

FCC ID: R4UARCFLEXEPV  
Report No.: T190422W04-B-RP

IC: 5097A-FLEXEPV

Page: 1 / 39  
Rev.: 04

# FCC RADIO TEST REPORT

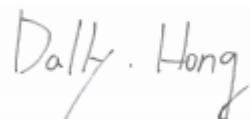
## FCC 47 CFR PART 15 SUBPART C

|                                 |                                                                                                                                                            |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Test Standard</b>            | <b>FCC Part 15.231+ IC RSS-210 Issue 9</b>                                                                                                                 |
| <b>Trade name</b>               | <b>ARC</b>                                                                                                                                                 |
| <b>Product name</b>             | <b>Industrial radio remote control system</b>                                                                                                              |
| <b>Model No.</b>                | <b>FLEX 8EPV</b>                                                                                                                                           |
| <b>Operation Freq.</b>          | <b>433.00MHz – 440.00MHz</b>                                                                                                                               |
| <b>Test Result</b>              | <b>Pass</b>                                                                                                                                                |
| <b>Statements of Conformity</b> | <b>Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.</b> |

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of SGS Compliance Certification Services Inc. (Wugu Laboratory)


Approved by:



---

Kevin Tsai  
Deputy Manager

Reviewed by:



---

Dally Hong  
Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.  
除非另有說明，此報告結果僅對測試之樣品負責，同時此樣品僅保留90天。本報告未經本公司書面許可，不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at [www.sgs.com/terms\\_and\\_conditions.htm](http://www.sgs.com/terms_and_conditions.htm) and for electronic format documents, subject to Terms and Conditions for Electronic Documents at [www.sgs.com/terms\\_e-document.htm](http://www.sgs.com/terms_e-document.htm). Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

## Revision History

| Rev. | Issue Date         | Revisions                       | Effect page                                                      | Revised By   |
|------|--------------------|---------------------------------|------------------------------------------------------------------|--------------|
| 00   | July 25, 2019      | Initial Issue                   | ALL                                                              | Allison Chen |
| 01   | September 16, 2019 | See the following note Rev.(01) | P.4-6, P.8,<br>P.10-11,<br>P.16-18,<br>P.20-24, P.26,<br>P.30-39 | Allison Chen |
| 02   | September 25, 2019 | See the following note Rev.(02) | P.8-9, P.14,<br>P.16, P.20-24,<br>P.30-37                        | Allison Chen |
| 03   | November 6, 2019   | See the following note Rev.(03) | P.1, P.4, P.A-3                                                  | Allison Chen |
| 04   | November 7, 2019   | See the following note Rev.(04) | P.27, P.30-37                                                    | Allison Chen |

**Rev.(01)**

1. *Modify number of frequencies to be tested and channel list in section 1.2*
2. *Modify the equipment cali.in section 1.6*
3. *Modify test summery in section 2 and rf filed strength in section 3.1*
4. *Modify test data in section 4.2, 4.3, 4.4, 4.5*
5. *Modify test limit in section 4.4.1*

**Rev.(02)**

1. *Modify instrument calibration in section 1.6*
2. *Modify test procedure RBW=10kHz in section 4.2*
3. *Modify duty factor in section 3.4, 4.3 and 4.4*

**Rev.(03)**

1. *Modify model name*
2. *Modify test setup photo for conducted emission*

**Rev.(04)**

1. *Added description for duty factor*

## Table of contents

|                                                                 |           |
|-----------------------------------------------------------------|-----------|
| <b>1. GENERAL INFORMATION .....</b>                             | <b>4</b>  |
| <b>1.1 EUT INFORMATION .....</b>                                | <b>4</b>  |
| <b>1.2 EUT CHANNEL INFORMATION .....</b>                        | <b>5</b>  |
| <b>1.3 ANTENNA INFORMATION .....</b>                            | <b>7</b>  |
| <b>1.4 MEASUREMENT UNCERTAINTY .....</b>                        | <b>7</b>  |
| <b>1.5 FACILITIES AND TEST LOCATION .....</b>                   | <b>8</b>  |
| <b>1.6 INSTRUMENT CALIBRATION .....</b>                         | <b>8</b>  |
| <b>1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT .....</b>          | <b>9</b>  |
| <b>1.8 TEST METHODOLOGY AND APPLIED STANDARDS .....</b>         | <b>9</b>  |
| <b>2. TEST SUMMERY .....</b>                                    | <b>10</b> |
| <b>3. DESCRIPTION OF TEST MODES .....</b>                       | <b>11</b> |
| <b>3.1 THE WORST MODE OF OPERATING CONDITION .....</b>          | <b>11</b> |
| <b>3.2 THE WORST MODE OF MEASUREMENT .....</b>                  | <b>11</b> |
| <b>3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS .....</b> | <b>12</b> |
| <b>3.4 EUT DUTY CYCLE .....</b>                                 | <b>14</b> |
| <b>4. TEST RESULT .....</b>                                     | <b>15</b> |
| <b>4.1 AC POWER LINE CONDUCTED EMISSION .....</b>               | <b>15</b> |
| <b>4.2 EMISSION BANDWIDTH .....</b>                             | <b>16</b> |
| <b>4.3 FIELD STRENGTH OF FUNDAMENTAL .....</b>                  | <b>19</b> |
| <b>4.4 RADIATION UNWANTED EMISSION .....</b>                    | <b>25</b> |
| <b>4.5 OPERATION RESTRICTION .....</b>                          | <b>38</b> |
| <b>APPENDIX 1 – PHOTOGRAPHS OF EUT</b>                          |           |

## 1. GENERAL INFORMATION

### 1.1 EUT INFORMATION

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant           | ADVANCED RADIOTECH CORPORATION<br>No. 3, South 1st Road, Chien Chen District, Kaohsiung City, Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Manufacturer        | ADVANCED RADIOTECH CORPORATION<br>No. 3, South 1st Road, Chien Chen District, Kaohsiung City, Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Equipment           | Industrial radio remote control system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model Name          | FLEX 8EPV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Model Discrepancy   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Received Date       | April 22, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Date of Test        | May 23 ~ September 12, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Periodic operation  | <input checked="" type="checkbox"/> (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.<br><input type="checkbox"/> (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation<br><input type="checkbox"/> (3) Periodic transmissions at regular predetermined intervals are not permitted.<br><input type="checkbox"/> (4) Periodic transmissions (lower field strength): each transmission is not greater than 1 sec and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 sec. |
| Power Operation     | Power from battery: DC 3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Operation Frequency | 433.00MHz – 440.00 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| S/W Version         | V1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| H/W Version         | V.01.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Remark              | 1. Using the same FCC ID (R4UARCFLEXEPV) & IC (5097A-FLEXEPV) with the test report (T190422W04-A-RP and T190422W04-B-RP).<br>2. Transmitter (FLEX 8EPV and FLEX 12EPV) is difference between number of buttons, but using same module and same receiver.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## 1.2 EUT CHANNEL INFORMATION

|                    |                   |
|--------------------|-------------------|
| Frequency Range    | 433.00-440.00 MHz |
| Modulation Type    | GFSK              |
| Bandwidth          | 50 KHz            |
| Number of Channels | 141 channels      |

**Remark:**

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

| Number of frequencies to be tested                  |                       |                                              |
|-----------------------------------------------------|-----------------------|----------------------------------------------|
| Frequency range in which device operates            | Number of frequencies | Location in frequency range of operation     |
| <input type="checkbox"/> 1 MHz or less              | 1                     | Middle                                       |
| <input checked="" type="checkbox"/> 1 MHz to 10 MHz | 2                     | 1 near top and 1 near bottom                 |
| <input type="checkbox"/> More than 10 MHz           | 3                     | 1 near top, 1 near middle, and 1 near bottom |

## Channel List

| CH | Freq.(MHz) | CH | Freq.(MHz) | CH | Freq.(MHz) | CH  | Freq.(MHz) | CH  | Freq.(MHz) |
|----|------------|----|------------|----|------------|-----|------------|-----|------------|
| 1  | 433.000    | 31 | 434.50     | 61 | 436.000    | 91  | 437.500    | 121 | 439.000    |
| 2  | 433.050    | 32 | 434.55     | 62 | 436.050    | 92  | 437.550    | 122 | 439.050    |
| 3  | 433.100    | 33 | 434.60     | 63 | 436.100    | 93  | 437.600    | 123 | 439.100    |
| 4  | 433.150    | 34 | 434.65     | 64 | 436.150    | 94  | 437.650    | 124 | 439.150    |
| 5  | 433.200    | 35 | 434.70     | 65 | 436.200    | 95  | 437.700    | 125 | 439.200    |
| 6  | 433.250    | 36 | 434.75     | 66 | 436.250    | 96  | 437.750    | 126 | 439.250    |
| 7  | 433.300    | 37 | 434.80     | 67 | 436.300    | 97  | 437.800    | 127 | 439.300    |
| 8  | 433.350    | 38 | 434.85     | 68 | 436.350    | 98  | 437.850    | 128 | 439.350    |
| 9  | 433.400    | 39 | 434.90     | 69 | 436.400    | 99  | 437.900    | 129 | 439.400    |
| 10 | 433.450    | 40 | 434.95     | 70 | 436.450    | 100 | 437.950    | 130 | 439.450    |
| 11 | 433.500    | 41 | 435.00     | 71 | 436.500    | 101 | 438.000    | 131 | 439.500    |
| 12 | 433.550    | 42 | 435.05     | 72 | 436.550    | 102 | 438.050    | 132 | 439.550    |
| 13 | 433.600    | 43 | 435.10     | 73 | 436.600    | 103 | 438.100    | 133 | 439.600    |
| 14 | 433.650    | 44 | 435.15     | 74 | 436.650    | 104 | 438.150    | 134 | 439.650    |
| 15 | 433.700    | 45 | 435.20     | 75 | 436.700    | 105 | 438.200    | 135 | 439.700    |
| 16 | 433.750    | 46 | 435.25     | 76 | 436.750    | 106 | 438.250    | 136 | 439.750    |
| 17 | 433.800    | 47 | 435.30     | 77 | 436.800    | 107 | 438.300    | 137 | 439.800    |
| 18 | 433.850    | 48 | 435.35     | 78 | 436.850    | 108 | 438.350    | 138 | 439.850    |
| 19 | 433.900    | 49 | 435.40     | 79 | 436.900    | 109 | 438.400    | 139 | 439.900    |
| 20 | 433.950    | 50 | 435.45     | 80 | 436.950    | 110 | 438.450    | 140 | 439.950    |
| 21 | 434.000    | 51 | 435.50     | 81 | 437.000    | 111 | 438.500    | 141 | 440.000    |
| 22 | 434.050    | 52 | 435.55     | 82 | 437.050    | 112 | 438.550    |     |            |
| 23 | 434.100    | 53 | 435.60     | 83 | 437.100    | 113 | 438.600    |     |            |
| 24 | 434.150    | 54 | 435.65     | 84 | 437.150    | 114 | 438.650    |     |            |
| 25 | 434.200    | 55 | 435.70     | 85 | 437.200    | 115 | 438.700    |     |            |
| 26 | 434.250    | 56 | 435.75     | 86 | 437.250    | 116 | 438.750    |     |            |
| 27 | 434.300    | 57 | 435.80     | 87 | 437.300    | 117 | 438.800    |     |            |
| 28 | 434.350    | 58 | 435.85     | 88 | 437.350    | 118 | 438.850    |     |            |
| 29 | 434.400    | 59 | 435.90     | 89 | 437.400    | 119 | 438.900    |     |            |
| 30 | 434.450    | 60 | 435.95     | 90 | 437.450    | 120 | 438.950    |     |            |

### 1.3 ANTENNA INFORMATION

|                   |                                                                                                                                                                                   |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antenna Type      | <input type="checkbox"/> PIFA<br><input checked="" type="checkbox"/> PCB<br><input type="checkbox"/> Dipole<br><input type="checkbox"/> Printed<br><input type="checkbox"/> Coils |
| Antenna Gain      | 0 dBi                                                                                                                                                                             |
| Antenna Connector | N/A                                                                                                                                                                               |

### 1.4 MEASUREMENT UNCERTAINTY

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| AC Powerline Conducted Emission       | +/- 1.2575  |
| Emission bandwidth, 20dB bandwidth    | +/- 0.0014  |
| RF output power, conducted            | +/- 1.14    |
| Power density, conducted              | +/- 1.40    |
| 3M Semi Anechoic Chamber / 30M~200M   | +/- 4.12    |
| 3M Semi Anechoic Chamber / 200M~1000M | +/- 4.68    |
| 3M Semi Anechoic Chamber / 1G~8G      | +/- 5.18    |
| 3M Semi Anechoic Chamber / 8G~18G     | +/- 5.47    |
| 3M Semi Anechoic Chamber / 18G~26G    | +/- 3.81    |
| 3M Semi Anechoic Chamber / 26G~40G    | +/- 3.87    |

**Remark:**

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of  $k=2$
2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Report No.: T190422W04-B-RP

## 1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at  
 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

| Test site          | Test Engineer | Remark                                                                |
|--------------------|---------------|-----------------------------------------------------------------------|
| AC Conduction Room | -             | Not applicable, because EUT doesn't connect to AC Main Source direct. |
| Radiation          | Jerry Lu      | -                                                                     |
| RF Conducted       | Dally Hong    | -                                                                     |

**Remark:** The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

## 1.6 INSTRUMENT CALIBRATION

| RF Conducted Test Site |              |        |        |            |            |
|------------------------|--------------|--------|--------|------------|------------|
| Equipment              | Manufacturer | Model  | S/N    | Cal Date   | Cal Due    |
| Coaxial Cable          | Woken        | WC12   | CC003  | 06/28/2019 | 06/27/2020 |
| Signal Analyzer        | R&S          | FSV 40 | 101073 | 09/27/2018 | 09/26/2019 |
| Software               | N/A          |        |        |            |            |

For Section 3.4: Test date: May 23, 2019

| 3M 966 Chamber Test Site         |                         |                 |             |            |            |
|----------------------------------|-------------------------|-----------------|-------------|------------|------------|
| Equipment                        | Manufacturer            | Model           | S/N         | Cal Date   | Cal Due    |
| Bilog Antenna                    | Sunol Sciences          | JB3             | A030105     | 07/13/2018 | 07/12/2019 |
| Cable                            | HUBER SUHNER            | SUCOFLEX 104PEA | 25157       | 02/26/2019 | 02/25/2020 |
| Cable                            | HUBER SUHNER            | SUCOFLEX 104PEA | 20995       | 02/26/2019 | 02/25/2020 |
| Digital Thermo-Hygro Meter       | WISEWIND                | 1206            | D07         | 01/30/2019 | 01/29/2020 |
| double Ridged Guide Horn Antenna | ETC                     | MCTD 1209       | DRH13M02003 | 08/20/2018 | 08/19/2019 |
| High Pass Filter                 | SOLVANG TECHNOLOGY INC. | STI15           | 9923        | 02/26/2019 | 02/25/2020 |
| Loop Ant                         | COM-POWER               | AL-130          | 121051      | 03/22/2019 | 03/21/2020 |
| Pre-Amplifier                    | EMEC                    | EM330           | 060609      | 02/26/2019 | 02/25/2020 |
| Pre-Amplifier                    | HP                      | 8449B           | 3008A00965  | 02/26/2019 | 02/25/2020 |
| PSA Series Spectrum Analyzer     | Agilent                 | E4446A          | MY46180323  | 05/31/2018 | 05/30/2019 |
| Antenna Tower                    | CCS                     | CC-A-1F         | N/A         | N.C.R      | N.C.R      |
| Controller                       | CCS                     | CC-C-1F         | N/A         | N.C.R      | N.C.R      |
| Turn Table                       | CCS                     | CC-T-1F         | N/A         | N.C.R      | N.C.R      |
| Software                         | e3 6.11-20180413        |                 |             |            |            |

**Remark:** Each piece of equipment is scheduled for calibration once a year.

**For Section 4.3, 4.4: Test date: September 11, 2019**

| 3M 966 Chamber Test Site     |                         |                 |            |            |            |
|------------------------------|-------------------------|-----------------|------------|------------|------------|
| Equipment                    | Manufacturer            | Model           | S/N        | Cal Date   | Cal Due    |
| Bilog Antenna                | Sunol Sciences          | JB3             | A030105    | 07/26/2019 | 07/25/2020 |
| Cable                        | HUBER SUHNER            | SUCOFLEX 104PEA | 25157      | 02/26/2019 | 02/25/2020 |
| Cable                        | HUBER SUHNER            | SUCOFLEX 104PEA | 20995      | 02/26/2019 | 02/25/2020 |
| Digital Thermo-Hygro Meter   | WISEWIND                | 1206            | D07        | 01/30/2019 | 01/29/2020 |
| High Pass Filter             | SOLVANG TECHNOLOGY INC. | STI15           | 9923       | 02/26/2019 | 02/25/2020 |
| Horn Antenna                 | ETS LINDGREN            | 3117            | 00143280   | 07/16/2019 | 07/15/2020 |
| Loop Ant                     | COM-POWER               | AL-130          | 121051     | 03/22/2019 | 03/21/2020 |
| Pre-Amplifier                | EMEC                    | EM330           | 060609     | 02/26/2019 | 02/25/2020 |
| Pre-Amplifier                | HP                      | 8449B           | 3008A00965 | 02/26/2019 | 02/25/2020 |
| PSA Series Spectrum Analyzer | Agilent                 | E4446A          | MY46180323 | 05/29/2019 | 05/28/2020 |
| Antenna Tower                | CCS                     | CC-A-1F         | N/A        | N.C.R      | N.C.R      |
| Controller                   | CCS                     | CC-C-1F         | N/A        | N.C.R      | N.C.R      |
| Turn Table                   | CCS                     | CC-T-1F         | N/A        | N.C.R      | N.C.R      |
| Software                     | e3 6.11-20180413        |                 |            |            |            |

**Remark:** Each piece of equipment is scheduled for calibration once a year.

## 1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

There are no accessories and support equipment be used during the test.

| EUT Accessories Equipment |           |       |       |            |        |
|---------------------------|-----------|-------|-------|------------|--------|
| No.                       | Equipment | Brand | Model | Series No. | FCC ID |
|                           | N/A       |       |       |            |        |

| Support Equipment |           |       |       |            |        |
|-------------------|-----------|-------|-------|------------|--------|
| No.               | Equipment | Brand | Model | Series No. | FCC ID |
|                   | N/A       |       |       |            |        |

## 1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC 15.231, IC RSS-210, IC RSS-Gen Rules.

Report No.: T190422W04-B-RP

## 2. TEST SUMMARY

| FCC Standard Sec. | IC Standard Sec. | Chapter | Test Item                        | Result         |
|-------------------|------------------|---------|----------------------------------|----------------|
| 15.203            | RSS-GEN Sec. 8.3 | 1.3     | Antenna Requirement              | Pass           |
| 15.207            | RSS-GEN Sec. 8.8 | 4.1     | AC Power-line Conducted Emission | Not applicable |
| 15.231(c)         | RSS-210 A.1.3    | 4.2     | Emission Bandwidth               | Pass           |
| 15.231(b)         | RSS-210 A.1.2    | 4.3     | Fundamental Emission             | Pass           |
| 15.209(b)         | RSS-GEN Sec. 8.9 | 4.4     | Transmitter Radiated Emission    | Pass           |
| 15.231(a)(1)      | RSS-210 A.1.1    | 4.5     | Operation Restriction            | Pass           |

### 3. DESCRIPTION OF TEST MODES

#### 3.1 THE WORST MODE OF OPERATING CONDITION

|                   |                                                            |
|-------------------|------------------------------------------------------------|
| Operation mode    | 433.00 MHz -440.00MHz                                      |
| RF Filed strength | <u>Peak: 99.67 dBuv/m</u><br><u>Average : 75.24 dBuv/m</u> |

Remark: Field strength performed Average level at 3m.

#### 3.2 THE WORST MODE OF MEASUREMENT

| Radiated Emission Measurement Above 1G |                                                                                                                                                                                                                                                                                               |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Condition                         | Band edge, Emission for Unwanted and Fundamental                                                                                                                                                                                                                                              |
| Power supply Mode                      | Mode 1:EUT power by Battery 3 v                                                                                                                                                                                                                                                               |
| Worst Mode                             | <input checked="" type="checkbox"/> Mode 1 <input type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4                                                                                                                                                    |
| Worst Position                         | <input type="checkbox"/> Placed in fixed position.<br><input type="checkbox"/> Placed in fixed position at X-Plane (E2-Plane)<br><input type="checkbox"/> Placed in fixed position at Y-Plane (E1-Plane)<br><input checked="" type="checkbox"/> Placed in fixed position at Z-Plane (H-Plane) |
| Worst Polarity                         | <input checked="" type="checkbox"/> Horizontal <input checked="" type="checkbox"/> Vertical                                                                                                                                                                                                   |

| Radiated Emission Measurement Below 1G |                                                                                                                                            |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Test Condition                         | Radiated Emission Below 1G                                                                                                                 |
| Power supply Mode                      | Mode 1:EUT power by Battery 3 v                                                                                                            |
| Worst Mode                             | <input checked="" type="checkbox"/> Mode 1 <input type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4 |

Remark:

1. The worst mode was record in this test report.
2. EUT pre-scanned in three axis ,X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Z-Plane) were recorded in this report

### 3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

According to FCC 15.231(b), 15.231(e),

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

| Fundamental frequency (MHz) | Field strength of fundamental (microvolts/meter) | Field strength of spurious emissions (microvolts/meter) |
|-----------------------------|--------------------------------------------------|---------------------------------------------------------|
| 40.66-40.70                 | 2,250                                            | 225                                                     |
| 70-130                      | 1,250                                            | 125                                                     |
| 130-174                     | <sup>1</sup> 1,250 to 3,750                      | <sup>1</sup> 125 to 375                                 |
| 174-260                     | 3,750                                            | 375                                                     |
| 260-470                     | <sup>1</sup> 3,750 to 12,500                     | <sup>1</sup> 375 to 1,250                               |
| Above 470                   | 12,500                                           | 1,250                                                   |

<sup>1</sup>Linear interpolations.

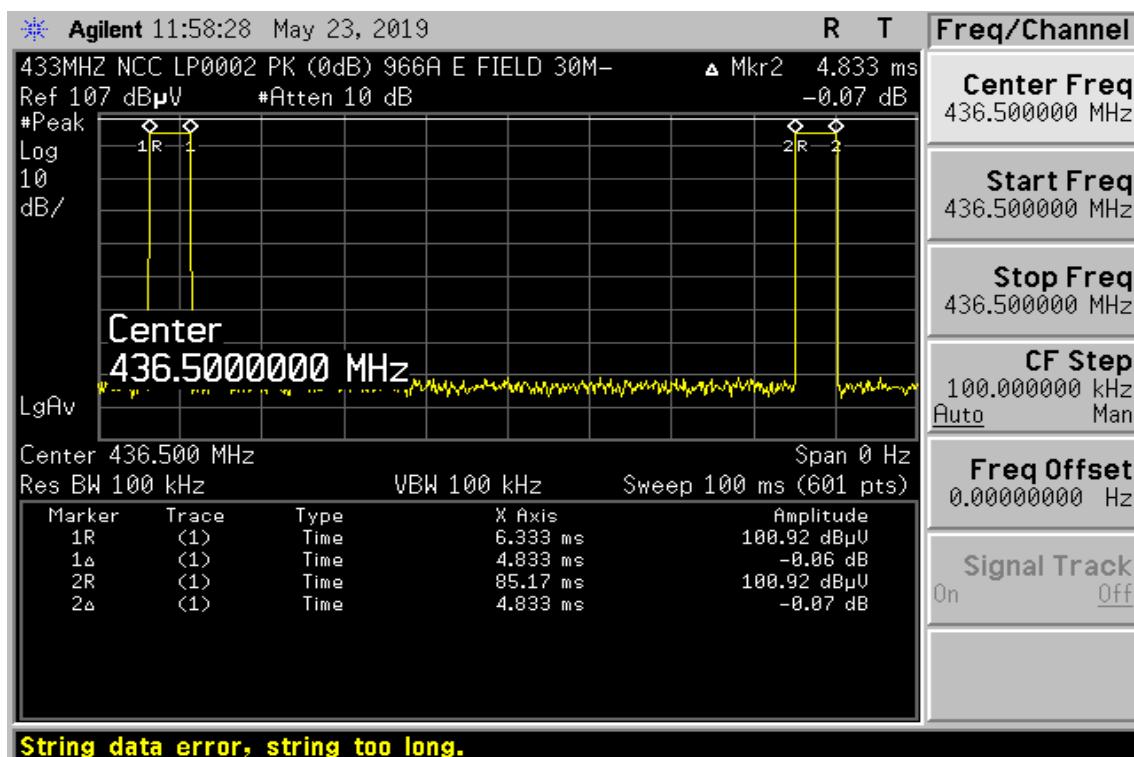
(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

| Fundamental frequency (MHz) | Field strength of fundamental (microvolts/meter) | Field strength of spurious emissions (microvolts/meter) |
|-----------------------------|--------------------------------------------------|---------------------------------------------------------|
| 40.66-40.70                 | 1,000                                            | 100                                                     |
| 70-130                      | 500                                              | 50                                                      |
| 130-174                     | 500 to 1,500 <sup>1</sup>                        | 50 to 150 <sup>1</sup>                                  |
| 174-260                     | 1,500                                            | 150                                                     |
| 260-470                     | 1,500 to 5,000 <sup>1</sup>                      | 150 to 500 <sup>1</sup>                                 |
| Above 470                   | 5,000                                            | 500                                                     |


<sup>1</sup>Linear interpolations.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

### 3.4 EUT DUTY CYCLE

#### 433MHz - 434MHz

| Duty Cycle |            |            |                 |
|------------|------------|------------|-----------------|
| TX ON (ms) | TX All(ms) | Duty Cycle | Duty Factor(dB) |
| 4.833      | 78.83      | 6.13%      | -24.25          |



#### Notes:

1. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by  $20 \log (Time_{(on)}) / [Period \text{ or } 100 \text{ ms whichever is the lesser}]$
2. The EUT transmits for a Time<sub>(on)</sub> of 4.833 milliseconds.

20 log (Time<sub>(on)</sub>) / [Period or 100 ms whichever is the lesser]).

20 log (4.833/78.83) = -24.25dB

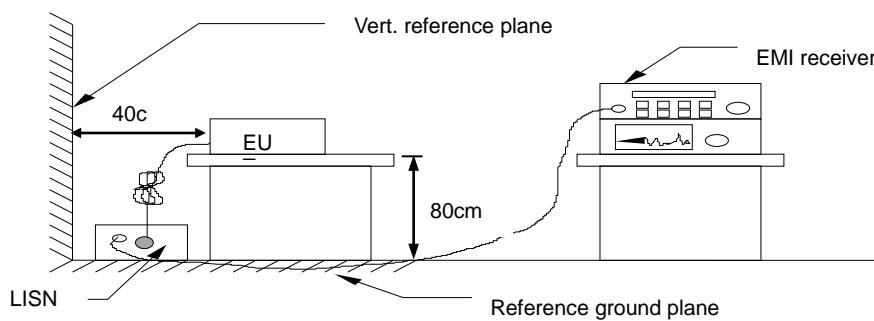
## 4. TEST RESULT

### 4.1 AC POWER LINE CONDUCTED EMISSION

#### 4.1.1 Test Limit

According to §15.207(a), RSS-Gen Sec.8.8,

| Frequency Range<br>(MHz) | Limits(dB $\mu$ V) |           |
|--------------------------|--------------------|-----------|
|                          | Quasi-peak         | Average   |
| 0.15 to 0.50             | 66 to 56*          | 56 to 46* |
| 0.50 to 5                | 56                 | 46        |
| 5 to 30                  | 60                 | 50        |


\* Decreases with the logarithm of the frequency.

#### 4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

1. The EUT was placed on a table, which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete

#### 4.1.3 Test Setup



#### 4.1.4 Test Result

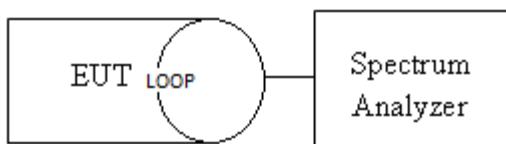
Not applicable

## 4.2 EMISSION BANDWIDTH

### 4.2.1 Test Limit

According to §15.231(c), RSS-210 A.1.3 ,

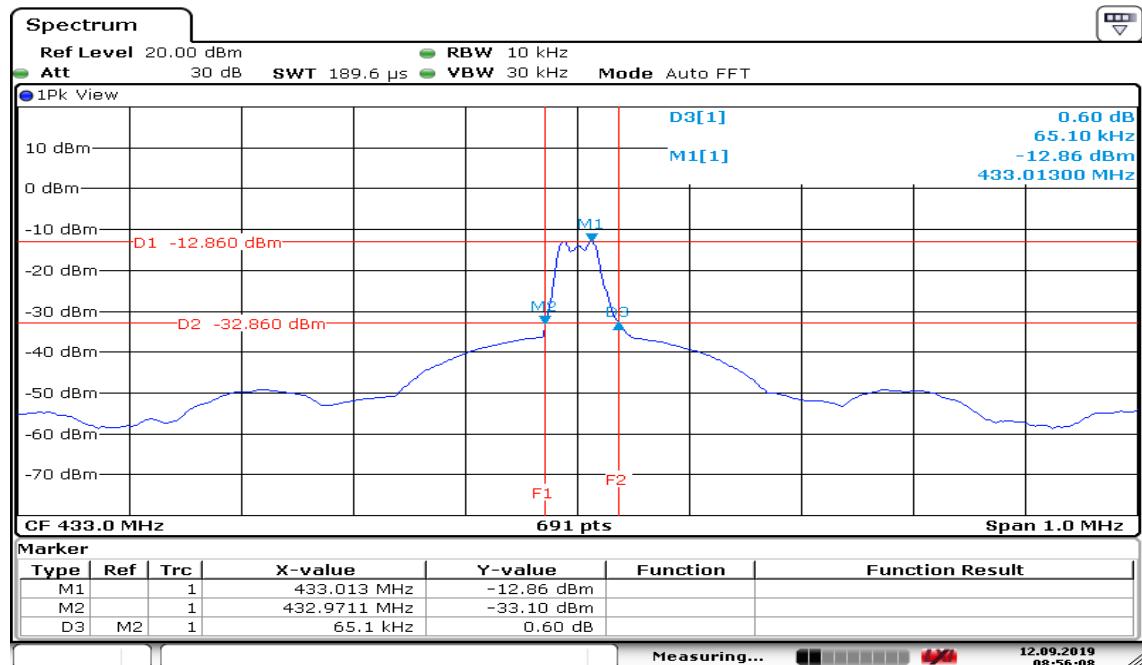
|       |                                                                                                                                   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|
| Limit | <input checked="" type="checkbox"/> 70 MHz – 900 MHz : $F_c * 0.25 \%$<br><input type="checkbox"/> Above 900 MHz : $F_c * 0.5 \%$ |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|


### 4.2.2 Test Procedure

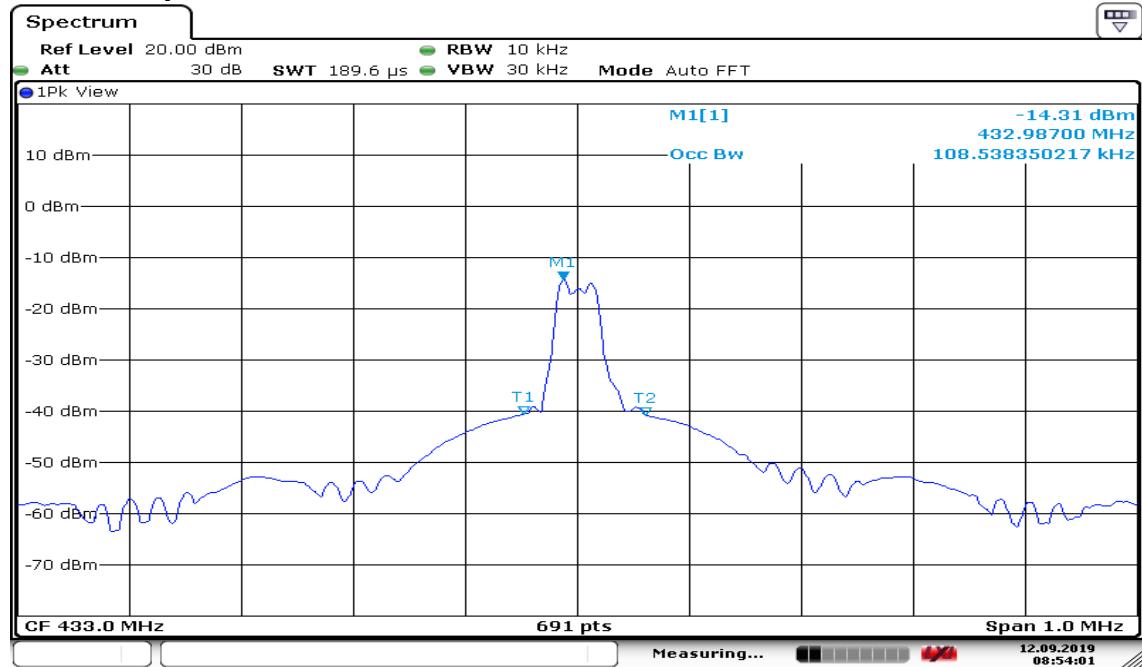
Test method Refer as ANSI 63.10:2013 clause 6.9.2,

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=10KHz, VBW=30KHz, Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the 20dB Bandwidth.

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the Occupied Bandwidth (99%).


### 4.2.3 Test Setup

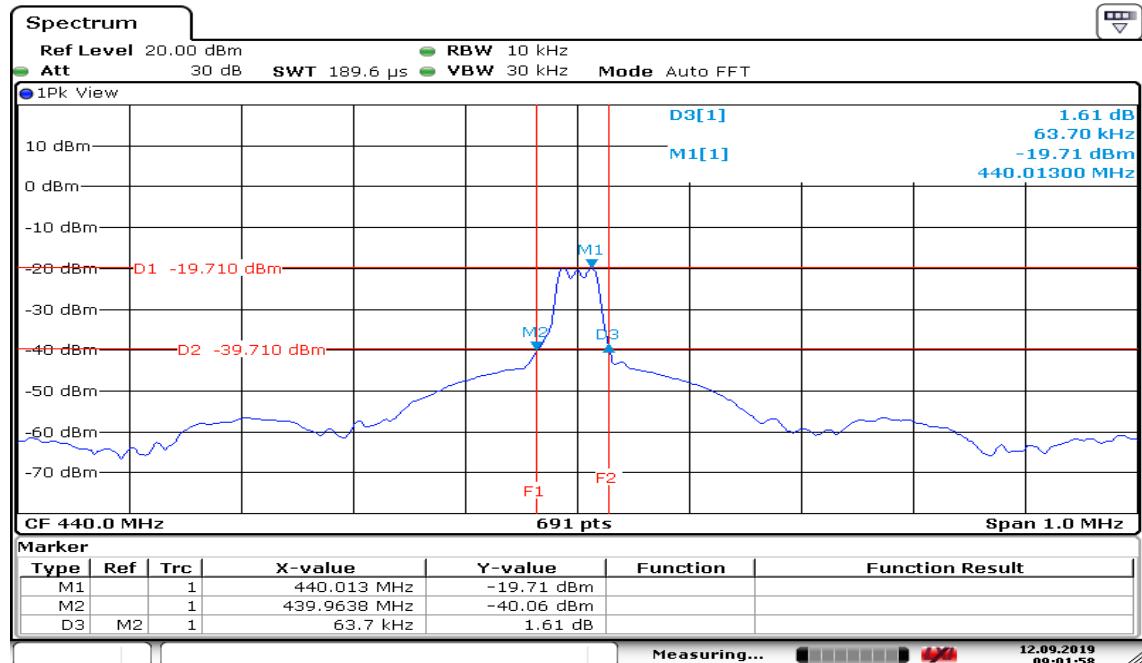



### 4.2.4 Test Result

| Spectrum Bandwidth |                      |                             |                       |                            |
|--------------------|----------------------|-----------------------------|-----------------------|----------------------------|
| Frequency (MHz)    | 20dB Bandwidth (KHz) | 20dB Bandwidth Limits (MHz) | 99% Occupied BW (KHz) | 99% Bandwidth Limits (MHz) |
| 433                | 65.1                 | 1.0825                      | 108.538               | 1.0825                     |
| 440                | 63.7                 | 1.1000                      | 153.400               | 1.1000                     |

Report No.: T190422W04-B-RP

**Test Data****433MHz  
20dB Bandwidth**


Date: 12.SEP.2019 08:56:07

**99% Occupied BW**

Date: 12.SEP.2019 08:54:01


## 440MHz

### 20dB Bandwidth



Date: 12.SEP.2019 09:01:57

## 99% Occupied BW



Date: 12.SEP.2019 08:59:58

## 4.3 FIELD STRENGTH OF FUNDAMENTAL

### 4.3.1 Test Limit

According to §15.231(b)

| Fundamental frequency (MHz) | Field strength of fundamental (microvolts/meter) | Field strength of fundamental (microvolts/meter) |
|-----------------------------|--------------------------------------------------|--------------------------------------------------|
| 40.66-40.70                 | 2,250                                            | 225                                              |
| 70-130                      | 1,250                                            | 125                                              |
| 130-174                     | <sup>1</sup> 1,250 to 3,750                      | <sup>1</sup> 125 to 375                          |
| 174-260                     | 3,750                                            | 375                                              |
| 260-470                     | <sup>1</sup> 3,750 to 12,500                     | <sup>1</sup> 375 to 1,250                        |
| Above 470                   | 12,500                                           | 1,250                                            |

According to RSS-210 A.1.2

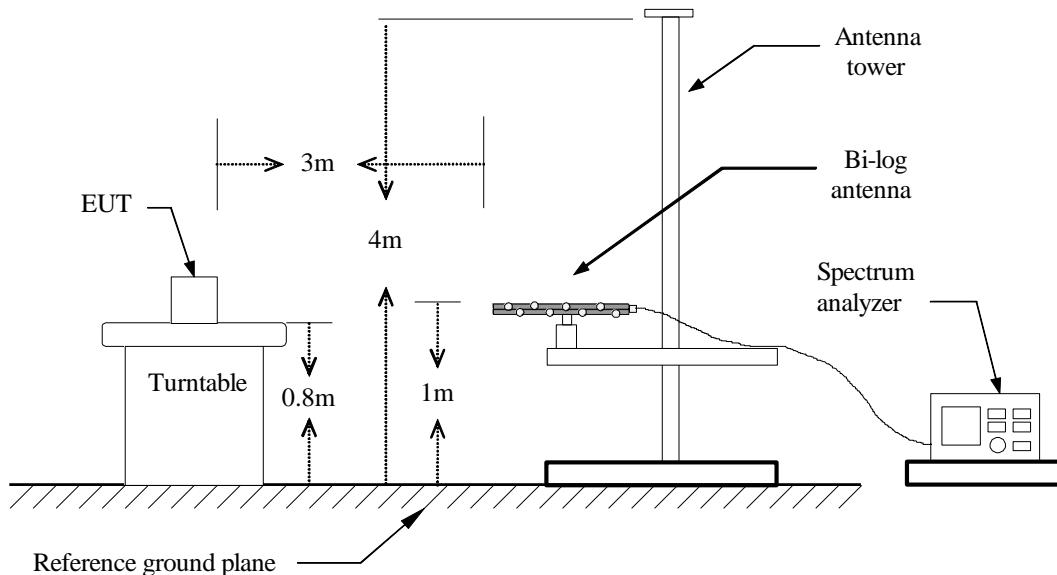
Table A1—Permissible Field Strength Limits for Momentarily Operated Devices

| Fundamental Frequency (MHz), Excluding Restricted Frequency Bands Specified in RSS-Gen | Field Strength of the Fundamental Emissions ( $\mu$ V/m at 3 m) |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 70-130                                                                                 | 1,250                                                           |
| 130-174                                                                                | 1,250 to 3,750*                                                 |
| 174-260 (Note 1)                                                                       | 3,750                                                           |
| 260-470 (Note 1)                                                                       | 3,750 to 12,500*                                                |
| Above 470                                                                              | 12,500                                                          |

\* Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength ( $\mu$ V/m) =  $(56.82 \times f) - 6136$

For 260-470 MHz: Field Strength ( $\mu$ V/m) =  $(41.67 \times f) - 7083$


**Note 1:** Frequency bands 225-328.6 MHz and 335.4-399.9 MHz are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

### 4.3.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 4.1.4 and clause 6.5

|              |                                                                                                                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| clause 4.1.4 | <input checked="" type="checkbox"/> 4.1.4.2.2: Measurement Peak value.<br><input type="checkbox"/> 4.1.4.2.3: Duty cycle $\geq 100\%$ .<br><input checked="" type="checkbox"/> 4.1.4.2.4: Measurement Average value. |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### 4.3.3 Test Setup

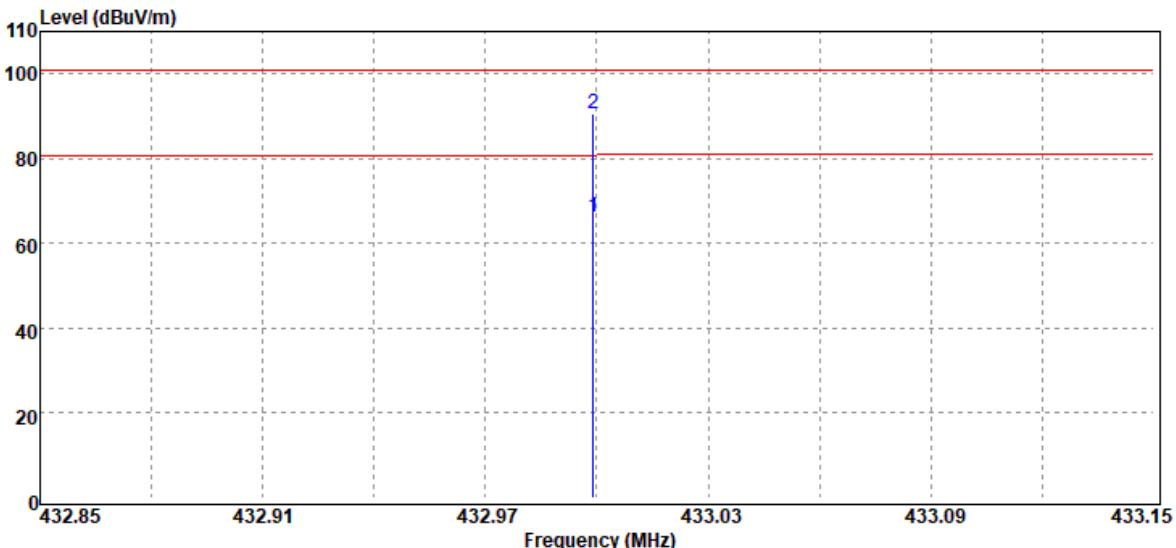


### 4.3.4 Test Result

| Field Strength  |                            |                      |             |           |        |
|-----------------|----------------------------|----------------------|-------------|-----------|--------|
| Frequency (MHz) | Fundamental (dBuV/m) at 3m | Limit (dBuV/m) at 3m | Margin (dB) | Axis/Pol. | Remark |
| 433             | 74.22                      | 80.79                | -6.57       | Z/H       | AVG    |

**Remark:**

1. Fundamental measured method setting on spectrum,  $RBW=100\text{ kHz}$ ,  $VBW=100\text{kHz}$  and  $Detector=Peak$ .
2. Average result = Peak result + Duty factor =  $98.47\text{ dBuV/m} - 24.25 = 74.22\text{ dBuV/m}$
3.  $260\text{MHz} \sim 470\text{MHz}$  limit is  $41.6667 * (Frequency, \text{MHz}) - 7083.3333$   
 $Limit = 41.6667 * (433\text{ MHz}) - 7083.3333$   
 $= 10958.35\text{ (uV/m)}$   
 $dBuV/m = 20 \log(uV/m) = 20 \log(10958.35\text{ uV/m}) = 80.79\text{ dBuV/m}$

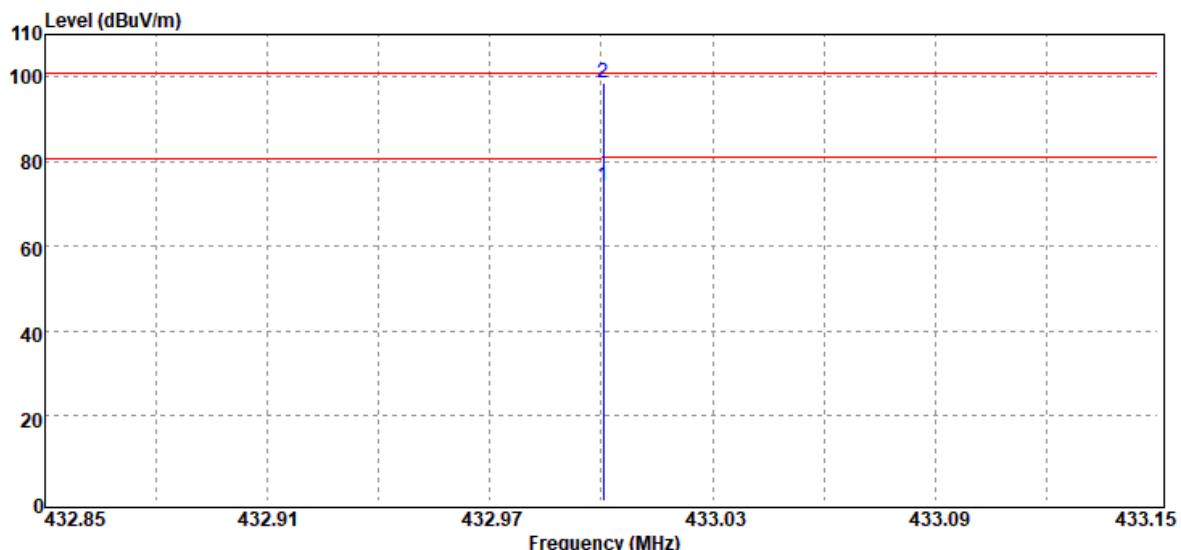

| Field Strength  |                            |                      |             |           |        |
|-----------------|----------------------------|----------------------|-------------|-----------|--------|
| Frequency (MHz) | Fundamental (dBuV/m) at 3m | Limit (dBuV/m) at 3m | Margin (dB) | Axis/Pol. | Remark |
| 440             | 74.42                      | 81.02                | -5.6        | Z/H       | AVG    |

**Remark:**

1. Fundamental measured method setting on spectrum,  $RBW=100\text{ kHz}$ ,  $VBW=100\text{kHz}$  and  $Detector=Peak$ .
2. Average result = Peak result + Duty factor =  $99.67\text{ dBuV/m} - 24.25 = 75.42\text{ dBuV/m}$
3.  $260\text{MHz} \sim 470\text{MHz}$  limit is  $41.6667 * (Frequency, \text{MHz}) - 7083.3333$   
 $Limit = 41.6667 * (440\text{ MHz}) - 7083.3333$   
 $= 11250.01\text{ (uV/m)}$   
 $dBuV/m = 20 \log(uV/m) = 20 \log(11250.01\text{ uV/m}) = 81.02\text{ dBuV/m}$

**Test Data**

|               |              |               |                 |
|---------------|--------------|---------------|-----------------|
| Test Mode:    | TX-433MHz    | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item     | Fundamental  | Test Date     | 2019/09/11      |
| Axis/Polarize | Z-Plane/Ver. | Test Engineer | Jerry Lu        |
| Detector      | Peak & AVG   |               |                 |

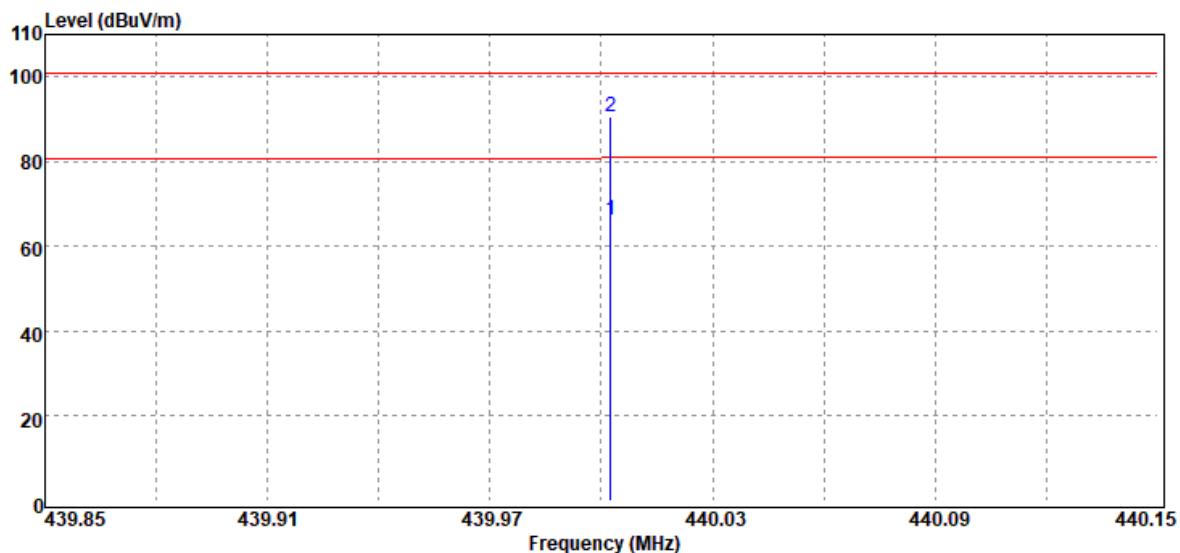



| No | Frequency (MHz) | Detector Mode PK/QP/AV | Spectrum Reading Level (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit @3m (dBuV/m) | Margin (dB) |
|----|-----------------|------------------------|-------------------------------|-------------|--------------------|--------------------|-------------|
| 2  | 433.00          | Peak                   | 94.82                         | -4.29       | 90.53              | 100.79             | -10.26      |

Note:

No.1 Average result = Peak result + Duty factor = 90.53 dBuV/m -24.25= 66.28dBuV/m

|               |              |               |                 |
|---------------|--------------|---------------|-----------------|
| Test Mode:    | TX-433MHz    | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item     | Fundamental  | Test Date     | 2019/09/11      |
| Axis/Polarize | Z-Plane/Hor. | Test Engineer | Jerry Lu        |
| Detector      | Peak & AVG   |               |                 |

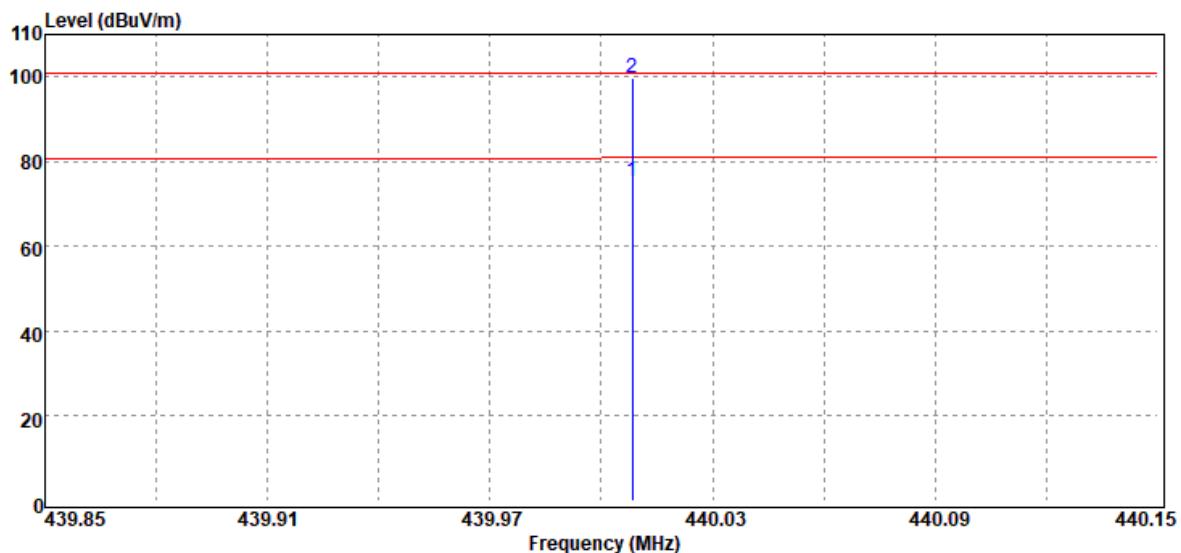



| No | Frequency (MHz) | Detector Mode PK/QP/AV | Spectrum Reading Level (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit @3m (dBuV/m) | Margin (dB) |
|----|-----------------|------------------------|-------------------------------|-------------|--------------------|--------------------|-------------|
| 2  | 433.00          | Peak                   | 102.76                        | -4.29       | 98.47              | 100.79             | -2.32       |

Note:

No.1 Average result = Peak result + Duty factor = 98.47 dBuV/m -24.25= 74.22dBuV/m

|               |              |               |                 |
|---------------|--------------|---------------|-----------------|
| Test Mode:    | TX-440MHz    | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item     | Fundamental  | Test Date     | 2019/09/11      |
| Axis/Polarize | Z-Plane/Ver. | Test Engineer | Jerry Lu        |
| Detector      | Peak & AVG   |               |                 |




| No | Frequency (MHz) | Detector Mode PK/QP/AV | Spectrum Reading Level (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit @3m (dBuV/m) | Margin (dB) |
|----|-----------------|------------------------|-------------------------------|-------------|--------------------|--------------------|-------------|
| 2  | 440.00          | Peak                   | 94.76                         | -4.05       | 90.71              | 101.02             | -10.31      |

Note:

No.1 Average result = Peak result + Duty factor = 90.71 dBuV/m -24.25= 66.46dBuV/m

|               |              |               |                 |
|---------------|--------------|---------------|-----------------|
| Test Mode:    | TX-440MHz    | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item     | Fundamental  | Test Date     | 2019/09/11      |
| Axis/Polarize | Z-Plane/Hor. | Test Engineer | Jerry Lu        |
| Detector      | Peak & AVG   |               |                 |



| No | Frequency (MHz) | Detector Mode PK/QP/AV | Spectrum Reading Level (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit @3m (dBuV/m) | Margin (dB) |
|----|-----------------|------------------------|-------------------------------|-------------|--------------------|--------------------|-------------|
| 2  | 440.01          | Peak                   | 103.72                        | -4.05       | 99.67              | 101.02             | -1.35       |

Note:

No.1 Average result = Peak result + Duty factor = 99.67 dBuV/m -24.25= 75.42dBuV/m

## 4.4 RADIATION UNWANTED EMISSION

### 4.4.1 Test Limit

According to §15.231(b) and §15.209, §15.205

Unwanted emissions limit follow the table or the FCC Part 15.209, whichever limit permits higher field strength.

According to RSS-210 A1.2 and RSS-GEN Sec. 8.9

Unwanted emissions shall comply with the general field strength limits specified in RSS-Gen or 10 times below the fundamental emissions field strength limit in table as below, whichever is less stringent.

According to §15.231(b)

| Fundamental frequency (MHz) | Field strength of fundamental (microvolts/meter) | Field strength of fundamental (microvolts/meter) |
|-----------------------------|--------------------------------------------------|--------------------------------------------------|
| 40.66-40.70                 | 2,250                                            | 225                                              |
| 70-130                      | 1,250                                            | 125                                              |
| 130-174                     | <sup>1</sup> 1,250 to 3,750                      | <sup>1</sup> 125 to 375                          |
| 174-260                     | 3,750                                            | 375                                              |
| 260-470                     | <sup>1</sup> 3,750 to 12,500                     | <sup>1</sup> 375 to 1,250                        |
| Above 470                   | 12,500                                           | 1,250                                            |

<sup>1</sup>Linear interpolations.

### Below 30MHz

| Frequency (MHz) | Field Strength |                |                              |                |                              |
|-----------------|----------------|----------------|------------------------------|----------------|------------------------------|
|                 | ( $\mu$ V/m)   | (dB $\mu$ V/m) | Measurement Distance (meter) | (dB $\mu$ V/m) | Measurement Distance (meter) |
| 0.009 - 0.490   | 2400/F(kHz)    | 48.52 – 13.80  | 300                          | 128.52–104.84  | 3                            |
| 0.490 - 1.705   | 24000/F(kHz)   | 33.80 – 22.97  | 30                           | 73.80– 62.97   | 3                            |
| 1.705 – 30.0    | 30             | 29.54          | 30                           | 69.54          | 3                            |

### Above 30MHz

| Frequency (MHz) | Field Strength |                | Measurement Distance (meter) |
|-----------------|----------------|----------------|------------------------------|
|                 | ( $\mu$ V/m)   | (dB $\mu$ V/m) |                              |
| 30-88           | 100            | 40.0           | 3                            |
| 88-216          | 150            | 43.5           | 3                            |
| 216-960         | 200            | 46.0           | 3                            |
| Above 960       | 500            | 54.0           | 3                            |

According to RSS-Gen, Section 8.9 and 8.10.

**RSS-Gen Table 3 and Table 5 – General Field Strength Limits for Transmitters and Receivers at Frequencies Above 30 MHz** (Note)

| Frequency<br>(MHz) | Field Strength<br>microvolts/m at 3 metres (watts, e.i.r.p.) |              |
|--------------------|--------------------------------------------------------------|--------------|
|                    | Transmitters                                                 | Receivers    |
| 30-88              | 100 (3 nW)                                                   | 100 (3 nW)   |
| 88-216             | 150 (6.8 nW)                                                 | 150 (6.8 nW) |
| 216-960            | 200 (12 nW)                                                  | 200 (12 nW)  |
| Above 960          | 500 (75 nW)                                                  | 500 (75 nW)  |

**Note:** Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with Section 6.6.

**RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)**

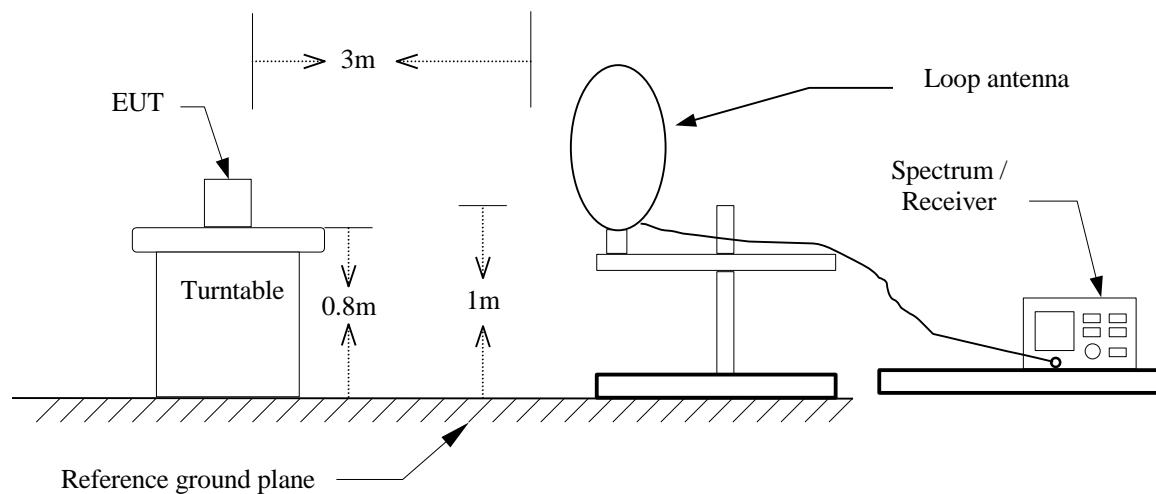
| Frequency      | Magnetic field strength<br>(H-Field) ( $\mu$ A/m) | Measurement Distance<br>(m) |
|----------------|---------------------------------------------------|-----------------------------|
| 9-490 kHz Note | 6.37/F (F in kHz)                                 | 300                         |
| 490-1,705 kHz  | 63.7/F (F in kHz)                                 | 30                          |
| 1.705-30 MHz   | 0.08                                              | 30                          |

**Note:** The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector..

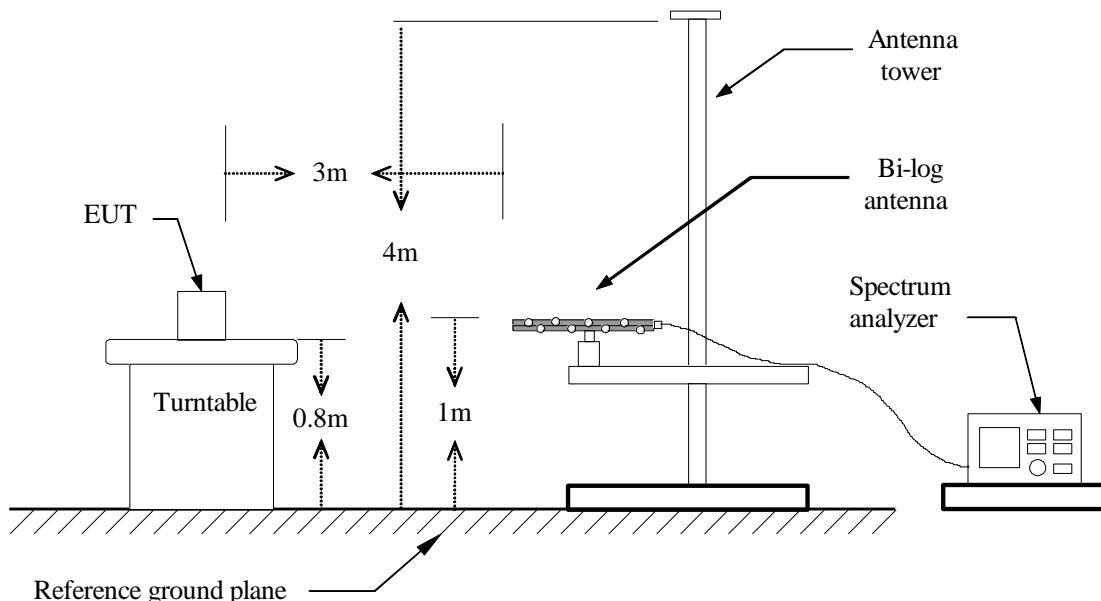
#### 4.4.2 Test Procedure

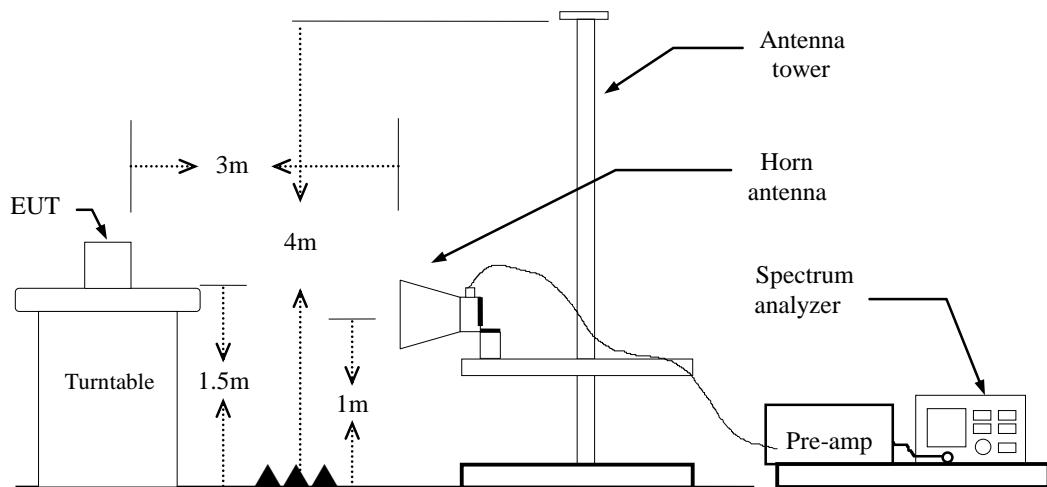
Test method Refer as ANSI 63.10:2013

|                                                       |                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> Unwanted Emission | <input checked="" type="checkbox"/> clause 4.1.4.2.2: Measurement Peak value.<br><input type="checkbox"/> clause 4.1.4.2.3: Duty cycle $\geq 100\%$ .<br><input checked="" type="checkbox"/> clause 4.1.4.2.4: Measurement Average value.                                      |
| <input checked="" type="checkbox"/> Radiated Emission | <input checked="" type="checkbox"/> clause 6.4: below 30 MHz and test distance is 3m.<br><input checked="" type="checkbox"/> clause 6.5: below 30 MHz -1 GHz and test distance is 3m.<br><input checked="" type="checkbox"/> clause 6.6: Above 30 MHz and test distance is 3m. |


1. The EUT is placed on a turntable, which is 0.8m for test below 1GHz and 1.5m for test above 1GHz, above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Set the spectrum analyzer in the following setting as:  
 Below 1GHz:  
 RBW=100kHz / VBW=300kHz / Sweep=AUTO  
 Above 1GHz:  
 (a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO  
 (b)AVERAGE: RBW=1MHz,
7. Repeat above procedures until the measurements for all frequencies are complete.

*Remark.*

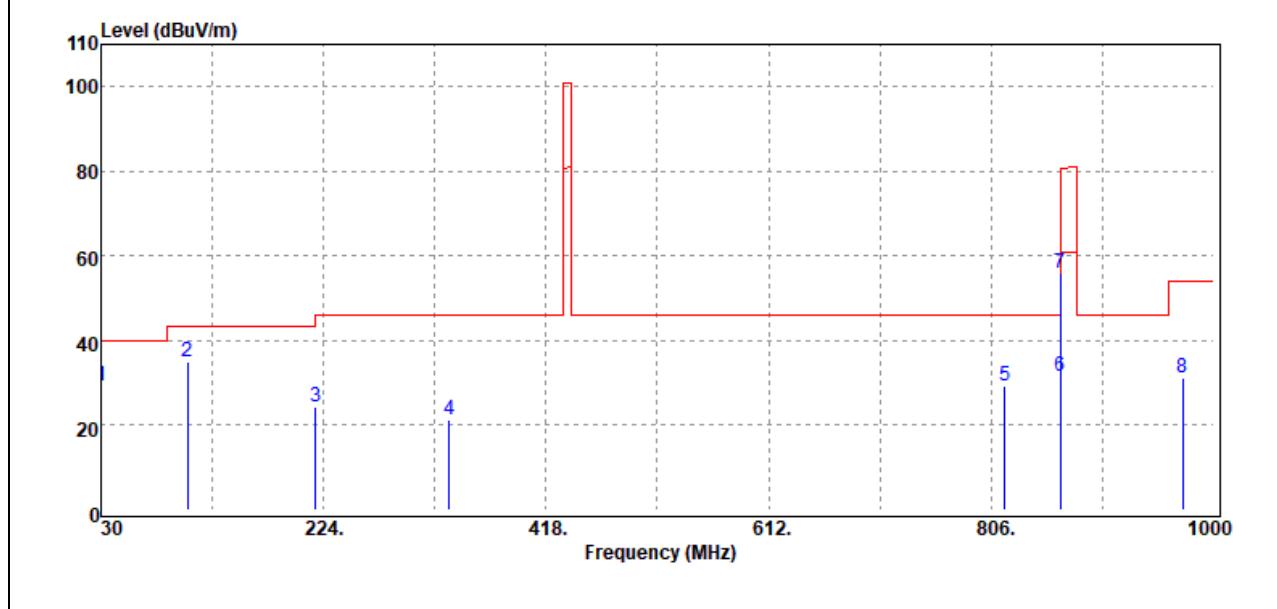

1. *Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.*
2. *No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).*
3. *Note \* : Duty factor reference to section 3.4 EUT DUTY CYCLE.*  
*Average result = Peak result + Duty factor*


#### 4.4.3 Test Setup

##### 9kHz ~ 30MHz

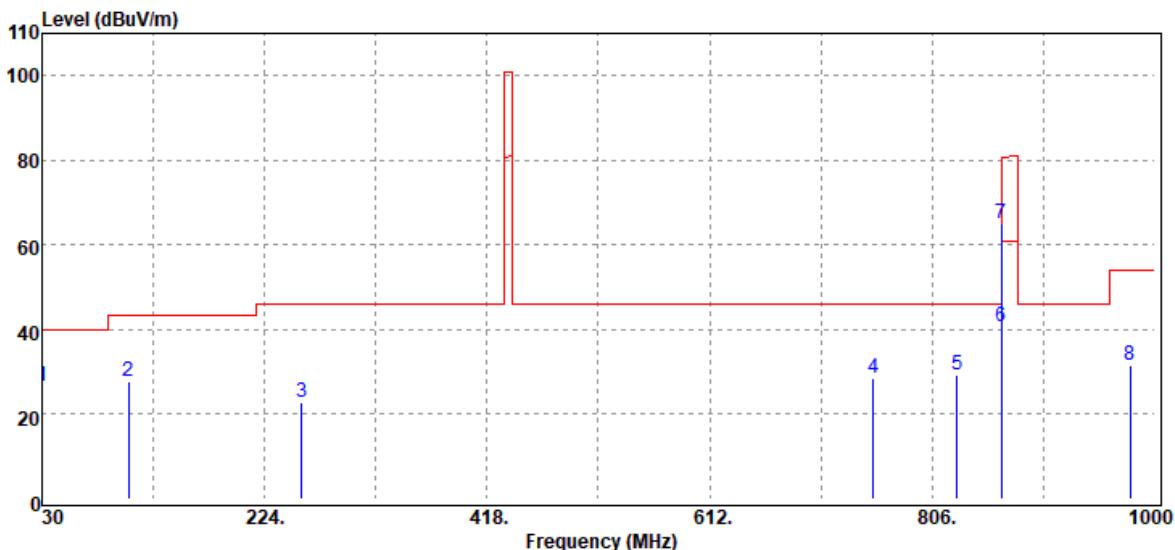


##### 30MHz ~ 1 GHz



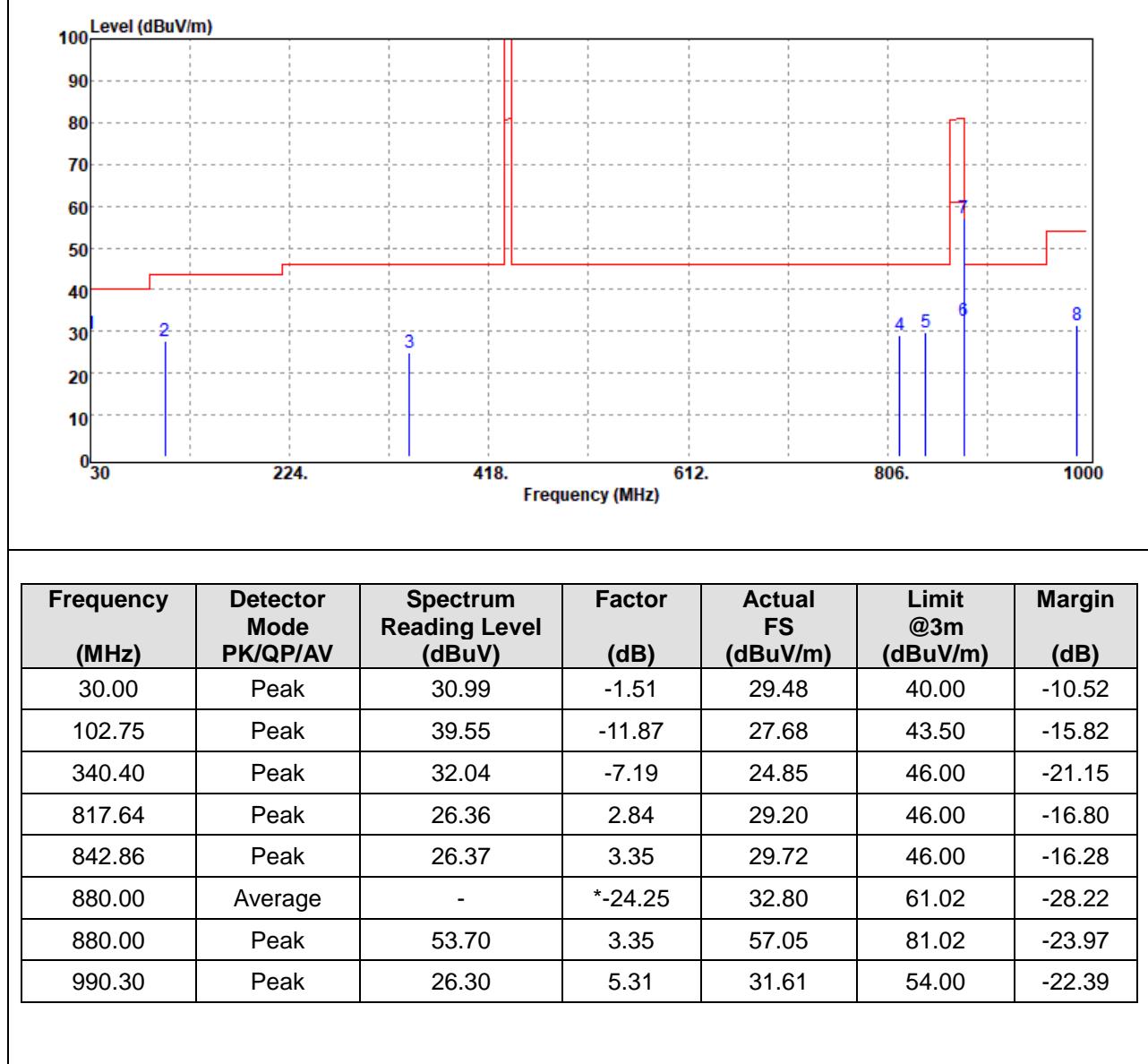

**Above 1 GHz****4.4.4 Test Result**

**Pass.**

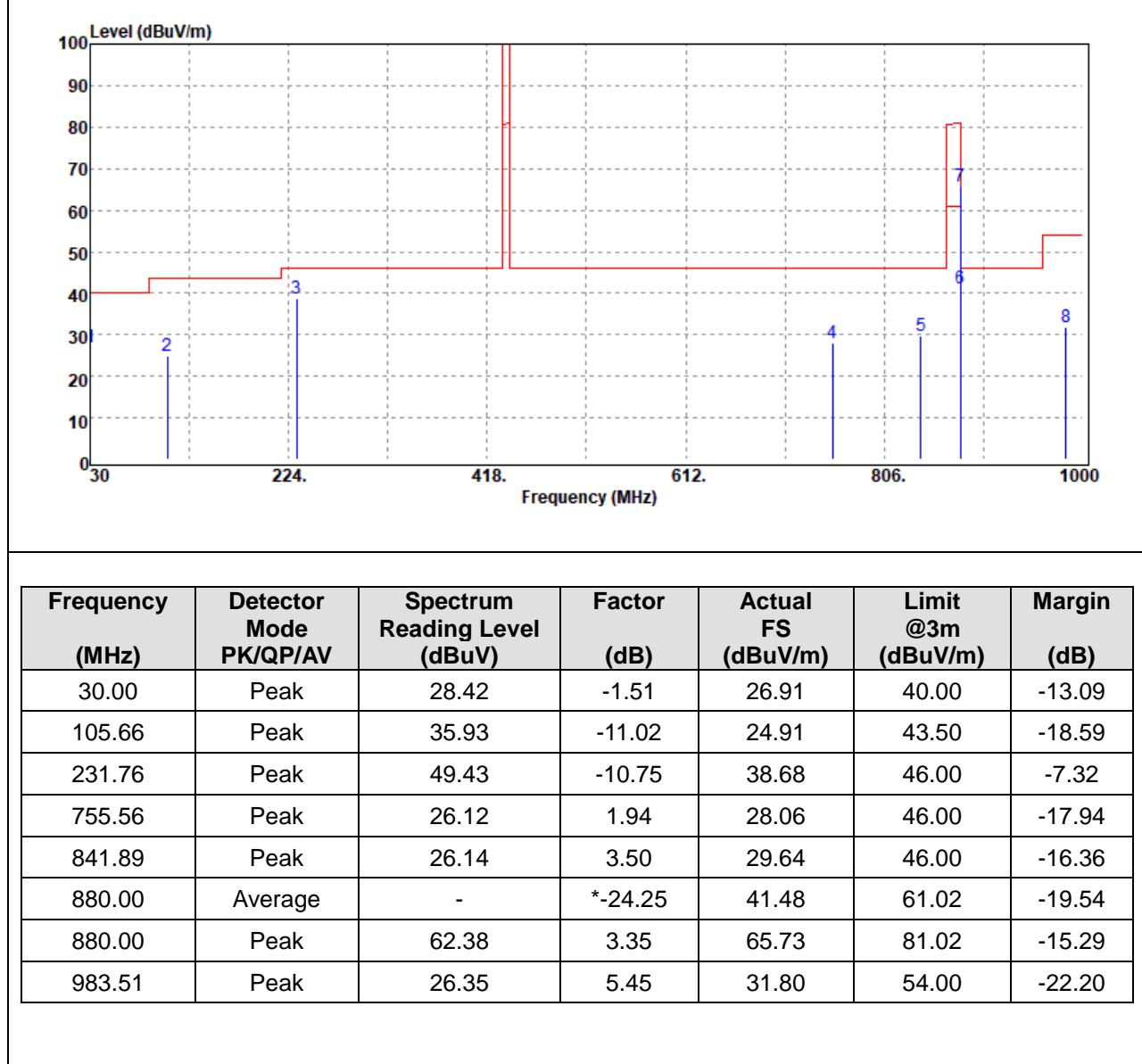

**Test Data****Below 1GHz**

|            |                  |               |                 |
|------------|------------------|---------------|-----------------|
| Test Mode: | TX-433MHz        | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item  | Below 1GHz       | Test Date     | 2019/09/11      |
| Polarize   | Vertical         | Test Engineer | Jerry Lu        |
| Detector   | Peak and Average |               |                 |




| Frequency (MHz) | Detector Mode PK/QP/AV | Spectrum Reading Level (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit @3m (dBuV/m) | Margin (dB) |
|-----------------|------------------------|-------------------------------|-------------|--------------------|--------------------|-------------|
| 30.00           | Peak                   | 30.90                         | -1.51       | 29.39              | 40.00              | -10.61      |
| 105.66          | Peak                   | 45.87                         | -11.02      | 34.85              | 43.50              | -8.65       |
| 217.21          | Peak                   | 35.95                         | -11.43      | 24.52              | 46.00              | -21.48      |
| 333.61          | Peak                   | 28.65                         | -7.22       | 21.43              | 46.00              | -24.57      |
| 817.64          | Peak                   | 26.34                         | 2.84        | 29.18              | 46.00              | -16.82      |
| 866.00          | Average                | -                             | *-24.25     | 31.66              | 60.79              | -29.13      |
| 866.00          | Peak                   | 53.11                         | 2.80        | 55.91              | 80.79              | -24.88      |
| 972.84          | Peak                   | 25.70                         | 5.56        | 31.26              | 54.00              | -22.74      |

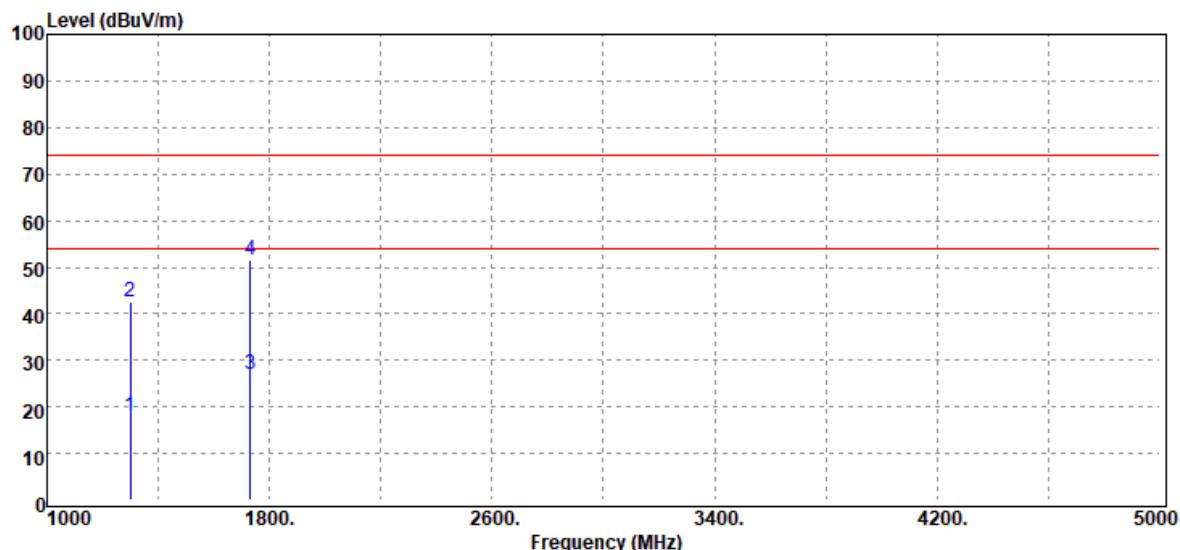
|            |                  |               |                 |
|------------|------------------|---------------|-----------------|
| Test Mode: | TX-433MHz        | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item  | Below 1GHz       | Test Date     | 2019/09/11      |
| Polarize   | Horizontal       | Test Engineer | Jerry Lu        |
| Detector   | Peak and Average |               |                 |




| Frequency (MHz) | Detector Mode PK/QP/AV | Spectrum Reading Level (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit @3m (dBuV/m) | Margin (dB) |
|-----------------|------------------------|-------------------------------|-------------|--------------------|--------------------|-------------|
| 30.00           | Peak                   | 28.10                         | -1.51       | 26.59              | 40.00              | -13.41      |
| 105.66          | Peak                   | 38.78                         | -11.02      | 27.76              | 43.50              | -15.74      |
| 256.01          | Peak                   | 32.89                         | -10.16      | 22.73              | 46.00              | -23.27      |
| 754.59          | Peak                   | 26.40                         | 2.00        | 28.40              | 46.00              | -17.60      |
| 827.34          | Peak                   | 26.11                         | 3.25        | 29.36              | 46.00              | -16.64      |
| 866.00          | Average                | -                             | *-24.25     | 40.72              | 60.79              | -20.07      |
| 866.00          | Peak                   | 62.17                         | 2.80        | 64.97              | 80.79              | -15.82      |
| 978.66          | Peak                   | 26.02                         | 5.60        | 31.62              | 54.00              | -22.38      |

|            |                  |               |                 |
|------------|------------------|---------------|-----------------|
| Test Mode: | TX-440MHz        | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item  | Below 1GHz       | Test Date     | 2019/09/11      |
| Polarize   | Vertical         | Test Engineer | Jerry Lu        |
| Detector   | Peak and Average |               |                 |



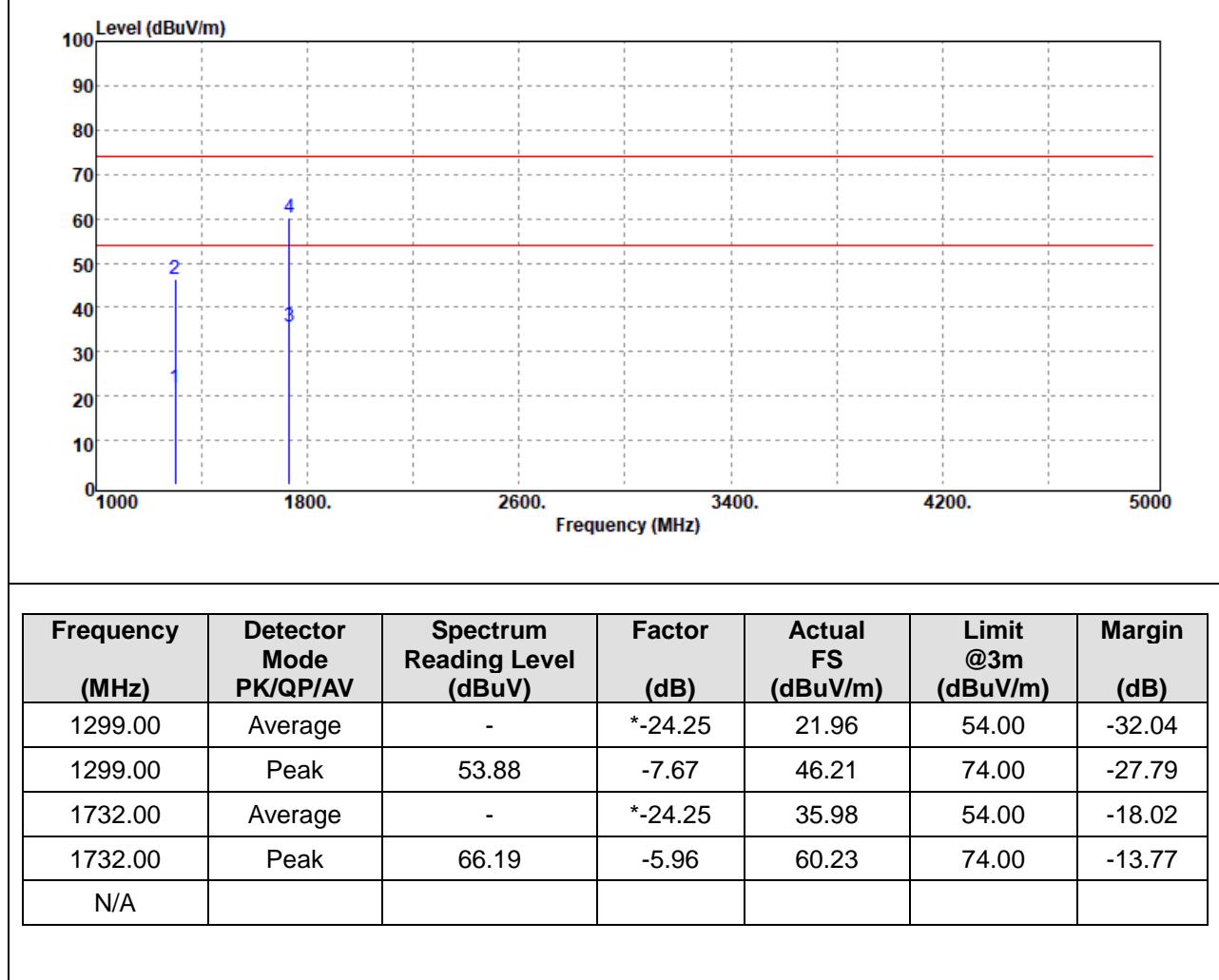

|            |                  |               |                 |
|------------|------------------|---------------|-----------------|
| Test Mode: | TX-440MHz        | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item  | Below 1GHz       | Test Date     | 2019/09/11      |
| Polarize   | Horizontal       | Test Engineer | Jerry Lu        |
| Detector   | Peak and Average |               |                 |



Report No.: T190422W04-B-RP

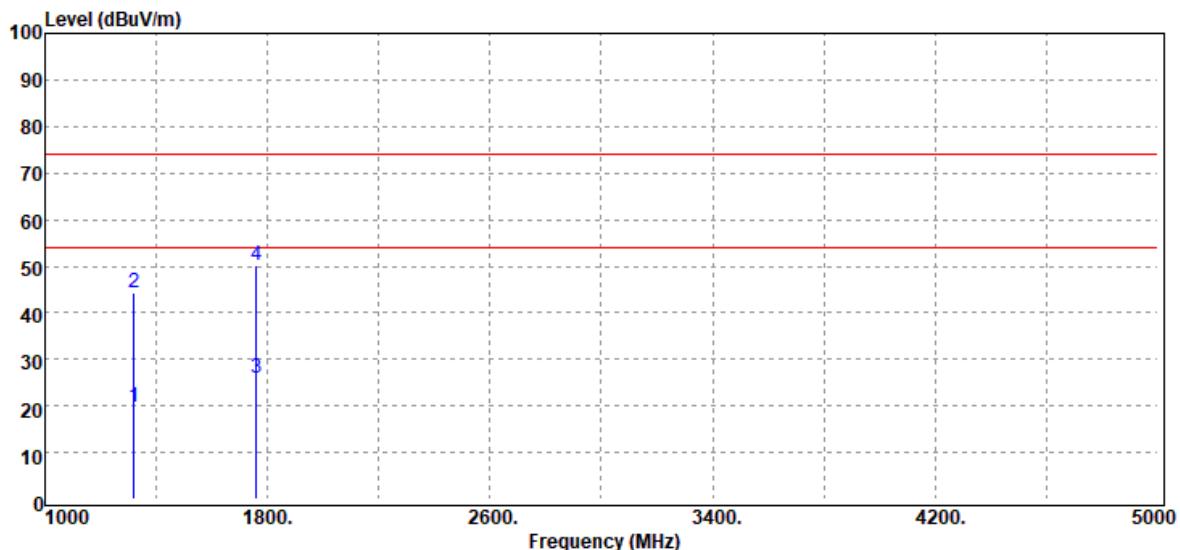
**Above 1GHz**

|            |                  |               |                 |
|------------|------------------|---------------|-----------------|
| Test Mode: | TX-433MHz        | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item  | Above 1GHz       | Test Date     | 2019/09/11      |
| Polarize   | Vertical         | Test Engineer | Jerry Lu        |
| Detector   | Peak and Average |               |                 |




| Frequency (MHz) | Detector Mode PK/QP/AV | Spectrum Reading Level (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit @3m (dBuV/m) | Margin (dB) |
|-----------------|------------------------|-------------------------------|-------------|--------------------|--------------------|-------------|
| 1299.00         | Average                | -                             | *-24.25     | 18.27              | 54.00              | -35.73      |
| 1299.00         | Peak                   | 50.19                         | -7.67       | 42.52              | 74.00              | -31.48      |
| 1732.00         | Average                | -                             | *-24.25     | 27.18              | 54.00              | -26.82      |
| 1732.00         | Peak                   | 57.39                         | -5.96       | 51.43              | 74.00              | -22.57      |
| N/A             |                        |                               |             |                    |                    |             |

***Remark:***

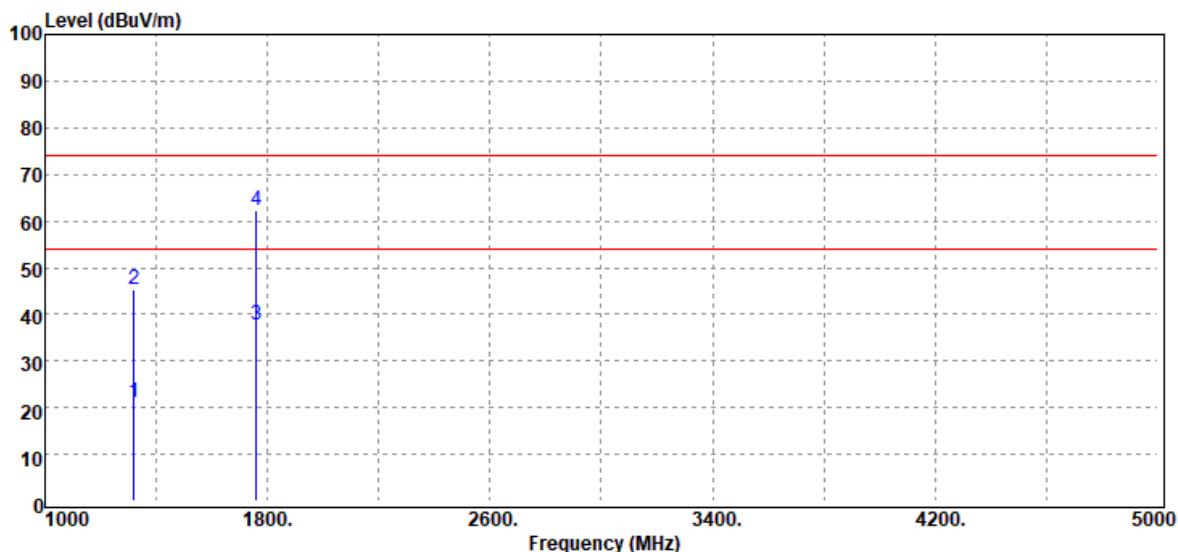

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

|            |                  |               |                 |
|------------|------------------|---------------|-----------------|
| Test Mode: | TX-433MHz        | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item  | Above 1GHz       | Test Date     | 2019/09/11      |
| Polarize   | Horizontal       | Test Engineer | Jerry Lu        |
| Detector   | Peak and Average |               |                 |

**Remark:**

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

|            |                  |               |                 |
|------------|------------------|---------------|-----------------|
| Test Mode: | TX-440MHz        | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item  | Above 1GHz       | Test Date     | 2019/09/11      |
| Polarize   | Vertical         | Test Engineer | Jerry Lu        |
| Detector   | Peak and Average |               |                 |




| Frequency (MHz) | Detector Mode PK/QP/AV | Spectrum Reading Level (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit @3m (dBuV/m) | Margin (dB) |
|-----------------|------------------------|-------------------------------|-------------|--------------------|--------------------|-------------|
| 1320.00         | Average                | -                             | *-24.25     | 19.88              | 54.00              | -34.12      |
| 1320.00         | Peak                   | 51.75                         | -7.62       | 44.13              | 74.00              | -29.87      |
| 1760.00         | Average                | -                             | *-24.25     | 26.04              | 54.00              | -27.96      |
| 1760.00         | Peak                   | 56.29                         | -6.00       | 50.29              | 74.00              | -23.71      |
| N/A             |                        |                               |             |                    |                    |             |

**Remark:**

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

|            |                  |               |                 |
|------------|------------------|---------------|-----------------|
| Test Mode: | TX-440MHz        | Temp/Hum      | 26.1(°C)/ 45%RH |
| Test Item  | Above 1GHz       | Test Date     | 2019/09/11      |
| Polarize   | Horizontal       | Test Engineer | Jerry Lu        |
| Detector   | Peak and Average |               |                 |



| Frequency (MHz) | Detector Mode PK/QP/AV | Spectrum Reading Level (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit @3m (dBuV/m) | Margin (dB) |
|-----------------|------------------------|-------------------------------|-------------|--------------------|--------------------|-------------|
| 1320.00         | Average                | -                             | *-24.25     | 21.14              | 54.00              | -32.86      |
| 1320.00         | Peak                   | 53.01                         | -7.62       | 45.39              | 74.00              | -28.61      |
| 1760.00         | Average                | -                             | *-24.25     | 37.92              | 54.00              | -16.08      |
| 1760.00         | Peak                   | 68.17                         | -6.00       | 62.17              | 74.00              | -11.83      |
| N/A             |                        |                               |             |                    |                    |             |

**Remark:**

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Report No.: T190422W04-B-RP

## 4.5 OPERATION RESTRICTION

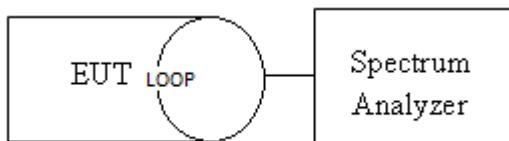
### 4.5.1 Test Limit

15.231(a)(1),

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

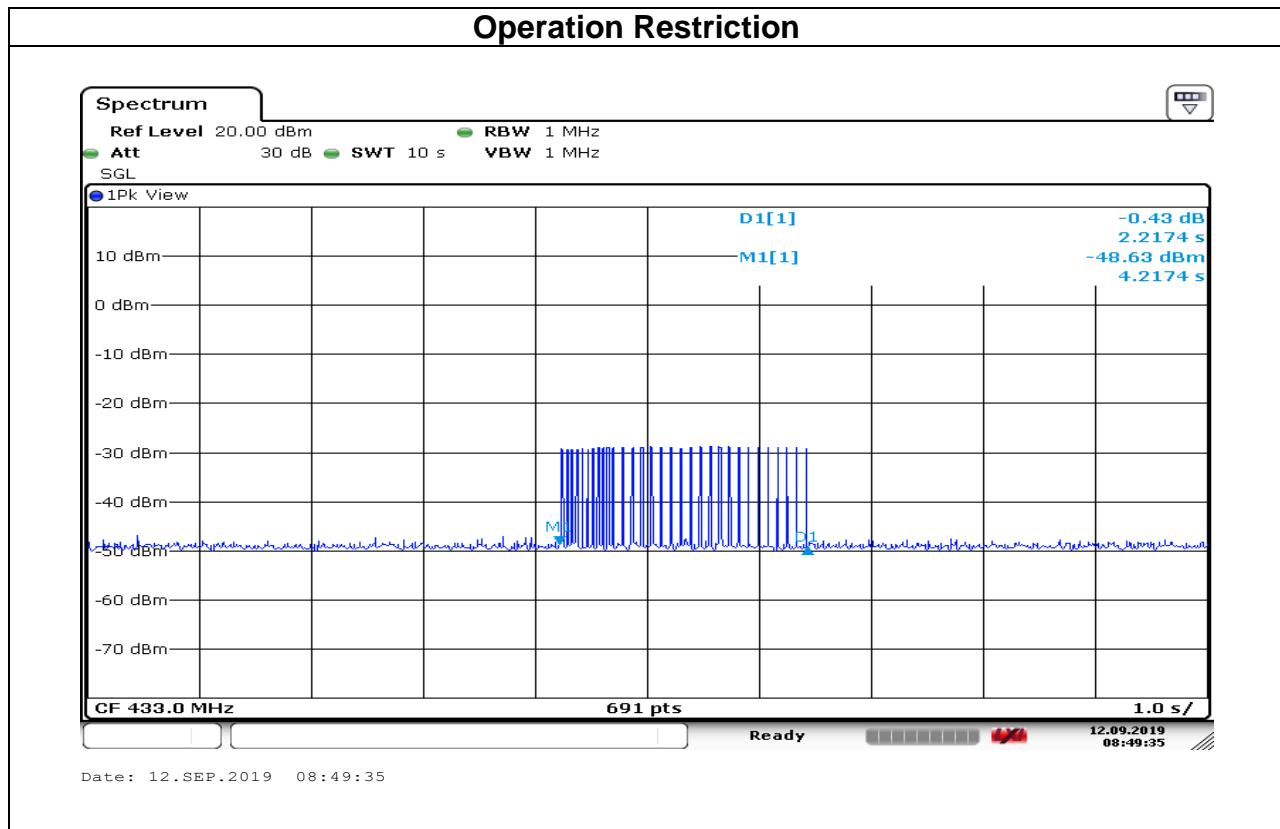
RSS-210 A1.1,

Devices shall comply with the following for momentary operation:


A manually operated transmitter shall be equipped with a push-to-operate switch and be under manual control at all times during transmission. When released, the transmitter shall cease transmission within no more than 5 seconds of being released.

### 4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.4


The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=1MHz, VBW=1MHz, Detector = Peak, Trace mode = Max hold, Sweep = 1s. Measure

### 4.5.3 Test Setup



### 4.5.4 Test Result

| Dwell Time          |                   |        |        |
|---------------------|-------------------|--------|--------|
| Operation condition | Pulse On Time (s) | Limits | Result |
| manually operated   | 2.2174 sec        | 5 sec  | PASS   |

**Test Data**

**- End of Test Report -**