TEST REPORT No.: HM150918 YINRUN PLASTIC CRAFTS CO., LTD. Applicant: Super Shunt Robot **Description of Samples:** Model name: T11A Model no.: Brand name: NA FCC ID: R6U13322702001 **Date Samples Received:** 2004-04-29 **Date Tested:** 2004-05-11 to 2004-06-07 **Investigation Requested:** FCC Part 15 Subpart C Conclusions: The submitted product **COMPLIED** with the requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this Test Report. Remarks: K C Lee, EMC for Chief Executive

Page 1 of 18

Date: 2004-06-19

No.: HM150918

CONTENT:

	Cover Content	Page 1 of 18 Page 2-3 of 18
<u>1.0</u>	General Details	
1.1	Test Laboratory	Page 4 of 18
1.2	Applicant Details Applicant HKSTC Code Number for Applicant Manufacturer	Page 4 of 18
1.3	Equipment Under Test [EUT] Description of EUT operation	Page 5 of 18
1.4	Date of Order	Page 5 of 18
1.5	Submitted Samples	Page 5 of 18
1.6	Test Duration	Page 5 of 18
1.7	Country of Origin	Page 5 of 18
1.8	Additional Information of EUT	Page 6 of 18
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 7 of 18
2.2	Test Standards and Results Summary	Page 7 of 18
<u>3.0</u>	Test Results	
3.1	Emission	Page 8-11 of 18
3.2	Bandwidth Measurement	Page 12-13 of 18

No.: HM150918

Appendix A

List of Measurement Equipment Page 14 of 18

Appendix B

Duty Cycle Correction During 100 msec Page 15-16 of 18

Appendix C

Photographs Page 17-18 of 18

No.: HM150918

1.0 General Details

1.1 Test Laboratory

The Hong Kong Standards and Testing Centre Ltd. EMC Laboratory 10 Dai Wang Street, Taipo Industrial Estate New Territories, Hong Kong

1.2 Applicant Details Applicant

YINRUN PLASTIC CRAFTS CO., LTD. Yinrun Industrial Garden, Laimei Industrial Zone, Chenghai Shantou City, P.R.China

HKSTC Code Number for Applicant

STS002

Manufacturer

YINRUN PLASTIC CRAFTS CO., LTD. Yinrun Industrial Garden, Laimei Industrial Zone, Chenghai Shantou City, P.R.China

No.: HM150918

1.3 Equipment Under Test [EUT] Description of Sample

Model Name: Super Shunt Robot

Manufacturer: YINRUN PLASTIC CRAFTS CO., LTD

Brand Name: NA Model Number: T11A

Input Voltage: 9Vd.c.("6F22" size battery x 1)

Additional Model Number: T11B, T11, T14A, T14B, T14C, 4004, 4008, 4009,

4010, 4013

1.3.1 Description of EUT Operation

The Equipment Under Test (EUT) is a YINRUN PLASTIC CRAFTS CO., LTD., Super Shunt Robot. The transmitter is a 2 button transmitter. The EUT continues to transmit while button is being pressed, Modulation by IC. and type is pulse modulation.

1.4 Date of Order

2004-04-29

1.5 Submitted Sample(s):

1 Sample per model

1.6 Test Duration

2004-05-11 to 2004-06-07

1.7 Country of Origin

China

Date: 2004-06-19		TEST REPORT		Page 6 of 18		
No.:	HM150918					
1.8	Additional Infor	mation of EUT				
			Submitted	Not Available		

	Submitted	Not Available
User Manual		
Part List		
Circuit Diagram		
Printed Circuit Board [PCB] Layout		
Block diagram	\boxtimes	
FCC ID Label	\boxtimes	

No.: HM150918

2.0 Technical Details

2.1 Investigations Requested

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 and ANSI C63.4:2003 for FCC Certification.

2.2 Test Standards and Results Summary Tables

EMISSION									
	Resu	Its Summary							
Test Condition	Test Requirement	Test Method	Class /	Te	est Resul	t			
			Severity	Pass	Failed	N/A			
Field Strength of Fundamental Emissions & Spurious Emissions	FCC 47CFR 15.235	ANSI C63.4:2003	N/A						
Radiated Emissions, 30MHz to 1GHz	FCC 47CFR 15.209	ANSI C63.4:2003	Class B						
Conducted Emissions on AC, 0.15MHz to 30MHz	FCC 47CFR 15.207	ANSI C63.4:2003	Class B						

Note: N/A - Not Applicable

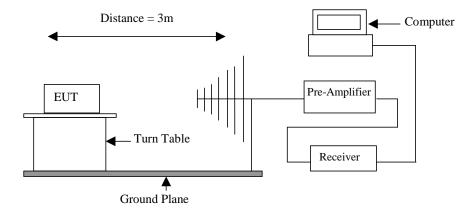
Date: 2004-06-19 TEST REPORT Page 8 of 18

No.: HM150918

3.0 Test Results

3.1 Emission

3.1.1 Radiated Emissions (30 – 1000MHz)


Test Requirement: FCC 47CFR 15.235
Test Method: ANSI C63.4:2003
Test Date: 2004-06-07
Mode of Operation: On mode

Test Method:

The sample was placed 0.8m above the ground plane on the OATS *. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

*: OATS [Open Area Test Site] located at HKSTC with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Registration Number: 90657.

Test Setup:

Date: 2004-06-19

TEST REPORT

Page 9 of 18

No.: HM150918

Limits for Field Strength of Fundamental Emissions [FCC 47CFR 15.235]:

Frequency Range of	Field Strength of	Field Strength of
Fundamental	Fundamental Emission	Fundamental Emission
	[Peak]	[Average]
[MHz]	[μV/m]	[μV/m]
49.82-49.90	100,000	10,000

Results:

Field Strength of Fundamental Emissions Peak Value									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field			
	Level @3m	Factor	Strength	Strength		Polarity			
MHz	dBμV/m	dBμV/m	dBμV/m	μV/m	μV/m	-			
49.86	41.8	10.2	52.0	398.1	100,000	Vertical			

Field Strength of Fundamental Emissions Average										
Frequency	Measured	Adjusted by	Correction	Field	Field	Limit @3m	E-Field			
	Level @3m	Duty Cycle	Factor	Strength	Strength		Polarity			
MHz	dBμV/m	dB	dBμV/m	dBμV/m	μV/m	μV/m				
49.86	35.2	-6.6	10.2	45.4	186.2	10,000	Vertical			

According to FCC 47CFR15.35, the limit on the radio frequency emissions as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

Remarks:

Correction Factor included Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz ±4.1dB

TEST REPORT Page 10 of 18

No.: HM150918

Date: 2004-06-19

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

Frequency Range [MHz]	Quasi-Peak Limits [μV/m]
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasipeak detector and above 1000MHz are based on measurements employing an average detector.

Results:

Radiated Emissions Quasi-Peak									
Frequency									
, ,	Lev	el @3m	Factor	S	Strength		trength		Polarity
MHz	dE	3μV/m	dBμV/m	d	BμV/m		μV/m	μV/m	j
99.72	٧	1.0	10.8	٧	11.8	<	3.9	150	Vertical
149.58	<	1.0	9.8	٧	10.8	<	3.5	150	Vertical
199.44	<	1.0	11.5	٧	12.5	<	4.2	150	Vertical
249.30	٧	1.0	15.9	٧	16.9	<	7.0	200	Vertical
299.16	٧	1.0	16.9	٧	17.9	<	7.9	200	Vertical
349.02	٧	1.0	17.2	٧	18.2	<	8.1	200	Vertical
398.88	٧	1.0	18.8	٧	19.8	<	9.8	200	Vertical
448.74	٧	1.0	19.7	٧	20.7	<	10.8	200	Vertical
498.60	٧	1.0	20.6	٧	21.6	<	12.0	200	Vertical

Remarks:

Correction Factor included Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz ±4.1dB

No.: HM150918

3.1.2 Conducted Emissions (0.15MHz to 30MHz)

Test Requirement: FCC 47CFR 15.107
Test Method: ANSI C63.4:2003
Test Date: 2004-05-11

Mode of Operation: N/A

Results: N/A

The EUT is operated by a single source of internal battery power [located in the battery compartment], therefore power line conducted emission was deemed unnecessary.

No.: HM150918

3.2 20dB Bandwidth of Fundamental Emission

Test Requirement: FCC 47 CFR 15.235

Test Method: ANSI C63.4:2003 (Section 13.1.7)

Test Date: 2004-05-11 Mode of Operation: On mode

Test Method:

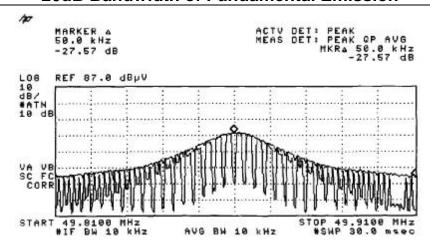
The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Test Setup:

As Test Setup of clause 3.1.1 in this test report.

Date: 2004-06-19

TEST REPORT


Page 13 of 18

No.: HM150918

Limits for 20dB Bandwidth of Fundamental Emission:

Frequency Range	20dB Bandwidth	FCC Limits
[MHz]	[KHz]	[MHz]
49.86	51.8	within 49.82-49.90

20dB Bandwidth of Fundamental Emission

Page 14 of 18 **TEST REPORT**

No.: HM150918

Date: 2004-06-19

Appendix A

Test Equipment Audit

Radiated Emission

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL
EM007	SPECTRUM ANALYZER	HEWLETT PACKARD	HP85660B	3144A21192	14/03/03
EM008	SPECTRUM ANALYZER DISPLAY	HEWLETT PACKARD	HP85662A	3144A20514	14/03/03
EM009	QUASI PEAK ADAPTOR	HEWLETT PACKARD	HP85650A	3303A01702	14/03/03
EM010	RF PRESELECTOR	HEWLETT PACKARD	HP85685A	3221A01410	14/03/03
EM011	ATTENNUATOR/SWITCH	HEWLETT PACKARD	HP11713A	2508A10595	14/03/03
EM012	PRE-AMPLIFIER	HEWLETT PACKARD	HP8449B	3008A00262	14/03/03
EM013	CONTROLLER (COMPUTER), COLOR MONITOR, KEYBOARD & MOUSE FLOPPY DRIVE	HEWLETT PACKARD HEWLETT PACKARD HEWLETT PACKARD	HP9000 HP A1097C HP9133L	6226A60314 3151J39517 2623A02468	СМ
EM020	HORN ANTENNA	EMCO	3115	4032	19/07/00
EM022	LOOP ANTENNA	EMCO	6502	1189-2424	04/08/00
EM072	SIGNAL GENERATOR	HEWLETT PACKARD	8640B	1948A11892	N/A
EM083	HKSTC OPEN AREA TEST SITE	HKSTC	N/A	N/A	08/11/02
EM131	PORTABLE SPECTRUM ANALYSER	HEWLETT PACKARD	8595EM	3710A00155	18/12/01
EM145	EMI TEST RECEIVER	R&S	ESCS 30	830245/021	02/08/03
EM194	BICONILOG ANTENNA	EMCO	3142B	1795	14/05/02
EM195	ANTENNA POSITIONING MAST	EMCO	2075	2368	N/A
EM196	MULTI-DEVICE CONTROLLER	EMCO	2090	1662	N/A

Conducted Emission

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL
EM078	VARIAC	SHANGHAI VOLTAGE	TDGC-3/0.5	N/A	CM
EM081	SMALL SCREENED ROOM	MIKO INST HK	N/A	N/A	18/10/02
EM119	LISN	R&S	ESH3-Z5	0831.5518.52	01/10/02
EM127	ISOLATION TRANSFORMER 220 TO 300	WING SUN	N/A	N/A	СМ
EM142	PULES LIMITER	R&S	ESH3Z2	357.8810.52	03/07/02
EM181	EMI TEST RECEIVER	R&S	ESIB7	100072	28/11/01
EM154	SHIELDING ROOM	SIEMENA MATSUSHITA COMPONENTS	N/A	803-740-057- 99A	18/10/02
EM197	LISN	EMCO	4825/2	1193	08/04/03

Remarks:

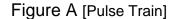
Corrective Maintenance CM Not Applicable or Not Available To Be Determined N/A

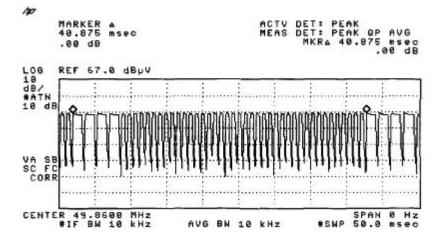
TBD

Page 15 of 18

No.: HM150918

Appendix B

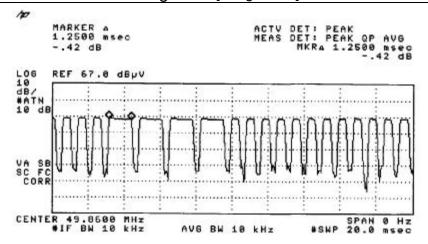

Duty Cycle Correction During 100msec


Each function key sends a different series of characters, but each packet period (40.875msec) never exceeds a series of 4 long (1.25msec) and 40 short (350µsec) pulses. Assuming any combination of short and long pulses may be obtained due to encoding the worst case transmit duty cycle would be considered 4x1.25msec+40x350µsec per 40.875msec=46.4% duty cycle. Figure A through C show the characteristics of the pulse train for one of these functions.

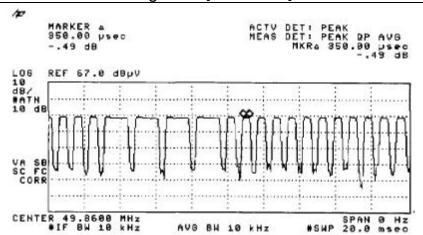
Remarks:

Duty Cycle Correction = 20Log(0.464) =-6.6dB

The following figures [Figure A to Figure C] show the characteristics of the pulse train for one of these functions.



Date: 2004-06-19 TEST REPORT

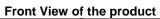

Page 16 of 18

No.: HM150918

Figure B [Long Pulse]

Figure C [Short Pulse]

Date: 2004-06-19


TEST REPORT

Page 17 of 18

No.: HM150918

Appendix C

Photographs of EUT

Rear View of the product

Inner Circuit Top View

Inner Circuit Bottom View

Page 18 of 18 **TEST REPORT**

No.: HM150918

Date: 2004-06-19

Photographs of EUT

Measurement of Radiated Emission Test Set Up

End of Document