frequency.


5.2 MEASUREMENT PROCEDURE

- (1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- (2) Support equipment, if needed, was placed as per ANSI C63.4.
- (3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- (4) The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- (5) All support equipments received AC power from a second LISN, if any.
- (6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- (7) Analyzer / Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes. During the above scans, the emissions were maximized by cable manipulation.

Report No.: SZAGC003081202E6

Page 9 of 53

5.3 TEST SETUP BLOCK DIAGRAM

5.4 TEST EQUIPMENT USED

Conducted Emission Test Site						
Name of Equipment Manufacturer Model Serial Number Cal. Date						
TEST RECEIVER	R&S	FCKL1528	A0304230	2008.06		
LISN	SCHWARZBECK	NSLK8127	A0304233	2008.06		

Report No.: SZAGC003081202E6 Page 10 of 53

5.5 TEST RESULT

LINE CONDUCTED EMISSION TEST

FREQ	PEAK	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	
FREW								NOTE
MHz	RAW	RAW	RAW	Limit	Limit	Margin	Margin	NOTE
141112	dBuV	dBuV	dBuV	dBuV	dBuV	dB	dB	

^{**}NOTE:

L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

Report No.: SZAGC003081202E6 Page 11 of 53

[&]quot;---" denotes the peak emission level was or more than 2dB below the Average limit, so no re-check anymore.

6. FREQUENCY TOLERANCE

6.1 PROVISIONS APPLICABLE

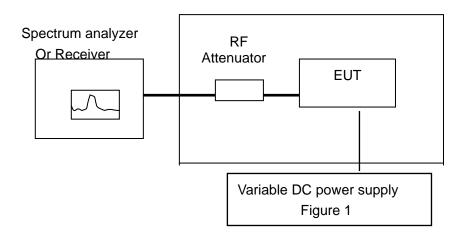
- a). According to FCC Part 2 Section 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from -30° to $+60^{\circ}$ centigrade.
- b). According to FCC Part 2 Section 2.1055(d)(2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacturer.
- c). According to FCC Part 90 Section 90.213, the frequency tolerance must be maintained within 0.00025% for 12.5KHz channel separation and 0.0005% for 25KHz channel separation.

6.2 MEASUREMENT PROCEDURE

6.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz.Record this frequency as reference frequency.
- 3. Set the temperature of chamber to 60°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10 ℃ decreased per stage until the lowest temperature -30 ℃ is measured, record all measured frequencies on each temperature step.

6.2.2 Frequency stability versus input voltage


- 1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15° C to 25° C. Otherwise, an environment chamber set for a temperature of 20° C shall be used. The EUT shall be powered by DC 7.4 V
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

Report No.: SZAGC003081202E6

Page 12 of 53

6.3 TEST SETUP BLOCK DIAGRAM

Temperature Chamber

6.4 TEST EQUIPMENT USED:

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
Receiver	R&S	ESIB26	A0304218	2008.06
Climate Chamber	Albatross	-		2008.12

6.5 TEST RESULT

Report No.: SZAGC003081202E6

Page 13 of 53

(1) Frequency stability versus input voltage (battery operation end point voltage is 6.4V)

Measurement Result for Channel Separation of 12.5 KHz

Channel	Reference Frequency (MHz)	Frequency Measured at end point voltage	Frequency Deviation ppm	Limit ppm
Тор	173.875	173.874905	0.55	2.5
Middle	155.125	155.124916	0.54	2.5
Bottom	136.125	136.124926	0.54	2.5

Measurement Result for Channel Separation of 25KHz

Channel	Reference Frequency (MHz)	Frequency Measured at end point voltage	Frequency Deviation ppm	Limit ppm
Тор	173.875	173.874874	0.72	5.0
Middle	155.125	155.124902	0.63	5.0
Bottom	136.125	136.124873	0.93	5.0

Report No.: SZAGC003081202E6

Page 14 of 53

(2)Frequency stability versus ambient temperature

Bottom Channel @ 12.5 KHz Channel Separation

Reference Frequency: 136.125 M	Limit: 2.5 ppm		
Environment	Power Supply	Frequency	deviation
Temperature ($^{\circ}$ C)	(V)	(MHz)	ppm
50	7.4	136.124942	0.43
40	7.4	136.124937	0.46
30	7.4	136.124912	0.65
20	7.4	136.124903	0.71
10	7.4	136.124886	0.84
0	7.4	136.124875	0.92
-10	7.4	136.124867	0.98
-20	7.4	136.124859	1.04
-30	7.4	136.124852	1.09

Middle Channel @ 12.5 KHz Channel Separation

imadic ondinici & 12.0 km2 ondinici ocparation							
Reference Frequency: 155.125 N	Reference Frequency: 155.125 MHz						
Environment	Power Supply	Frequency	deviation				
Temperature (℃)	(V)	(MHz)	ppm				
50	7.4	155.124937	0.41				
40	7.4	155.124921	0.51				
30	7.4	155.124914	0.55				
20	7.4	155.124902	0.63				
10	7.4	155.124883	0.75				
0	7.4	155.124873	0.82				
-10	7.4	155.124861	0.90				
-20	7.4	155.124852	0.95				
-30	7.4	155.124847	0.99				

Top Channel @ 12.5KHz Channel Separation

TOP Charmer & 12:5KH2 Charmer Separation							
Reference Frequency: 173.875 M	Reference Frequency: 173.875 MHz						
Environment	Power Supply	Frequency	deviation				
Temperature(°C)	(V)	(MHz)	ppm				
50	7.4	173.874949	0.29				
40	7.4	173.874936	0.37				
30	7.4	173.874925	0.43				
20	7.4	173.874913	0.50				
10	7.4	173.874898	0.59				
0	7.4	173.874882	0.68				
-10	7.4	173.874875	0.72				
-20	7.4	173.874865	0.78				
-30	7.4	173.874852	0.85				

Report No.: SZAGC003081202E6

Page 15 of 53

Bottom Channel @ 25.0 KHz Channel Separation

Reference Frequency: 135.125 M	Limit: 5.0 ppm		
Environment	Power Supply	Frequency	deviation
Temperature (℃)	(V)	(MHz)	ppm
50	7.4	136.124951	0.36
40	7.4	136.124938	0.46
30	7.4	136.124927	0.54
20	7.4	136.124915	0.62
10	7.4	136.124908	0.68
0	7.4	136.124892	0.79
-10	7.4	136.124884	0.85
-20	7.4	136.124875	0.92
-30	7.4	136.124867	0.98

Middle Channel @ 25.0 KHz Channel Separation

Reference Frequency: 155.125 M	Limit: 5.0 ppm		
Environment	Power Supply	Frequency	deviation
Temperature (℃)	(V)	(MHz)	ppm
50	7.4	155.124946	0.35
40	7.4	155.124931	0.44
30	7.4	155.124925	0.48
20	7.4	155.124917	0.54
10	7.4	155.124903	0.63
0	7.4	155.124892	0.70
-10	7.4	155.124884	0.75
-20	7.4	155.124876	0.80
-30	7.4	155.124863	0.88

Top Channel @ 25.0 KHz Channel Separation

Top Channel @ 25.0 KH2 Channel Separation							
Reference Frequency: 173.875 M	Reference Frequency: 173.875 MHz						
Environment	Power Supply	Frequency	deviation				
Temperature(°C)	(V)	(MHz)	ppm				
50	7.4	173.874962	0.22				
40	7.4	173.874941	0.34				
30	7.4	173.874929	0.41				
20	7.4	173.874917	0.48				
10	7.4	173.874894	0.61				
0	7.4	173.874885	0.66				
-10	7.4	173.874873	0.73				
-20	7.4	173.8748659	0.77				
-30	7.4	173.874848	0.87				

Report No.: SZAGC003081202E6

Page 16 of 53

7. EMISSION BANDWIDTH

7.1 PROVISIONS APPLICABLE

According to FCC Part 90 Section 90.209: The authorized bandwidth shall be 11.25 KHz for 12.5 KHz and 20 KHz for 25 KHz

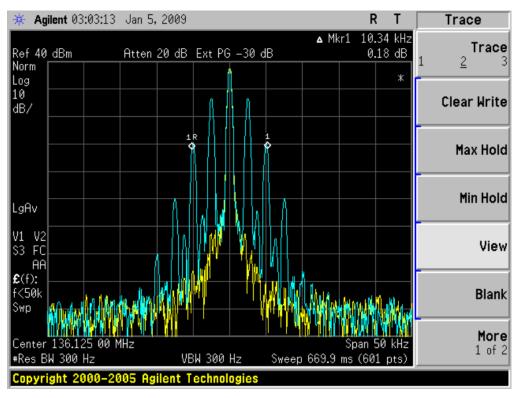
7.2 MEASUREMENT PROCEDURE

- 1). The EUT was placed on a turn table which is 0.8m above ground plane.
- 2). The EUT was modulated by 2.5 KHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing) and 5 kHz (25 kHz channel spacing).
 - 3). Set SPA Center Frequency = fundamental frequency, RBW=VBW= 300 Hz, Span =50 KHz.
 - 4). Set SPA Max hold. Mark peak, -26 dB.

7.3 TEST SETUP BLOCK DIAGRAM

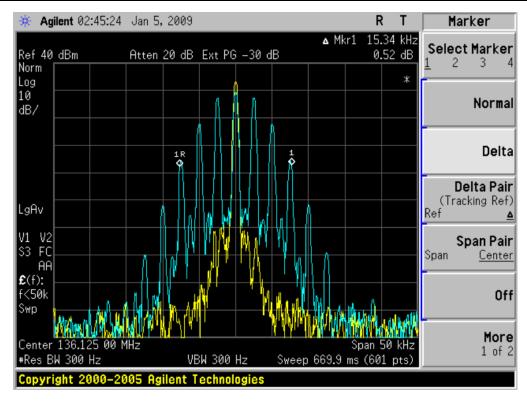
7.4 MEASUREMENT EQUIPMENT USED:

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
SPECTRUM ANALYZER	AGILENT	E4440A	US44300399	2008.06
MODULATION ANALYZER	HP	8901B	3104A03367	2008.06
BROADBAND ANT.	R&S	HL562	A0304224	2008.06


Report No.: SZAGC003081202E6

Page 17 of 53

7.5 MEASUREMENT RESULT:


26 dB Bandwidth Measurement Result									
Operating Frequency	12.5 KHz	z Channel Se	eparation	25 KHz Channel Separation					
Operating Frequency	Test Data	Limits	Result	Test Data	Limits	Result			
Bottom Channel	10.34 KHz	11.25 KHz	Pass	15.34 KHz	20.00 KHz	Pass			
Middle Channel	10.26 KHz	11.25 KHz	Pass	15.18 KHz	20.00 KHz	Pass			
Top Channel	10.26 KHz	11.25 KHz	Pass	15.26 KHz	20.00 KHz	Pass			

Occupied bandwidth of Bottom Channel (Maximum) @ 12.5KHz Channel Separation

Report No.: SZAGC003081202E6 Page 18 of 53

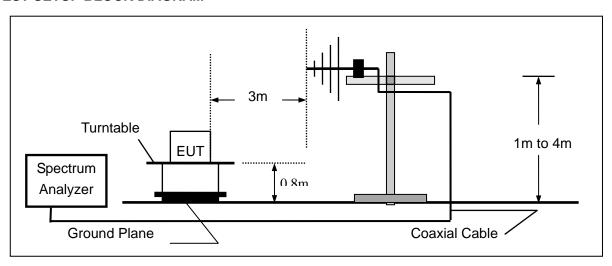
Occupied bandwidth of Bottom Channel (Maximum) @ 25 KHz Channel Separation

Report No.: SZAGC003081202E6 Page 19 of 53

8. UNWANTED RADIATION

8.1 PROVISIONS APPLICABLE

- 8.1.1 According to Section 90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with 12.5 KHz channel bandwidth:
- (1).On any frequency removed from the center of the authorized bandwidth fo to 5.625 KHz removed from fo: Zero dB
- (2). On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz)fo of more than 5.625 KHz but no more than 12.5 KHz: At least 7.27(fd-2.88 KHz) dB
- (3). On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in KHz)fo of more than 12.5 KHz: At least 50+10 log(P) dB or 70 dB, which ever is lesser attenuation.
- 8.1.2 According to Section 90.210, Emission mask B. For transmitters designed to transmit with 25 KHz channel separation and equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as following:
 - (1), On any frequency removed from the assigned frequency by more than 50 percent, but no more than 100 percent of the authorized bandwidth: At least 25 dB.
 - (2), On any frequency removed from the assigned frequency by more than 100 percent, but no more than 250 percent of the authorized bandwidth: At least 35 dB.
 - (3), On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43+10Log(P) dB.

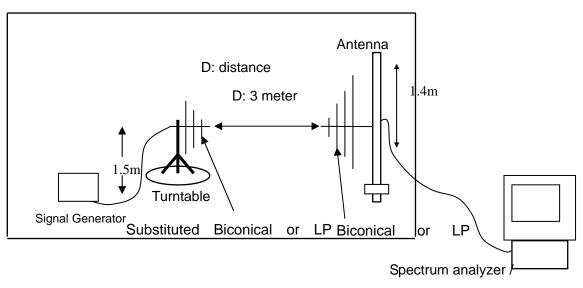

8.2 MEASUREMENT PROCEDURE

- (1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- (2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.
- (3). The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- (4). The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- (5). The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
- (6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- (7). The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
- (8). The maximum signal level detected by the measuring receiver shall be noted.

Report No.: SZAGC003081202E6

- (9). The measurement shall be repeated with the test antenna set to horizontal polarization.
- (10). Replace the antenna with a proper Antenna (substitution antenna).
- (11). The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
- (12). The substitution antenna shall be connected to a calibrated signal generator.
- (13). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- (14). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- (15). The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- (16). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- (17). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

8.3 TEST SETUP BLOCK DIAGRAM


Report No.: SZAGC003081202E6

Page 21 of 53

SUBSTITUTION METHOD: (Radiated Emissions)

Radiated Below 1GHz

Ground Plane

Radiated Above 1 GHz

Antenna mast D: distance 3 meters Horn antenna Substituted Horn antenna Spectrum analyzer/pre-amp

Report No.: SZAGC003081202E6 Page 22 of 53

8.4 MEASUREMENT EQUIPMENT USED:

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
SPECTRUM ANALYZER	AGILENT	E4440A	US44300399	2008.06
TEST RECEIVER	R&S	ESIB26	A0304218	2008.06
LOOP ANTENNA	R&S	HFH2-Z2	A0304220	2008.06
HORN ANT.	R&S	HF906	100150	2008.06
BROADBAND ANT.	R&S	HL562	A0304224	2008.06

8.5 MEASUREMENT RESULTS:

Measurement Result for 12.5 KHz Channel Separation

Calculation: Limit (dBm)= EL-50-10log10 (TP)

Notes:

EL is the emission level of the Output Power expressed in dBm,, in this application, the EL is 36.99 dBm.

Limit (dBm)= $36.99-50-10\log 10$ (5) = -20

Report No.: SZAGC003081202E6 Page 23 of 53

Bottom Channel

Frequency	Reading level	Antenna	S.G.	Cable loss	Correction	Emission level	Limit	Margin
(MHz)	(dBuV)	Polarizatio n	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
							-20	

Middle Channel

Frequency (MHz)	levei	Antenna Polarizatio n	Cable loss (dB)	Correction (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
			 			-20	

Top Channel

Frequency	Reading level	Antenna	S.G.	Cable loss	Correction	Emission level	Limit	Margin
(MHz)	(dBuV)	Polarizatio n	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
	1				1	-	-20	

Notes:

"--" means that the emission level is too low to be measured or at least 20 dB down than the limit.

Report No.: SZAGC003081202E6

Page 24 of 53

Measurement Result For 25 KHz Channel Separation

Calculation: Limit (dBm)= EL-43-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,, in this application, the EL is

10log10(P) dBm.

Limit (dBm)= $10\log 10(P) - 43-10\log 10(P) = -13 dBm$

Bottom Channel

Frequency	Reading level	Antenna	S.G.	Cable loss	Correction	Emission level	Limit	Margin
(MHz)	(dBuV)	Polarizatio n	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
						-	-13	

Middle Channel

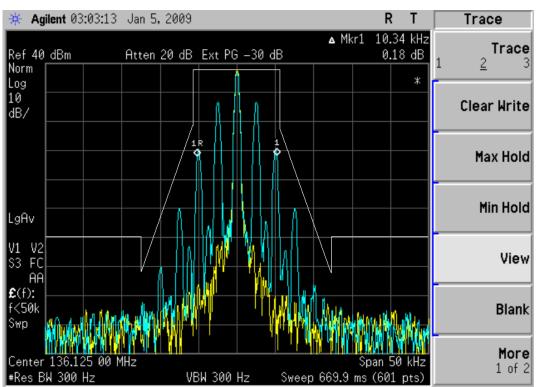
Frequency	Reading level	Antenna	S.G.	Cable loss	Correction	Emission level	Limit	Margin
(MHz)	(dBuV)	Polarizatio n	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
							-13	

Top Channel

Frequency	Reading level	Antenna	S.G.	Cable loss	Correction	Emission level	Limit	Margin
(MHz)	(dBuV)	Polarizatio n	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
							-13	

Notes:

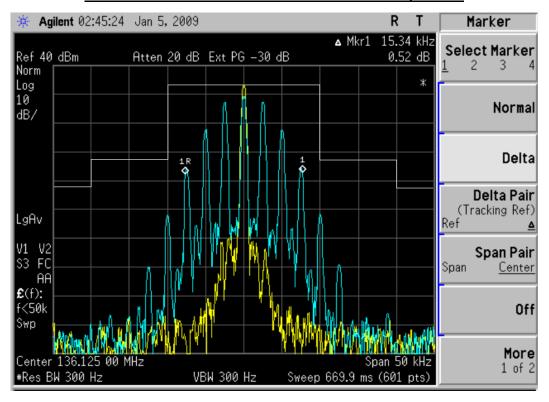
Report No.: SZAGC003081202E6 Page 25 of 53


[&]quot;--" means that the emission level is too low to be measured or at least 20 dB down than the limit.

8.6 EMISSION MASK PLOT

The detailed procedure employed for Emission Mask measurements are specified as following:

- The transmitter shall be modulated by a 2.5 kHz audio signal,
- The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing) and 5 kHz (25 kHz channel spacing)


The Worst Emission Mask for 12.5 KHz channel Separation

Report No.: SZAGC003081202E6

Page 26 of 53

The Worst Emission Mask for 25 KHz channel Separation

Report No.: SZAGC003081202E6 Page 27 of 53

9. MODULATION CHARACTERISTICS

9.1 PROVISIONS APPLICABLE

According to CFR 47 section 2.1047(a), for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

9.2 MEASUREMENT METHOD

9.2.1 Modulation Limit

- (1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from –20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- (2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

9.2.2 Audio Frequency Response

- (1). Configure the EUT as shown in figure 1.
- (2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).
- (3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.
- (4). Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 KHz reference).

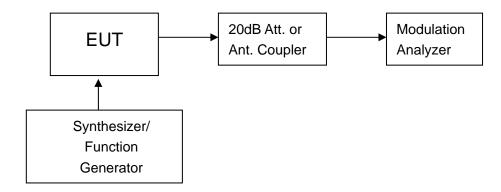
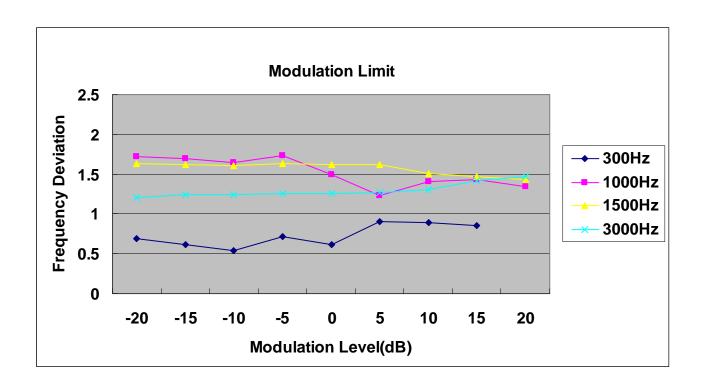


Figure 1: Modulation characteristic measurement configuration

9.3 MEASUREMENT INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
Modulation Analyzer	HP	8901B	3104A03367	2008.06

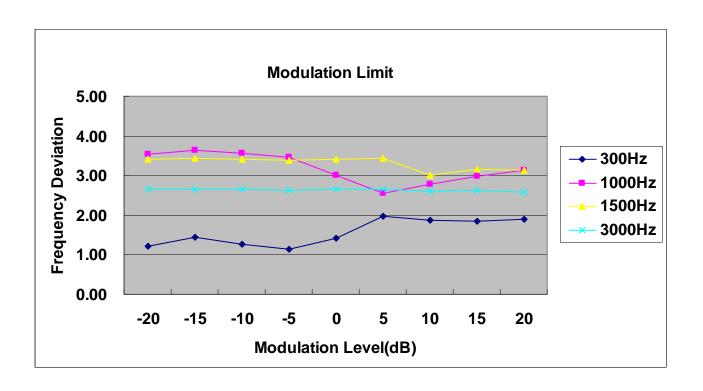
Report No.: SZAGC003081202E6


Page 28 of 53

9.4 MEASUREMENT RESULT

(a). Modulation Limit:

Middle Channel @ 12.5 KHz Channel Separations

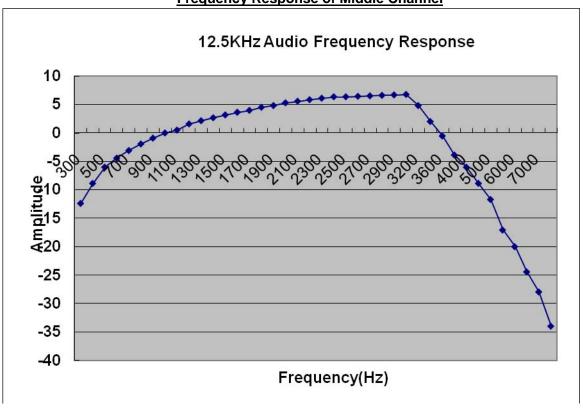

Modulation Level (dB)	Peak Freq. Deviation At 300 Hz	Peak Freq. Deviation At 1000 Hz	Peak Freq. Deviation At 1500 Hz	Peak Freq. Deviation At 3000 Hz
-20	0.69	1.72	1.63	1.21
-15	0.61	1.69	1.62	1.24
-10	0.54	1.65	1.61	1.25
-5	0.72	1.73	1.63	1.26
0	0.62	1.50	1.62	1.26
+5	0.90	1.23	1.62	1.27
+10	0.89	1.41	1.51	1.31
+15	0.86	1.43	1.47	1.42
+20	0.93	1.35	1.43	1.47

Report No.: SZAGC003081202E6 Page 29 of 53

Middle Channel @ 25KHz Channel Separation

Modulation Level (dB)	Peak Freq. Deviation At 300 Hz	Peak Freq. Deviation At 1000 Hz	Peak Freq. Deviation At 1500 Hz	Peak Freq. Deviation At 3000 Hz
-20	1.22	3.53	3.40	2.64
-15	1.45	3.63	3.44	2.64
-10	1.27	3.56	3.41	2.64
-5	1.13	3.47	3.38	2.63
0	1.42	3.00	3.42	2.64
+5	1.97	2.56	3.43	2.65
+10	1.87	2.78	3.00	2.61
+15	1.85	2.97	3.15	2.62
+20	1.89	3.12	3.12	2.57

Report No.: SZAGC003081202E6 Page 30 of 53

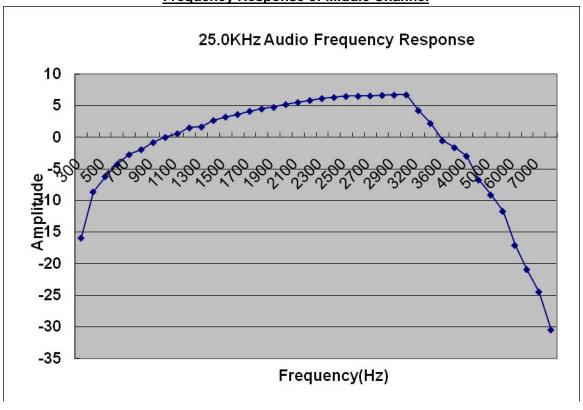

(b). Audio Frequency Response:

12.5 KHz Channel Separation

12.5 KHZ Channel Separation				
Frequency (Hz)	Deviation (KHz)			
100				
200				
300	0.12			
400	0.18			
500	0.25			
600	0.30			
700	0.35			
800	0.40			
900	0.45			
1000	0.50			
1100	0.53			
1200	0.60			
1300	0.64			
1400	0.68			
1500	0.72			
1600	0.76			
1700	0.79			
1800	0.84			
1900	0.87			
2000	0.92			
2100	0.95			
2200	0.98			
2300	1.01			
2400	1.04			
2500	1.04			
2600	1.05			
2700	1.06			
2800	1.07			
2900	1.08			
3000	1.09			
3200	0.87			
3400	0.63			
3600	0.47			
3800	0.32			
4000	0.25			
4500	0.18			
5000	0.13			
5500	0.07			
6000	0.05			
6500	0.03			
7000	0.03			
7500	0.02			
7500 8000				
8500				
9000				
9500				
10000				
11000				

Report No.: SZAGC003081202E6 Page 31 of 53

Frequency Response of Middle Channel


Report No.: SZAGC003081202E6 Page 32 of 53

25 KHz Channel Separation

25 KHz Channel Separation					
Frequency (Hz)	Deviation (KHz)				
100					
200					
300	0.16				
400	0.37				
500	0.49				
600	0.61				
700	0.73				
800	0.80				
900	0.91				
1000	1.00				
1100	1.07				
1200	1.19				
1300	1.21				
1400	1.36				
1500	1.45				
1600	1.52				
1700	1.61				
1800	1.68				
1900	1.73				
2000	1.82				
2100	1.89				
2200	1.96				
2300	2.03				
2400 2500	2.07 2.11				
2600	2.12				
2700	2.13				
2800	2.15				
2900	2.16				
3000	2.17				
3200	1.63				
3400	1.29				
3600	0.94				
3800	0.83				
4000	0.71				
4500	0.46				
5000	0.35				
5500	0.26				
6000	0.14				
6500	0.09				
7000	0.06				
7500	0.03				
8000					
8500					
9000					
9500					
10000					

Report No.: SZAGC003081202E6 Page 33 of 53

Frequency Response of Middle Channel

Report No.: SZAGC003081202E6 Page 34 of 53

10. MAXIMUMN TRANSMITTER POWER (CONDUCTED OUTPUT POWER) 10.1 PROVISIONS APPLICABLE

Per FCC §2.1046 and §90.205: Maximum ERP is dependent upon the station's antenna HAAT and required service area.

10.2 TEST PROCEDURE

The RF output of Two-way Radio was conducted to a spectrum analyzer through an appropriate attenuator.

10.3 TEST INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
SPECTRUM ANALYZER	AGILENT	E4440A	US44300399	2008.06

10.4 TEST RESULT

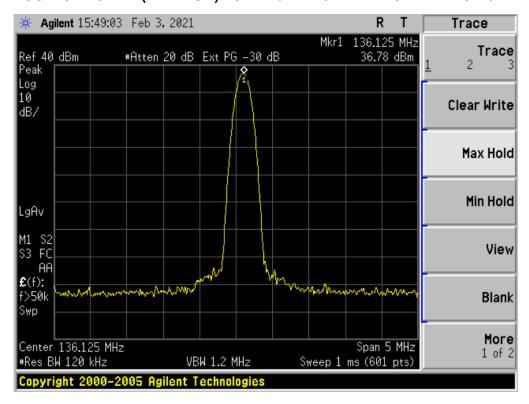
The maximum Conducted Power (CP) is 5 W /1Wfor 12.5 KHz Channel Separation 5 W /1W for 25.0 KHz Channel Separation

Calculation Formula: CP = R + A + L

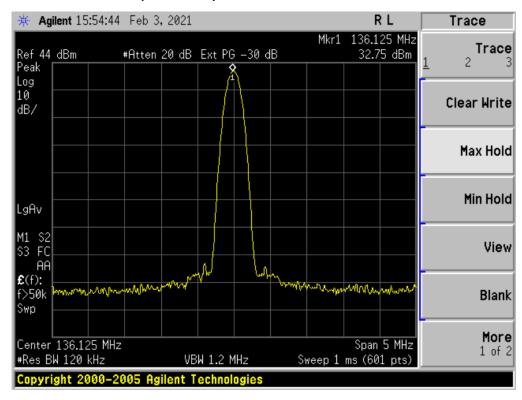
* Note:

CP: The final Conducted Power

R: The reading value from spectrum analyzer A: The attenuation value of the used attenuator

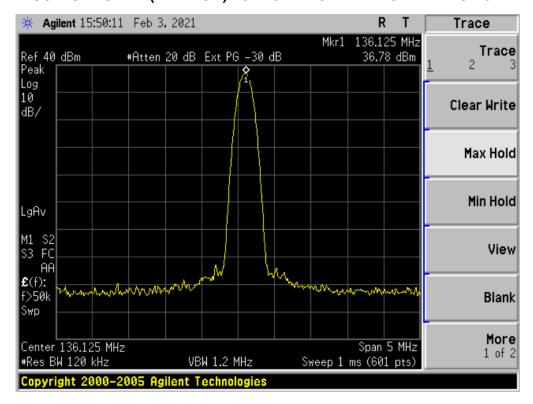

L: The loss of all connection cables

Conducted Power Measurement Results						
Channel Seneration		Measurement Result (dBm)				
Channel Separation	Channel	For 5 W	For 2 W			
	Bottom	36.78	32.75			
12.5 KHz	Middle	36.73	32.69			
	Тор	36.64	32.71			
25 KHz	Bottom	36.78	32.88			
	Middle	36.72	32.79			
	Тор	36.66	32.82			

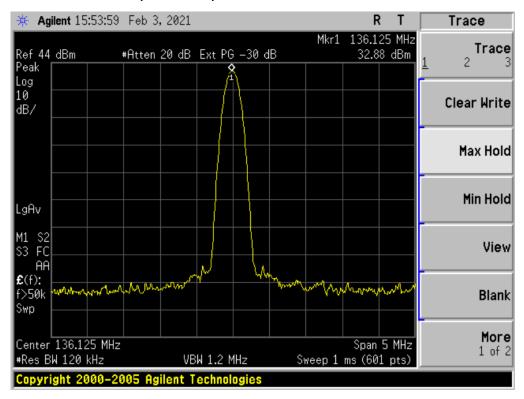

Report No.: SZAGC003081202E6

Page 35 of 53

OUTPUT POWER (MAXIMUM) FOR 12.5 KHZ CHANNEL SEPERATION-5W



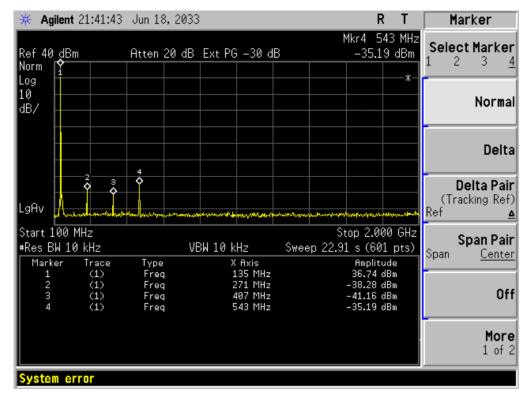
OUTPUT POWER (MAXIMUM) FOR 12.5 KHZ CHANNEL SEPERATION-2W



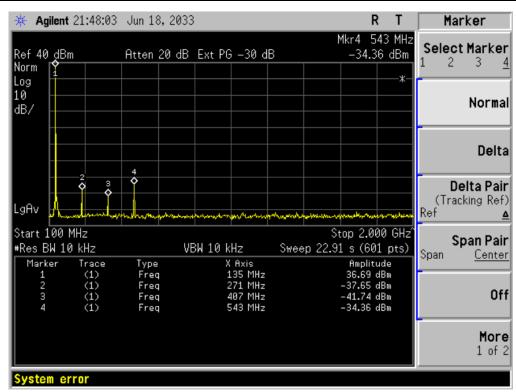
Report No.: SZAGC003081202E6 Page 36 of 53

OUTPUT POWER (MAXIMUM) FOR 25 KHZ CHANNEL SEPERATION-5W

OUTPUT POWER (MAXIMUM) FOR 25.0 KHZ CHANNEL SEPERATION-2W

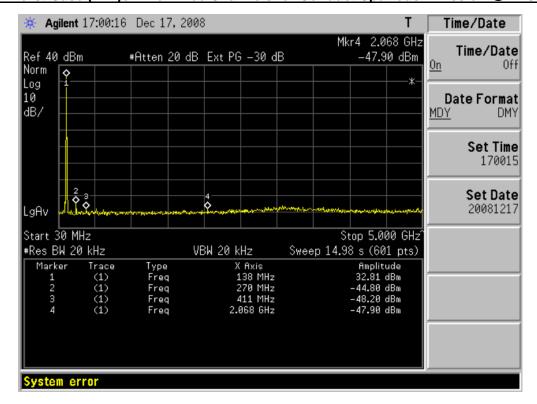


Report No.: SZAGC003081202E6

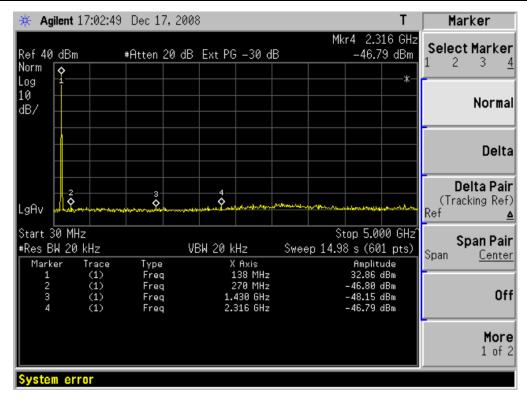

Page 37 of 53

10.4 CONDUCT SPURIOUS PLOT

The Worst Case (5 W)of The Three Channels for Conduct Spurious Emission @ 12.5KHz



The Worst Case (5w) of The Three Channels for Conduct Spurious Emission @ 25KHz



Report No.: SZAGC003081202E6 Page 38 of 53

The Worst Case (2 W)of The Three Channels for Conduct Spurious Emission @ 12.5KHz

The Worst Case (2 W)of The Three Channels for Conduct Spurious Emission @ 25.0 KHz

Report No.: SZAGC003081202E6 Page 39 of 53

11. RANSMITTER FREQUENCY BEHAVIOR

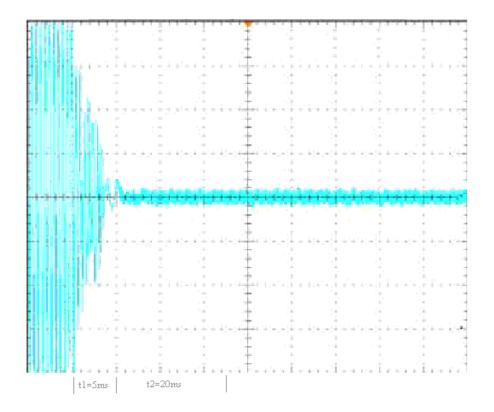
11.1 PROVISIONS APPLICABLE

Section 90.214

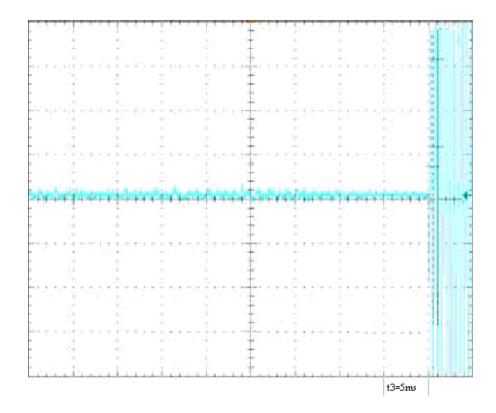
11.2 TEST METHOD

TIA/EIA-603 2.2.19

11.3 TEST INSTRUMENTS

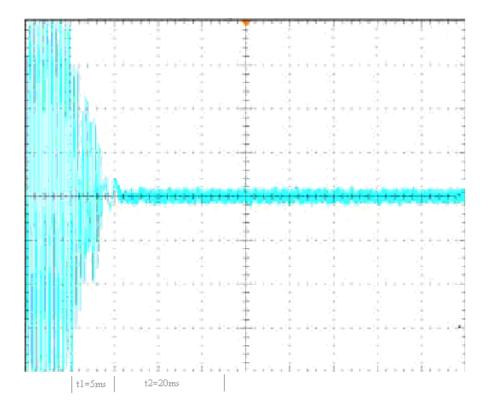

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
Signal Generator	R&S	SMT02	A0304261	2008.06
Storage Oscilloscope	Tektronix	TDS3052	B017447	2007.12

11.4 MEASURE RESULT

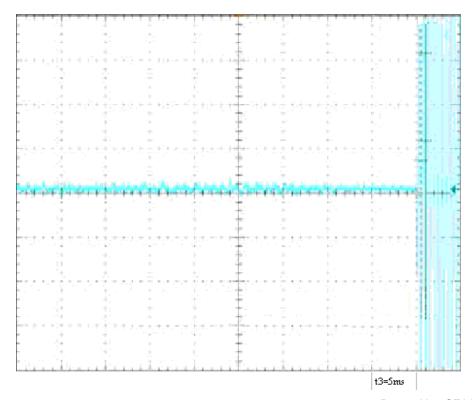

Report No.: SZAGC003081202E6

Page 40 of 53

Transmitter Frequency Behavior @ 25 KHz Channel Separation--Off to On



Transmitter Frequency Behaviour @ 25 KHz Channel Separation--On to Off



Report No.: SZAGC003081202E6 Page 41 of 53

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation--Off to On

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation--On to Off

Report No.: SZAGC003081202E6 Page 42 of 53

12. RADIATED EMISSION ON RECEIVING MODE

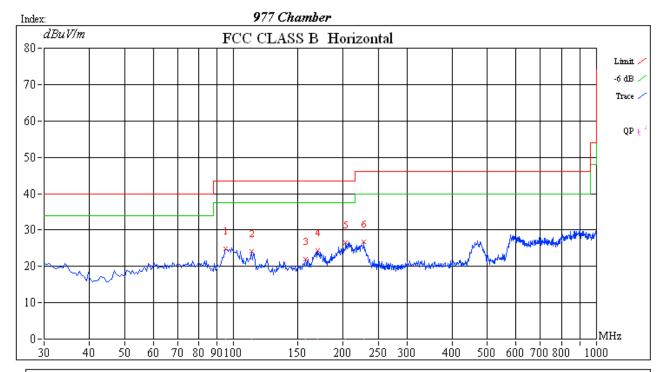
12.1 PROVISIONS APPLICABLE

FCC Part 15 Subpart B Section 15.109

12.2 TEST METHOD

ANSI C 63.4: 2003

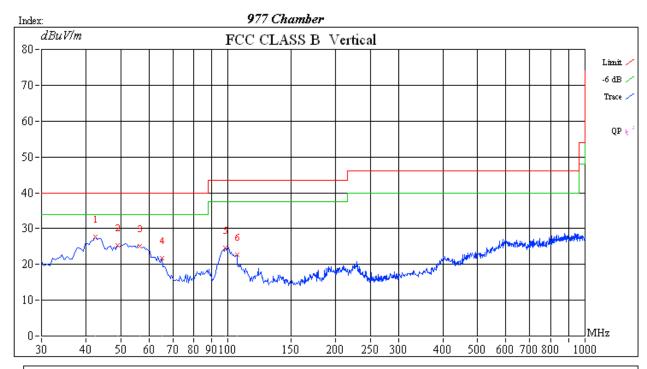
12.3 TEST INSTRUMENTS


NAME OF EQUIPMENT	MANUFACTURER	MODEL	CAL. DATE		
SPECTRUM ANALYZER	AGILENT	E4440A	US44300399	2008.06	
TEST RECEIVER	R&S	ESIB26 A0304218		2008.06	
LOOP ANTENNA	R&S	HFH2-Z2	A0304220	2008.06	
HORN ANT.	R&S	HF906	100150	2008.06	
BROADBAND ANT.	R&S	HL562	A0304224	2008.06	

12.4 MEASURE RESULT (MEASURED AT 3M USING FCC PART15 B LIMITS)

Report No.: SZAGC003081202E6

Page 43 of 53


RADIATED EMISSION TEST RESULTS - HORIZONTAL

	Freq(MHz)	Pk(dBuV/m)	QP(dBuV/m)	Pk Margin(dB)	QP Margin(dB)	Limit(dBuV/m)	Read(dBuV)	C.F(dB)	Height	Deg	Remark
1	94.9299	24.87		-18.63		43.50	28.29	-3.42	100	0	
2	112.2445	24.18		-19.32		43.50	27.72	-3.54	100	0	
3	157.6954	22.09		-21.41		43.50	25.58	-3.49	100	0	
4	170.1403	24.48		-19.02		43.50	29.01	-4.53	100	0	
5	203.6874	26.47		-17.03		43.50	26.69	-0.22	100	0	
6	228.5772	26.70		-19.30		46.00	26.79	-0.09	100	0	

Report No.: SZAGC003081202E6 Page 44 of 53

RADIATED EMISSION TEST RESULTS - VERTICAL

	Freq(MHz)	Pk(dBuV/m)	QP(dBuV/m)	Pk Margin(dB)	QP Margin(dB)	Limit(dBuV/m)	Read(dBuV)	C.F(dB)	Height	Deg	Remark
1	42.4449	27.65		-12.35		40.00	30.88	-3.23	100	0	
2	48.9379	25.43		-14.57		40.00	29.96	-4.53	100	0	
3	56.5130	25.14		-14.86		40.00	30.31	-5.17	100	0	
4	65.1703	21.78		-18.22		40.00	27.47	-5.69	100	0	
5	98.1764	24.51		-18.99		43.50	31.22	-6.71	100	0	
б	105.7515	22.74		-20.76		43.50	29.16	-6.42	100	0	

Report No.: SZAGC003081202E6

Page 45 of 53

APPENDIX I PHOTOGRAPHS OF SETUP

Report No.: SZAGC003081202E6

Page 46 of 53

RADIATED TEST SETUP

Report No.: SZAGC003081202E6 Page 47 of 53

APPENDIX II EXTERNAL VIEW OF EUT

Report No.: SZAGC003081202E6

Page 48 of 53

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

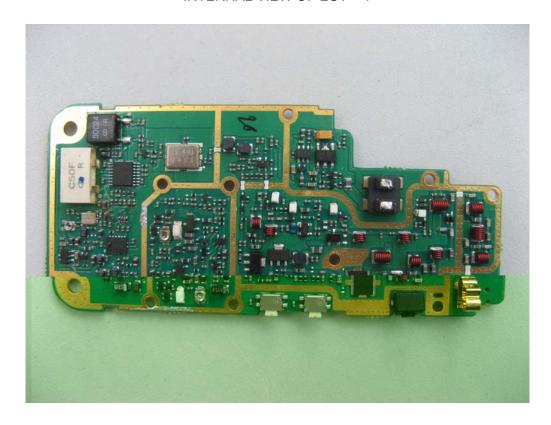
Report No.: SZAGC003081202E6 Page 49 of 53

LEFT VIEW OF EUT

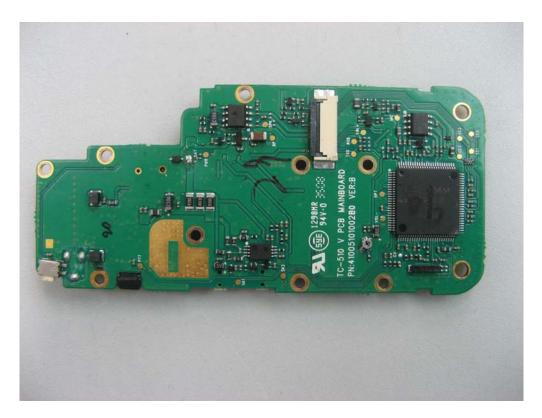
RIGHT VIEW OF EUT

Report No.: SZAGC003081202E6 Page 50 of 53

FRONT VIEW OF EUT



BACK VIEW OF EUT



Report No.: SZAGC003081202E6 Page 51 of 53

INTERNAL VIEW OF EUT – 1

INTERNAL VIEW OF EUT – 2

Report No.: SZAGC003081202E6 Page 52 of 53

INTERNAL VIEWOF EUT-3

INTERNAL VIEW OF EUT-4

----END OF REPORT----

Report No.: SZAGC003081202E6 Page 53 of 53