

RF Test Report

Applicant Lantronix, Inc.

Product Name Wireless Module

Trade Name LANTRONIX

Model Number Open-Q 4200 SIP

FCC 47 CFR PART 15 SUBPART C Applicable Standard

ANSI C63.10:2013

Received Date Mar. 29, 2023

Test Period Aug. 01 ~ Aug. 23, 2023

Issued Date Nov. 15, 2023

Issued by

Eurofins E&E Wireless Taiwan Co., Ltd. No. 140-1, Changan Street, Bade District, Taoyuan City 334025, Taiwan (R.O.C.)

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

Frequency Range: 9 kHz to 325 GHz

Test Firm Registration Number: 226252 (Bade test site) Test Firm Registration Number: 191812 (Wugu test site)

Note:

- 1. The test results are valid only for samples provided by customers and under the test conditions described in this report.
- 2. This report shall not be reproduced except in full, without the written approval of Eurofins E&E Wireless Taiwan Co., Ltd.
- 3.The relevant information is provided by customers in this test report. According to the correctness, appropriateness or completeness of the information provided by the customer, if there is any doubt or error in the information which affects the validity of the test results, the laboratory does not take the responsibility.

Revision History

Version	Issued Date	Revisions	Revised By
00	Nov. 15, 2023	Initial Issue	Abby Huang

Page 2 of 59 Report Number: USRC233301001

Verification of Compliance

Applicant	:	Lantronix, Inc.
Product Name	:	Wireless Module
Trade Name	:	LANTRONIX
Model Number	:	Open-Q 4200 SIP
FCC ID	:	R68OQ4200S
Applicable Standard	:	FCC 47 CFR PART 15 SUBPART C ANSI C63.10:2013
Test Result	:	Complied
Performing Lab.	:	Eurofins E&E Wireless Taiwan Co., Ltd. No. 140-1, Changan Street, Bade District, Taoyuan City 334025, Taiwan (R.O.C.) Tel: +886-3-2710188 / Fax: +886-3-2710190 Taiwan Accreditation Foundation accreditation number: 1330
in the above standards. All inc Taiwan Co., Ltd. based on inte	dicat rpre	o., Ltd. tested the above equipment in accordance with the requirements set forth ions of Pass/Fail in this report are opinions expressed by Eurofins E&E Wireless tations and/or observations of test results. The test results show that the equipment grompliance with the requirements as documented in this report.
Approved By	:	

Page 3 of 59 Report Number: USRC233301001

TABLE OF CONTENTS

1	General Information	5
	1.1. Summary of Test Result	5
	1.2. Testing Location	6
	1.3. Measurement Uncertainty	6
	1.4. Test Site Environment	6
2	EUT Description	7
3	Test Methodology	9
	3.1. Mode of Operation	9
	3.2. EUT Test Step	9
	3.3. Configuration of Test System Details	10
	3.4. Test Instruments	11
4	Measurement Procedure	14
	4.1. Maximum Conducted Output Power Measurement	14
	4.2. AC Power Line Conducted Emission Measurement	15
	4.3. Radiated Emission Measurement	17
	4.4. 20 dB RF Bandwidth Measurement	
	4.5. Carrier Frequency Separation Measurement	22
	4.6. Number of Hopping Measurement	
	4.7. Time of Occupancy (Dwell Time) Measurement	24
	4.8. Out of Band Conducted Emissions Measurement	25
	4.9. Antenna Measurement	25
	4.10.Other requirements	26
5	Test Results	27
	5.1. Conducted Emission	27
	5.2. Conducted Test Results	29
	5.3 Radiated Emission Measurement	30

Page 4 of 59

Appendix A. Test Data

Appendix B. Test Plots

Appendix C. Test Setup Photographs

1 General Information

1.1. Summary of Test Result

Standard	ltem	Result	Remark
15.207	AC Power Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	
15.247(b)(1)	Max. Output Power	PASS	
15.247(d)	Transmitter Radiated Emissions	PASS	
15.247(a)(1)	20 dB RF Bandwidth	PASS	
15.247(a)(1)	Carrier Frequency Separation	PASS	
15.247(a)(1)(iii)	Number of Hopping	PASS	
15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	PASS	
15.247(d)	Out of Band Conducted Spurious Emission	PASS	

Decision Rule

- Uncertainty is not included.
- $\hfill \square$ Uncertainty is included.

Standard	Description			
CFR47, Part 15, Subpart C	Intentional Radiators			
ANSI C63. 10: 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			
DA 00-705	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems			

Page 5 of 59 Report Number: USRC233301001

1.2. Testing Location

Lab Name: Eurofins E&E Wireless Taiwan Co., Ltd.

Site Address: No. 140-1, Changan Street, Bade District, Taoyuan City 334025, Taiwan (R.O.C.)

Site Address: No. 2, Wuquan 5th Rd. Wugu Dist., New Taipei City, Taiwan (R.O.C.)

1.3. Measurement Uncertainty

Test Item	Fraguenay	Uncertainty				
rest item	Frequency	BD		WG		
Conducted Emission	150 kHz ~ 30 MHz	2.7 dB		2.6 dB		
Conducted C	Output Power	1.1 dB		1.1 dB		
RF Bar	ndwidth	4.5	5 %	4.5 %		
Power Spec	ctral Density	1.1	dB	1.1 dB		
Test Item	Fraguency	Uncertainty				
rest item	Frequency	96601-BD	96603-BD	96602-WG	96603-WG	
	9 kHz ~ 30 MHz	1.9 dB	1.9 dB	1.6 dB	1.6 dB	
	30 MHz ~ 1000 MHz	4.9 dB	4.9 dB	4.8 dB	4.8 dB	
Radiated Emission	1000 MHz ~ 18000 MHz	4.9 dB	5.0 dB	5.0 dB	5.2 dB	
	18000 MHz ~ 26500 MHz	4.3 dB	4.4 dB	4.4 dB	4.5 dB	
	26500 MHz ~ 40000 MHz	4.5 dB	4.5 dB	4.6 dB	4.5 dB	

1.4. Test Site Environment

Items	Required (IEC 60068-1)	Interval(*)	
Temperature (°C)	15-35	20-30	
Humidity (%RH)	25-75	45-75	

 $^{(\}mbox{\ensuremath{^{*}}}\mb$

Page 6 of 59 Report Number: USRC233301001

EUT Description 2

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity(except Max. RF Output Power).

Applicant	Lantronix, Inc. 48 Discovery, Suite 250, Irvine, CA 92618 USA					
Product Name	Wireless Module					
Trade Name	LANTRONIX					
Model Number	Open-Q 4200 SIP					
FCC ID	R68OQ4200S					
Frequency Range	2402 ~ 2480 MHz					
Modulation Type	GFSK for 1 Mbps					
	π/4-DQPSK for 2 Mbps					
	8DPSK for 3 Mbps					
Operate Temp. Range	-25 ~ +85 ℃					
EUT Power Rating	3.8 Vdc					
Antenna information		Max. Gain (dBi)				
Antenna information	Dipol	e Antenna			3.32	
Max. RF Output Power	GFSK for 1 Mbps	0.01683	W			
	π/4-DQPSK for 2 Mbps	0.01493	W			
	8DPSK for 3 Mbps	0.01589	W			

Page 7 of 59 Report Number: USRC233301001

СН	Freq. (MHz)	СН	Freq. (MHz)	СН	Freq. (MHz)	СН	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
19	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

Report Number: USRC233301001

3 Test Methodology

3.1. Mode of Operation

Decision of Test Eurofins has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Pre-Test Mode
Transmit Mode
BT_GFSK
BT_π/4-DQPSK
BT_8DPSK

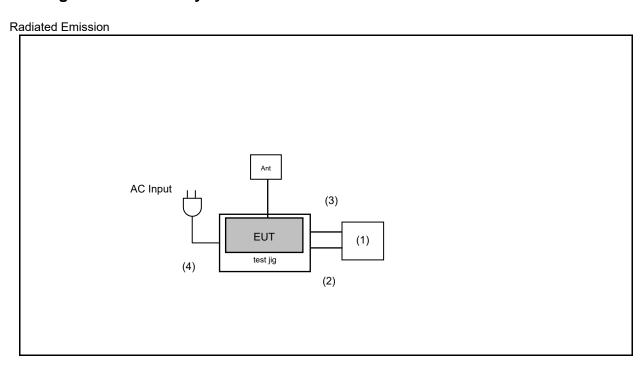
After verification, all tests were carried out with the worst case test modes.

By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

Final-Test Mode
Transmit Mode
BT_GFSK
BT_8DPSK

Description of Test Modes

Preliminary tests were performed in different modulation to find the worst case. The modulation has shown the worst-case in section 4.5. Investigation has been done on all the possible configurations for searching the worst cases.


3.2. EUT Test Step

1	Setup the EUT shown on "Configuration of Test System Details."
2	Turn on the power of all equipment.
3	Turn on TX function
4	EUT run test program.

Page 9 of 59 Report Number: USRC233301001

3.3. Configuration of Test System Details

	Product	Manufacturer	Model Number	Serial Number	Power Cord
(1)	Notebook	DELL	DELL P137G		
(2)	Type C to USB A	C to USB A Chang Xin MPA-EZTC			
(3)	Type A to micro cable	Xiang Chang	Xiang Chang UCA85		
(4)	Adapter	Chenzhou Frecom Electronics Co., Ltd.	F30L7-120250SPAU		

Report Number: USRC233301001

3.4. Test Instruments

For Conducted

Test Period: Aug. 01 2023
Testing Engineer: Sandy Yang

	sang Engineer, sanay rang									
	Test Site	RF03-WG								
Use	Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period				
\boxtimes	Power Sensor	Anritsu	MA24408A	11998	Feb. 07, 2023	1 year				
\boxtimes	Spectrum Analyzer (10 Hz~26.5 GHz)	Keysight	N9010B	MY63460164	Mar. 07, 2023	1 year				

Note: N.C.R. = No Calibration Request.

Page 11 of 59 Report Number: USRC233301001

For Radiated Emissions

Test Period: Aug. 15 ~ Aug. 22, 2023

Testing Engineer: Jason Yeh

Testing	Engineer: Jason Yeh					
Ra	adiation test sites		Semi Anechoic Ro	om 96603-WG		
Use	Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
\boxtimes	LOOP Antenna (9 kHz~30 MHz)	Schwarzbeck Mess-Elektronik	FMZB 1513-60	00031	Feb. 21, 2023	1 year
\boxtimes	Trilog Broadband Antenna (30 MHz~1 GHz)	Schwarzbeck Mess-Elektronik	VULB9168	1276	Feb. 09, 2023	1 year
\boxtimes	Broadband Horn Antenna (1 GHz~18 GHz)	RF SPIN	DRH18-E	210307A18ES	Dec. 22, 2022	1 year
\boxtimes	Broadband Horn Antenna (15 GHz~40 GHz)	Schwarzbeck Mess-Elektronik	BBHA9170	1133	Feb. 13, 2023	1 year
	Spectrum Analyzer (2 Hz~50 GHz)	KEYSIGHT	N9030B	MY57153537	Apr. 18, 2023	1 year
\boxtimes	Pre-Amplifier	EMCI	EMC001330	980859	Nov. 01, 2022	1 year
\boxtimes	Pre-Amplifier	EMCI	EMC118A45SE	980818	Dec. 15, 2022	1 year
	Pre-Amplifier	EMCI	EMC184045SE	980861	Dec. 15, 2022	1 year
\boxtimes	Coaxial Cable (10 kHz~3000 MHz)	EMCI	EMCCFD400-NM-NM-2000	211009	Dec. 28, 2022	1 year
\boxtimes	Coaxial Cable (10 kHz~3000 MHz)	EMCI	EMCCFD400-NM-NM-2000	211010	Dec. 28, 2022	1 year
\boxtimes	Coaxial Cable (10 kHz~3000 MHz)	EMCI	EMCCFD400-NM-NM-6000	211018	Dec. 28, 2022	1 year
\boxtimes	Coaxial Cable (1 GHz~18 GHz)	EMCI	EMC104-SM-SM-1000	211029	Dec. 28, 2022	1 year
\boxtimes	Coaxial Cable (1 GHz~18 GHz)	EMCI	EMC104-SM-SM-2000	211033	Dec. 28, 2022	1 year
\boxtimes	Coaxial Cable (1 GHz~18 GHz)	EMCI	EMC104-SM-SM-8000	211038	Dec. 28, 2022	1 year
\boxtimes	Coaxial Cable (18GHz~40GHz)	EMCI	EMC101G-KM-KM-600	211211	Jan. 17, 2023	1 year
\boxtimes	Coaxial Cable (18GHz~40GHz)	EMCI	EMC101G-KM-KM-2000	211210	Jan. 17, 2023	1 year
\boxtimes	Coaxial Cable (18GHz~40GHz)	EMCI	EMC101G-KM-KM-6000	211209	Jan. 17, 2023	1 year
	Highpass Filter	Warison	WFIL-H3000-20000F	WR4BBFWC2B1	Dec. 02, 2022	1 year
\boxtimes	Highpass Filter	Warison	WFIL-H8000-26000F	001	Dec. 02, 2022	1 year
	Software	R_RAM	V1.3	N/A	N.C.R.	
	(18GHz~40GHz) Highpass Filter Highpass Filter	Warison Warison	WFIL-H3000-20000F WFIL-H8000-26000F	WR4BBFWC2B1	Dec. 02, 2022 Dec. 02, 2022	1 ye

Note: N.C.R. = No Calibration Request.

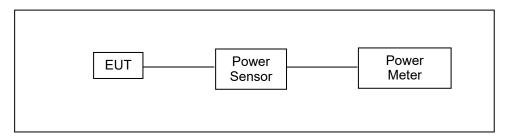
Report Number: USRC233301001 Version: 00

For Conduction Emissions
Test Period: Aug. 23, 2023
Testing Engineer: Jason Yeh.

rooting	esting Engineer. Jason Ten,										
Ra	adiation test sites	С	onducted Emission Measuren	nent Conduction	01-WG						
Use	Equipment	Manufacturer	Model Number Serial Number		Cal. Date	Cal. Period					
\boxtimes	Test Receiver	R&S	ESR3	102919	Dec 30, 2022	1 year					
\boxtimes	LISN	R&S	ENV216	101041	Apr 12, 2023	1 year					
\boxtimes	Current Probe	R&S	EZ-17	101687	Jun 15, 2023	1 year					
\boxtimes	Cable	EMCI	EMCCFD300-BM-NM-4000	220402	Jun 08, 2023	1 year					
\boxtimes	Software	ELEKTRA	94.50.4	N.A.	N.C.R.	N.C.R.					

Note: N.C.R. = No Calibration Request.

Page 13 of 59 Report Number: USRC233301001


4 Measurement Procedure

4.1. Maximum Conducted Output Power Measurement

■ Limit

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels < 0.125 watt.

■ Test Setup

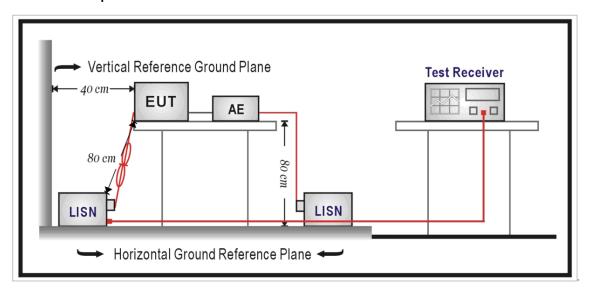
■ Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The tests below are run with the EUT's transmitter set at high power in TX mode. The EUT is needed to force selection of output power level and channel number. While testing, EUT was set to transmit continuously. Remove the Subjective device's antenna and connect the RF output port to power sensor. The maximum peak output power shall not exceed 1 watt.

Use a direct connection between the antenna port of transmitter and the power sensor, for prevent the power sensor input attenuation 40-50 dB. Set the RBW Bandwidth of the emission or use a channel power meter mode.

For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt (+30 dBm). For antennas with gains greater than 6 dBi, transmitter output level must be decreased by an amount equal to (GAIN - 6)/3 dBm. The antenna port of the EUT was connected to the input of a power sensor. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.

Page 14 of 59 Report Number: USRC233301001



4.2. AC Power Line Conducted Emission Measurement

■ Limit

Frequency (MHz)	Quasi-peak	Average	
0.15 - 0.5	66 to 56	56 to 46	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

■ Test Setup

Page 15 of 59

Report Number: USRC233301001

■ Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 Ω // 50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 Ω // 50 uH coupling impedance with 50 ohm termination.

Tabletop device shall be placed on a non-conducting platform, of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The wall of screened room shall be located 40 cm to the rear of the EUT. Other surfaces of tabletop or floor standing EUT shall be at least 80 cm from any other ground conducting surface including one or more LISNs. For floor-standing device shall be placed under the EUT with a 12 mm insulating material.

Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a resolution bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 4.1, as applicable, including the average limit and the quasi-peak limit when using respectively, an average detector and quasi-peak detector measured in accordance with the methods described of related standard. When all of peak value were complied with quasi-peak and average limit from 150 kHz to 30 MHz then quasi-peak and average measurement was unnecessary.

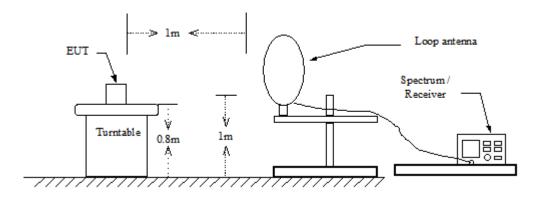
The AMN shall be placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for AMNs mounted on top of the ground reference plane. This distance is between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8 m from the AMN. If the mains power cable is longer than 1 m then the cable shall be folded back and forth at the centre of the lead to form a bundle no longer than 0.4 m. All of interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long. All of EUT and AE shall be separate place more than 0.1 m. All 50 Ω ports of the LISN shall be resistively terminated into 50 Ω loads when not connected to the measuring instrument.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

Page 16 of 59 Report Number: USRC233301001

4.3. Radiated Emission Measurement

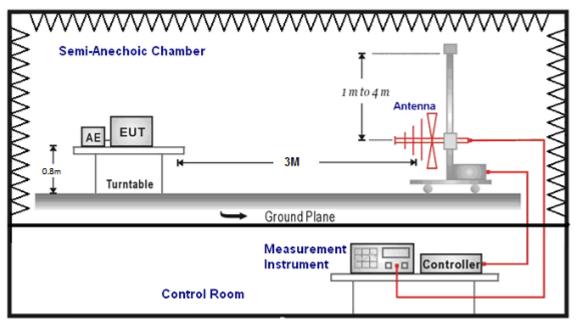
■ Limit

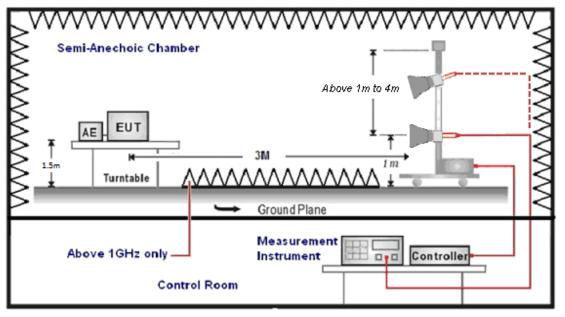

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m at meter)	Measurement Distance (meters)		
0.009 – 0.490	2400 / F (kHz)	300		
0.490 – 1.705	24000 / F (kHz)	30		
1.705 – 30.0	30	30		
30 - 88	100**	3		
88-216	150**	3		
216-960	200**	3		
Above 960	500	3		

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

■ Setup


9 kHz ~ 30 MHz


Page 17 of 59 Report Number: USRC233301001

Below 1 GHz

Above 1 GHz

Report Number: USRC233301001 Version: 00

■ Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 or 1.5 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 9 kHz to 26.5 GHz is investigated.

For measurements below 30 MHz the resolution bandwidth is set to 10 kHz for peak detection measurements or 9 kHz for quasi-peak detection measurements. The video bandwidth is 3 times of the resolution bandwidth.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 3 MHz for peak measurements and 10 Hz for average measurements when Duty cycle >98 % / 1/T for average measurements when Duty cycle <98 %. A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna was used in frequencies 1 – 26.5 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20 dB/decade).

For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m).

Page 19 of 59 Report Number: USRC233301001

The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

(1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB)

FI= Reading of the field intensity.

AF= Antenna factor.

CL= Cable loss.

P.S Amplitude is auto calculate in spectrum analyzer.

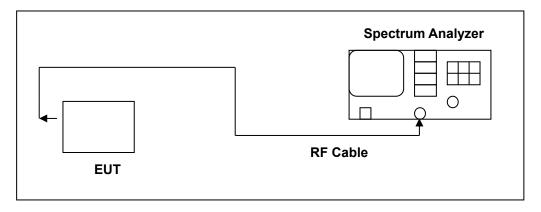
(2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB)

The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:

- (a) For fundamental frequency: Transmitter Output < +30 dBm
- (b) For spurious frequency: Spurious emission limits = fundamental emission limit /10

Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

Page 20 of 59 Report Number: USRC233301001



4.4. 20 dB RF Bandwidth Measurement

■ Limit

N/A

■ Test Setup

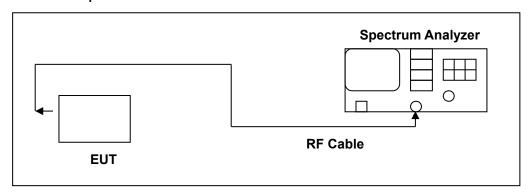
■ Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10 dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = approx. 2 to 3 times the 20 dB bandwidth, centered on a hopping frequency
- 2. RBW \geq 1 % of the 20 dB span
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The EUT was transmitting at its maximum data rate. The marker-to-peak function was used to set the marker to the peak of the emission. The marker-delta function was used to measure 20 dB down one side of the emission. The marker-delta function and marker was moved to the other side of the emission until it was even with the reference marker. The marker-delta reading at this point was the 20 dB bandwidth of the emission.

Page 21 of 59 Report Number: USRC233301001



4.5. Carrier Frequency Separation Measurement

■ Limit

Title 47 of the CFR, Part 15 Subpart (c) 15.247(a)(1) requires the measurement of the bandwidth of the transmission between the -20 dB points on the transmitted spectrum. The results of this test determine the limits for channel spacing. The channel spacing shall be a minimum of 25 kHz or the 20 dB bandwidth, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.

■ Test Setup

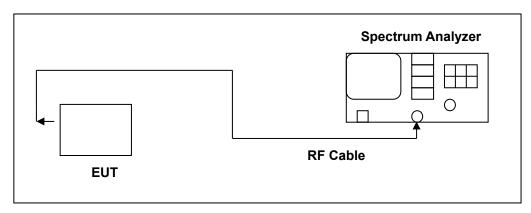
■ Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10 dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth frequency hopping function of the EUT was enabled. The following spectrum analyzer settings were used:

- 1. Span = wide enough to capture the peaks of two adjacent channels
- 2. Resolution (or IF) Bandwidth (RBW) = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3. Video (or Average) Bandwidth (VBW) \geq RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

Page 22 of 59 Report Number: USRC233301001



4.6. Number of Hopping Measurement

■ Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

■ Test Setup

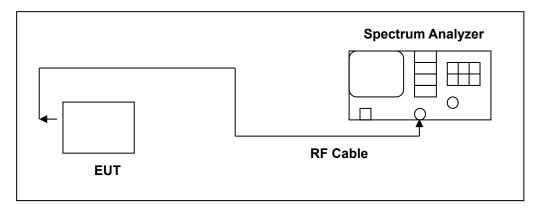
■ Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10 dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = the frequency band of operation
- 2. RBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dBbandwidth, whichever is smaller.
- 3. $VBW \ge RBW$
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize.

Page 23 of 59 Report Number: USRC233301001



4.7. Time of Occupancy (Dwell Time) Measurement

■ Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

■ Test Setup

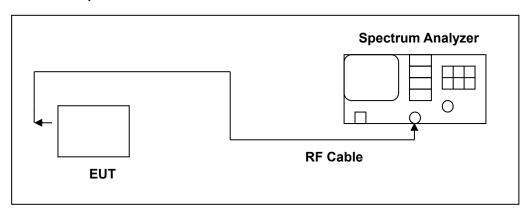
■ Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the spectrum through a specialized RF connector and a 10 dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth hopping function of the EUT was enabled. The following spectrum analyzer settings were used:

- 1. Span = zero span, centered on a hopping channel
- 2. RBW = 1 MHz
- $3.~VBW~\geq~RBW$
- 4. Sweep = as necessary to capture the entire dwell time per hopping channel
- 5. Detector function = peak
- 6. Trace = max hold

The marker-delta function was used to determine the dwell time.

Page 24 of 59 Report Number: USRC233301001



4.8. Out of Band Conducted Emissions Measurement

■ Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

■ Test Setup

■ Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. In any 100 kHz bandwidth outside the EUT pass band, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function. All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the pass band. The test was performed at 3 channels (Channel 0, 39, 78)

4.9. Antenna Measurement

■ Limit

For intentional device, according to 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And According to 15.247 (b)(4), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 25 of 59

■ Antenna Connector Construction

See section 2 – antenna information.

Report Number: USRC233301001

4.10. Other requirements

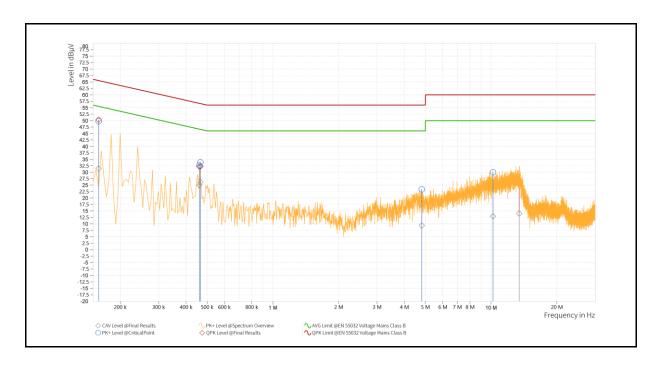
■ System Receiver Input Bandwidth

Each channel bandwidth is 1MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

■ Equipment Description

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


Page 26 of 59 Report Number: USRC233301001

5 **Test Results**

5.1. **Conducted Emission**

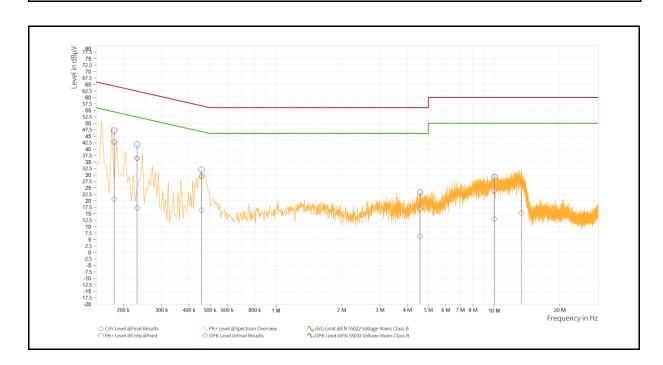
Standard: FCC Part 15.247 Line: L1 Test item: Conducted Emission Power: AC 120 V/60 Hz Mode: Transmit Mode Description:

Rg	Frequency [MHz]	QP Result [dBμV]	QP Limit [dΒμV]	QP Margin [dB]	AV Result [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Correction factor [dB]	Line
1	0.159	50.38	65.52	15.13	31.43	55.52	24.09	9.64	L1
1	0.461	32.16	56.68	24.52	25.05	46.68	21.63	9.65	L1
1	0.465	32.24	56.60	24.37	26.21	46.60	20.39	9.65	L1
1	4.812	17.66	56.00	38.34	9.34	46.00	36.66	9.80	L1
1	10.208	24.10	60.00	35.90	12.93	50.00	37.07	9.92	L1
1	13.448	25.53	60.00	34.47	13.98	50.00	36.02	9.99	L1

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

Page 27 of 59 Report Number: USRC233301001



Standard: FCC Part 15.247 Line:

Test item: Conducted Emission AC 120 V/60 Hz Power:

Transmit Mode Mode:

Description:

Rg	Frequency [MHz]	QP Result [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Result [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Correction factor [dB]	Line
1	0.182	42.77	64.42	21.65	20.65	54.42	33.77	9.64	N
1	0.231	36.42	62.41	26.00	17.22	52.41	35.19	9.64	N
1	0.456	29.41	56.77	27.36	16.39	46.77	30.37	9.65	N
1	4.578	16.79	56.00	39.21	6.29	46.00	39.71	9.81	N
1	10.037	23.91	60.00	36.09	12.86	50.00	37.14	9.94	N
1	13.326	26.70	60.00	33.30	15.24	50.00	34.76	10.06	N

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

Page 28 of 59 Report Number: USRC233301001

5.2. Conducted Test Results

Maximum Conducted Output Power Measurement

Reference Appendix A

20 dB RF Bandwidth Measurement

Reference Appendix A / Appendix B

Carrier Frequency Separation Measurement

Reference Appendix A / Appendix B

Number of Hopping Measurement

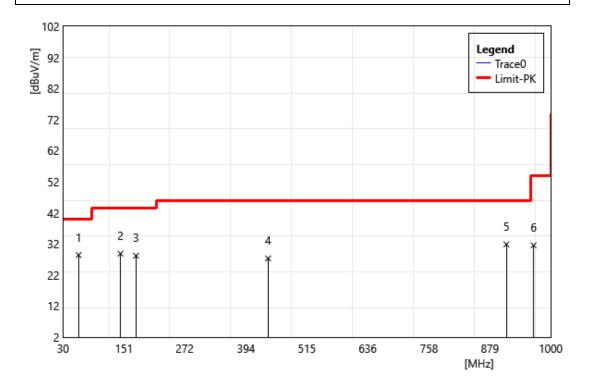
Reference Appendix A / Appendix B

Out of Band Conducted Emissions Measurement

Reference Appendix B

Time of Occupancy (Dwell Time) Measurement

Reference Appendix A / Appendix B

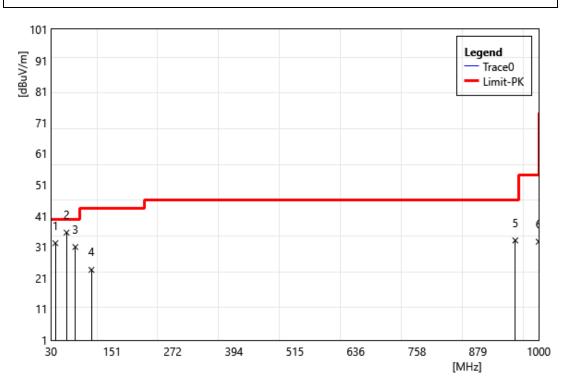

Page 29 of 59 Report Number: USRC233301001

Radiated Emission Measurement 5.3.

Below 1 GHz

Test Site: 96603-WG Standard: Part 15.247 Test Mode: Transmit mode Polarization: Horizontal ReMark: ВТ

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	61.01	41.39	-12.94	28.45	40.00	-11.55	PEAK
2	144.35	40.83	-11.93	28.90	43.50	-14.60	PEAK
3	175.35	40.83	-12.64	28.19	43.50	-15.31	PEAK
4	437.96	35.22	-7.88	27.34	46.00	-18.66	PEAK
5	911.82	32.48	-0.61	31.87	46.00	-14.13	PEAK
6	966.08	31.81	-0.24	31.57	54.00	-22.43	PEAK


Page 30 of 59 Report Number: USRC233301001

Test Site: 96603-WG Standard: Part 15.247

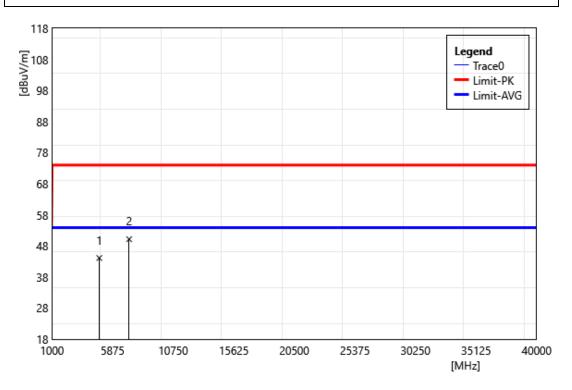
Test Mode: Transmit mode

Vertical Polarization: ВТ ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	38.72	44.58	-12.37	32.21	40.00	-7.79	PEAK
2	61.01	48.57	-12.94	35.63	40.00	-4.37	PEAK
3	78.45	47.43	-16.44	30.99	40.00	-9.01	PEAK
4	110.43	38.72	-15.09	23.63	43.50	-19.87	PEAK
5	953.49	33.01	0.09	33.10	46.00	-12.90	PEAK
6	1000.00	32.84	-0.16	32.68	74.00	-41.32	PEAK

Page 31 of 59 Report Number: USRC233301001

Harmonic


Above 1 GHz

Test Site: 96603-WG Standard: Part 15.247

Test Mode: BT GFSK 2402 MHz

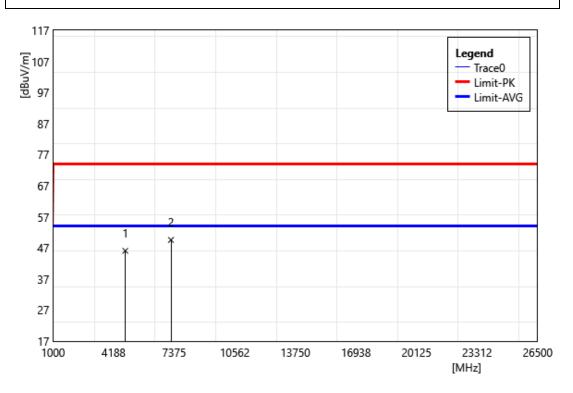
Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4804.00	42.90	1.23	44.13	74.00	-29.87	PEAK
2	7206.00	43.69	6.48	50.17	74.00	-23.83	PEAK

Page 32 of 59

Report Number: USRC233301001



Test Site: 96603-WG Standard: Part 15.247

Test Mode: BT GFSK 2402 MHz

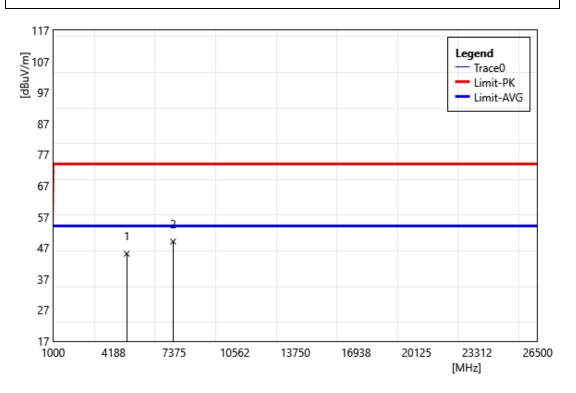
Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4804.00	44.85	1.23	46.08	74.00	-27.92	PEAK
2	7206.00	43.09	6.48	49.57	74.00	-24.43	PEAK

Page 33 of 59

Report Number: USRC233301001



Test Site: 96603-WG Standard: Part 15.247

Test Mode: BT GFSK 2441 MHz

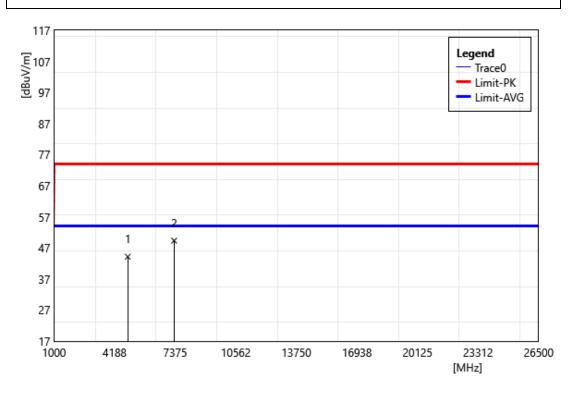
Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4882.00	43.64	1.49	45.13	74.00	-28.87	PEAK
2	7323.00	42.80	6.26	49.06	74.00	-24.94	PEAK

Page 34 of 59

Report Number: USRC233301001



Test Site: 96603-WG Standard: Part 15.247

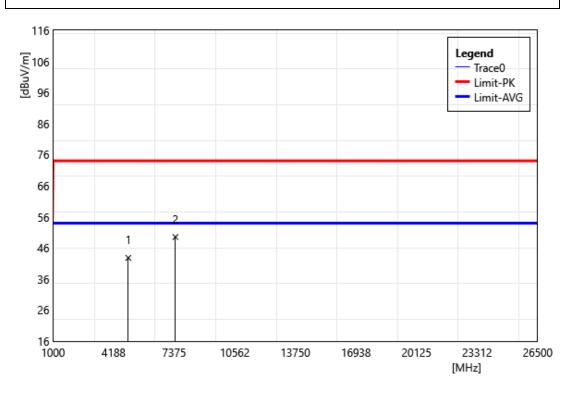
Test Mode: BT GFSK 2441 MHz

Vertical Polarization:

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4882.00	42.68	1.49	44.17	74.00	-29.83	PEAK
2	7323.00	43.08	6.26	49.34	74.00	-24.66	PEAK

Page 35 of 59 Report Number: USRC233301001



Test Site: 96603-WG Standard: Part 15.247

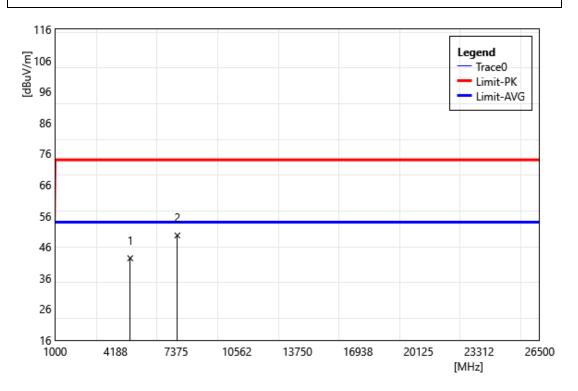
Test Mode: BT GFSK 2480 MHz

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4960.00	41.45	1.35	42.80	74.00	-31.20	PEAK
2	7440.00	42.84	6.68	49.52	74.00	-24.48	PEAK

Page 36 of 59


Report Number: USRC233301001

Test Mode: BT GFSK 2480 MHz

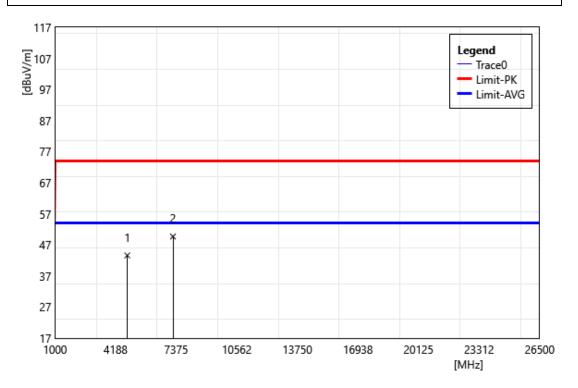
Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4960.00	41.02	1.35	42.38	74.00	-31.63	PEAK
2	7440.00	43.03	6.68	49.71	74.00	-24.29	PEAK

Page 37 of 59

Report Number: USRC233301001

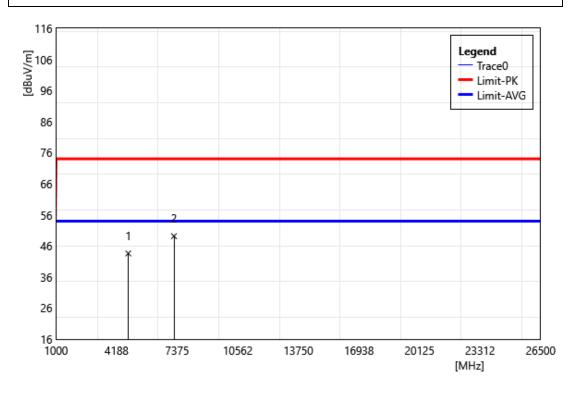

Version: 00

Test Mode: BT 8DPSK 2402 MHz

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4804.00	42.42	1.23	43.65	74.00	-30.35	PEAK
2	7206.00	43.23	6.48	49.71	74.00	-24.29	PEAK

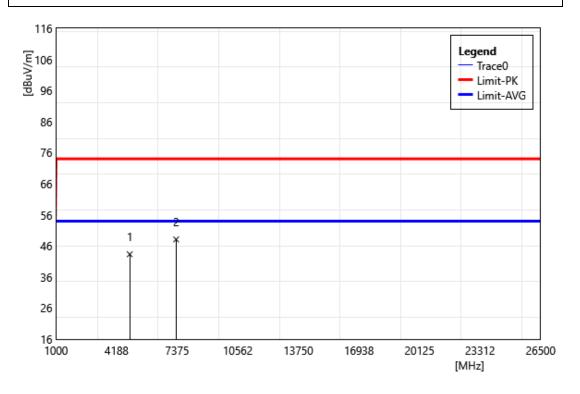

Page 38 of 59 Report Number: USRC233301001

Test Mode: BT 8DPSK 2402 MHz

Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4804.00	42.36	1.23	43.59	74.00	-30.41	PEAK
2	7206.00	42.67	6.48	49.15	74.00	-24.85	PEAK

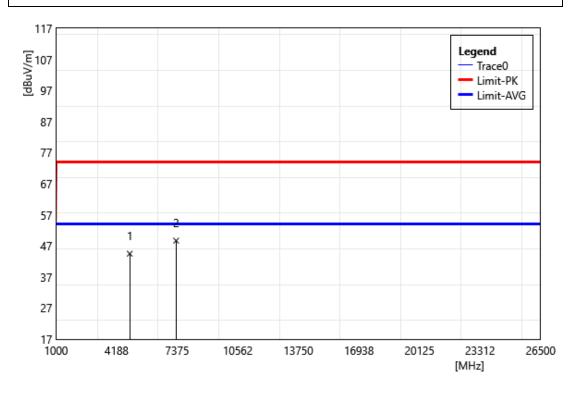

Page 39 of 59 Report Number: USRC233301001

Test Mode: BT 8DPSK 2441 MHz

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4882.00	41.85	1.49	43.34	74.00	-30.66	PEAK
2	7323.00	41.84	6.26	48.10	74.00	-25.90	PEAK


Page 40 of 59

Test Mode: BT 8DPSK 2441 MHz

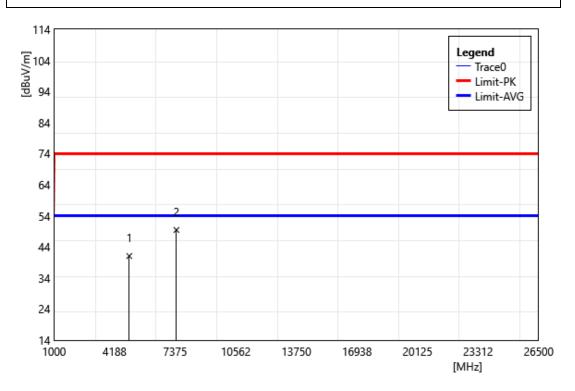
Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4882.00	43.03	1.49	44.52	74.00	-29.48	PEAK
2	7323.00	42.45	6.26	48.71	74.00	-25.29	PEAK

Page 41 of 59

Report Number: USRC233301001


Version: 00

Test Mode: BT 8DPSK 2480 MHz

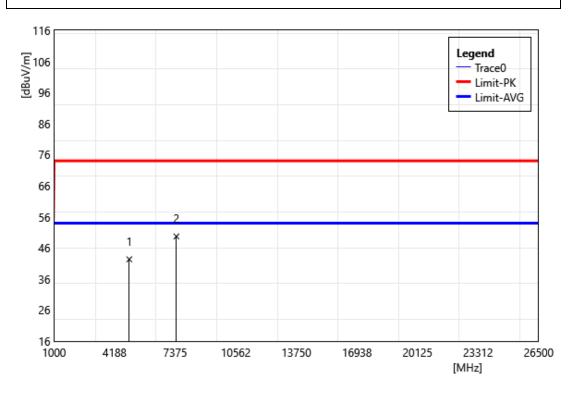
Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4960.00	39.74	1.35	41.09	74.00	-32.91	PEAK
2	7440.00	42.79	6.68	49.47	74.00	-24.53	PEAK

Page 42 of 59

Report Number: USRC233301001


Version: 00

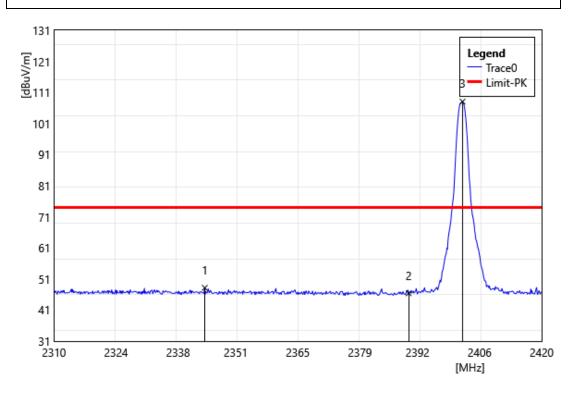
Test Mode: BT 8DPSK 2480 MHz

Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	4960.00	41.00	1.35	42.35	74.00	-31.65	PEAK
2	7440.00	43.02	6.68	49.70	74.00	-24.30	PEAK

Page 43 of 59


Band Edge

Test Site: 96603-WG Standard: Part 15.247

Test Mode: BT GFSK 2402 MHz

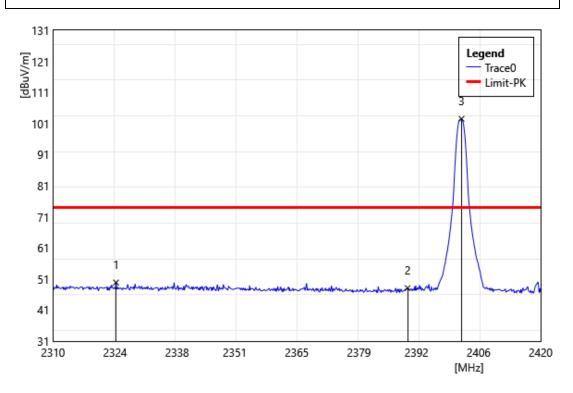
Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2344.01	52.87	-4.69	48.18	74.00	-25.82	PEAK
2	2390.00	51.43	-5.00	46.43	74.00	-27.57	PEAK
3	2402.15	113.16	-5.09	108.07	74.00	34.07	PEAK

Page 44 of 59

Report Number: USRC233301001

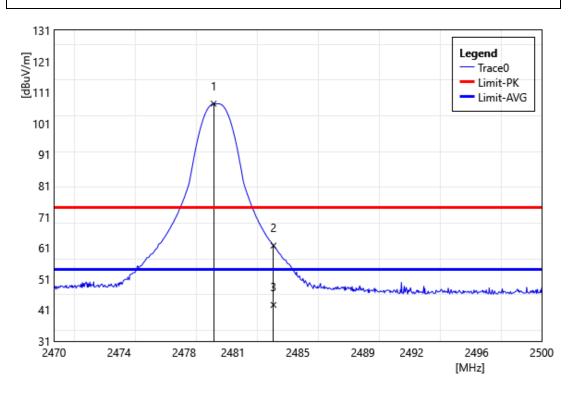

Version: 00

Test Mode: BT GFSK 2402 MHz

Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2324.23	54.61	-4.73	49.88	74.00	-24.12	PEAK
2	2390.00	53.08	-5.00	48.08	74.00	-25.92	PEAK
3	2402.15	107.63	-5.09	102.54	74.00	28.54	PEAK

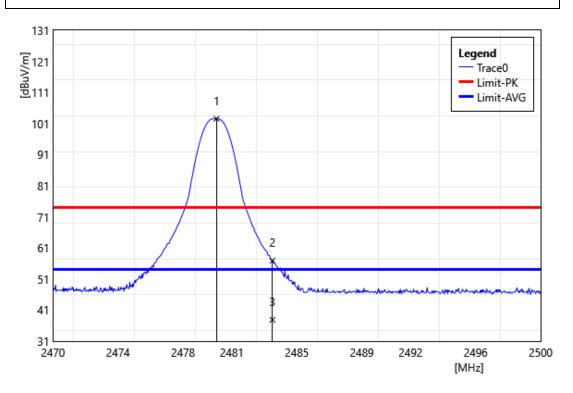

Page 45 of 59

Test Mode: BT GFSK 2480 MHz

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2479.82	112.45	-5.05	107.40	74.00	33.40	PEAK
2	2483.50	66.80	-5.03	61.77	74.00	-12.23	PEAK
3	2483.50	47.71	-5.03	42.68	54.00	-11.32	AVG

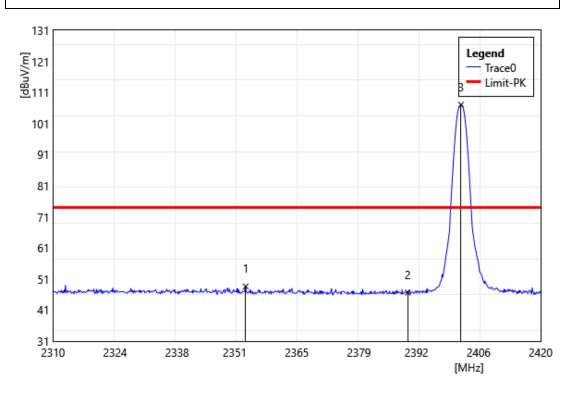

Report Number: USRC233301001 Version: 00

Test Mode: BT GFSK 2480 MHz

Vertical Polarization:

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2480.06	107.62	-5.05	102.57	74.00	28.57	PEAK
2	2483.50	62.00	-5.03	56.97	74.00	-17.03	PEAK
3	2483.50	42.90	-5.03	37.87	54.00	-16.13	AVG

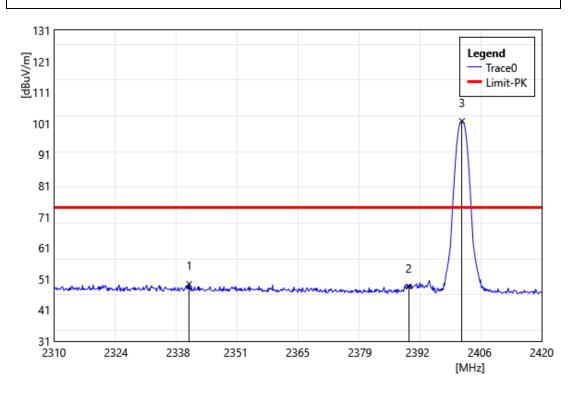

Page 47 of 59 Version: 00

Test Mode: BT 8DPSK 2402 MHz

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2353.46	53.35	-4.71	48.64	74.00	-25.36	PEAK
2	2390.00	51.66	-5.00	46.66	74.00	-27.34	PEAK
3	2402.04	112.18	-5.09	107.09	74.00	33.09	PEAK

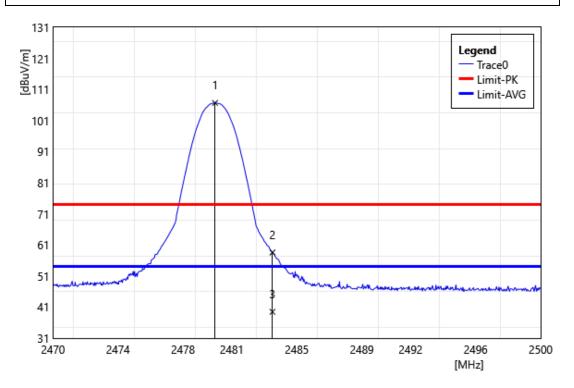

Page 48 of 59

Test Mode: BT 8DPSK 2402 MHz

Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2340.49	54.13	-4.70	49.43	74.00	-24.57	PEAK
2	2390.00	53.62	-5.00	48.62	74.00	-25.38	PEAK
3	2402.04	106.94	-5.09	101.85	74.00	27.85	PEAK

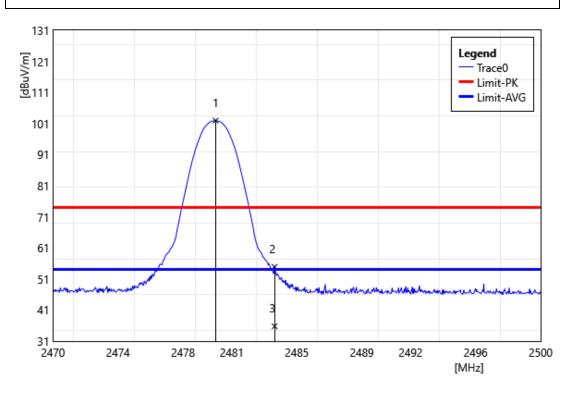

Page 49 of 59 Report Number: USRC233301001

Test Mode: BT 8DPSK 2480 MHz

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2479.97	111.75	-5.05	106.70	74.00	32.70	PEAK
2	2483.50	63.61	-5.03	58.58	74.00	-15.42	PEAK
3	2483.50	44.52	-5.03	39.49	54.00	-14.51	AVG

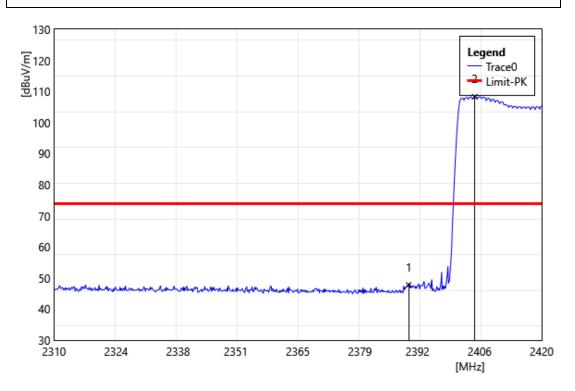

Page 50 of 59 Report Number: USRC233301001

Test Mode: BT 8DPSK 2480 MHz

Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2480.00	107.05	-5.05	102.00	74.00	28.00	PEAK
2	2483.50	59.93	-5.03	54.90	74.00	-19.10	PEAK
3	2483.50	40.84	-5.03	35.81	54.00	-18.19	AVG

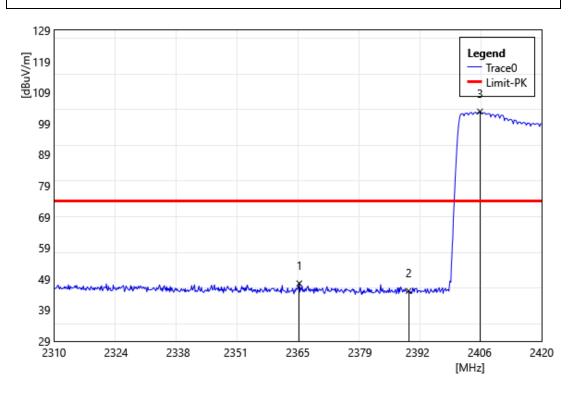

Page 51 of 59

Test Mode: BT GFSK Hopping CH Low

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2390.00	52.76	-5.00	47.76	74.00	-26.24	PEAK
2	2404.89	113.42	-5.10	108.32	74.00	34.32	PEAK

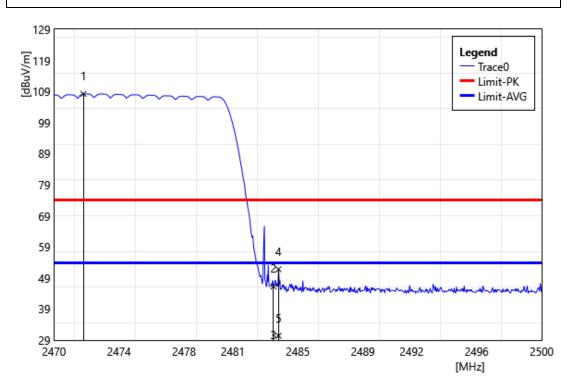

Page 52 of 59

Test Mode: BT GFSK Hopping CH Low

Vertical Polarization:

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2365.33	52.40	-4.80	47.60	74.00	-26.40	PEAK
2	2390.00	50.17	-5.00	45.17	74.00	-28.83	PEAK
3	2406.10	107.98	-5.09	102.89	74.00	28.89	PEAK

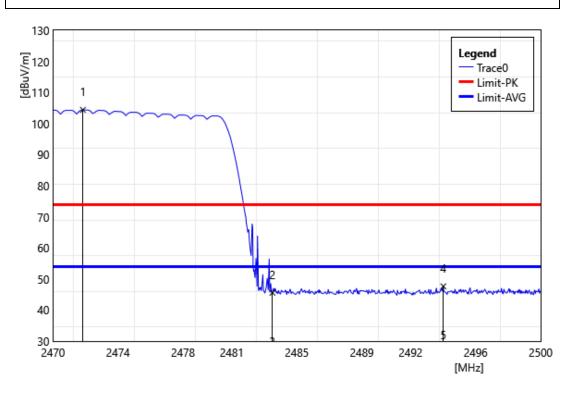

Page 53 of 59 Report Number: USRC233301001

Test Mode: BT GFSK Hopping CH High

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2471.81	113.30	-5.08	108.22	74.00	34.22	PEAK
2	2483.50	51.33	-5.03	46.30	74.00	-27.70	PEAK
3	2483.50	29.92	-5.03	24.89	54.00	-29.11	AVG
4	2483.81	56.85	-5.02	51.83	74.00	-22.17	PEAK
5	2483.81	35.44	-5.02	30.42	54.00	-23.58	AVG

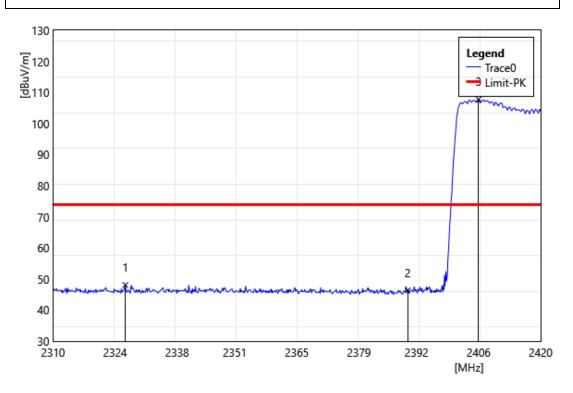

Page 54 of 59 Report Number: USRC233301001

Test Mode: BT GFSK Hopping CH High

Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2471.84	109.51	-5.08	104.43	74.00	30.43	PEAK
2	2483.50	50.61	-5.03	45.58	74.00	-28.42	PEAK
3	2483.50	29.20	-5.03	24.17	54.00	-29.83	AVG
4	2494.01	52.66	-4.99	47.67	74.00	-26.33	PEAK
5	2494.01	31.25	-4.99	26.26	54.00	-27.74	AVG

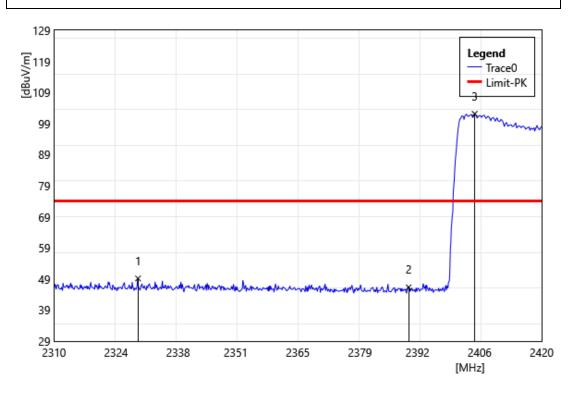

Page 55 of 59 Report Number: USRC233301001

Test Mode: BT 8DPSK Hopping CH Low

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2326.32	52.84	-4.73	48.11	74.00	-25.89	PEAK
2	2390.00	51.33	-5.00	46.33	74.00	-27.67	PEAK
3	2405.99	112.88	-5.09	107.79	74.00	33.79	PEAK

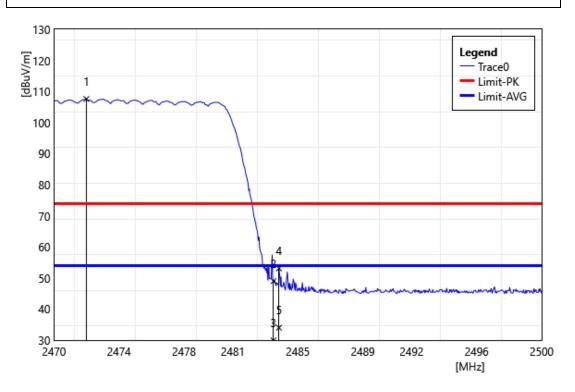

Page 56 of 59

Test Mode: BT 8DPSK Hopping CH Low

Vertical Polarization:

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2328.95	53.90	-4.72	49.18	74.00	-24.82	PEAK
2	2390.00	51.35	-5.00	46.35	74.00	-27.65	PEAK
3	2404.89	107.24	-5.10	102.14	74.00	28.14	PEAK

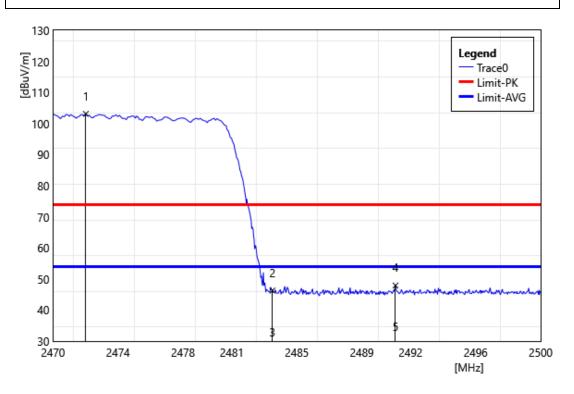

Page 57 of 59

Test Mode: BT 8DPSK Hopping CH High

Polarization: Horizontal

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2471.99	112.68	-5.08	107.60	74.00	33.60	PEAK
2	2483.50	54.05	-5.03	49.02	74.00	-24.98	PEAK
3	2483.50	34.95	-5.03	29.92	54.00	-24.08	AVG
4	2483.84	58.14	-5.02	53.12	74.00	-20.88	PEAK
5	2483.84	39.05	-5.02	34.03	54.00	-19.97	AVG


Page 58 of 59 Report Number: USRC233301001

Test Mode: BT 8DPSK Hopping CH High

Polarization: Vertical

ReMark:

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	ReMark
1	2472.02	108.23	-5.08	103.15	74.00	29.15	PEAK
2	2483.50	51.33	-5.03	46.30	74.00	-27.70	PEAK
3	2483.50	32.24	-5.03	27.21	54.00	-26.79	AVG
4	2491.07	52.92	-5.00	47.92	74.00	-26.08	PEAK
5	2491.07	33.83	-5.00	28.83	54.00	-25.17	AVG

---END---

Page 59 of 59 Report Number: USRC233301001