

AVALAN WIRELESS SYSTEMS, INC. TEST REPORT

FOR THE

5.8GHZ WIRELESS ETHERNET BRIDGE MODULE, AW5800M

FCC PART 15 SUBPART B SECTIONS 15.107 AND 15.109 CLASS B, FCC PART 15 SUBPART C SECTIONS 15.207, 15.209, 15.247 AND RSS-210

COMPLIANCE

DATE OF ISSUE: JULY 14, 2006

PREPARED FOR:

PREPARED BY:

AvaLAN Wireless Systems, Inc. 2400 El Camino Real, #317 Mountain View, CA 94040 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: AX 2004 W.O. No.: 85414 Date of test: June 29 - July 14, 2006

Report No.: FC06-042

This report contains a total of 106 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 106 Report No: FC06-042

TABLE OF CONTENTS

Administrative Information	.4
FCC to Canada Standard Correlation Matrix	.5
Conditions for Compliance	.5
Approvals	.5
Equipment Under Test (EUT) Description	.6
FCC 15.31(m) Number Of Channels	.6
FCC 15.33(a) Frequency Ranges Tested	.6
FCC 15.35 Analyzer Bandwidth Settings	
FCC 15.203 Antenna Requirements	.6
FCC 15.205 Restricted Bands	.6
EUT Operating Frequency	.6
Equipment Under Test	.7
Peripheral Devices	.7
Report of Measurements	.8
Table 1: FCC 15.107 Six Highest Conducted Emission Levels	.8
Table 2: FCC 15.109 Six Highest Radiated Emission Levels	.9
Table 3: FC 15.207 Six Highest Conducted Emission Levels	.10
Table 4: 15.31(e)/15.247(b) Voltage Variations Emission Levels	
Table 5: FCC 15.247(b)(3) RF Power Output	
Table 6: FCC 15.247(d)/15.209 Six Highest Radiated Emission Levels: 9 kHz - 1 GHz	.13
Table 7: FCC 15.209 Six Highest Radiated Emission Levels 1-12.5 GHz	
Table 8: FCC 15.247(d) Six Highest Radiated Emission Levels 1-12.5 GHz	
Table 9: FCC 15.247(d)/15.209 Six Highest Radiated Emission Levels: 12.5-40 GHz	.16
Table 10: FCC 15.247(d) Six Highest Antenna Conducted Emission Levels: 9 kHz - 1 GHz	. 17
Table 11: FCC 15.247(d) Six Highest Antenna Conducted Emission Levels: 1-40 GHz	.18
Table 12: FCC 15.247(e) Peak Power Spectral Density	.19
Bandedge	.26
6 dB Bandwidth	.30
RSS-210 99% Bandwidth	.33
Temperature And Humidity During Testing	.36
EUT Setup	.36
Correction Factors	.36
Table A: Sample Calculations	.36
Test Instrumentation and Analyzer Settings	.37
Spectrum Analyzer Detector Functions	.37
Peak	.37
Quasi-Peak	.37
Average	.37
EUT Testing	.38
Mains Conducted Emissions	.38
Antenna Conducted Emissions	.38
Radiated Emissions	.38

Page 2 of 106 Report No: FC06-042

Appendix A: Test Setup Photographs	39
Photograph Showing Mains Conducted Emissions	40
Photograph Showing Mains Conducted Emissions	41
Photograph Showing Radiated Emissions	42
Photograph Showing Radiated Emissions	43
Photograph Showing Voltage Variations	44
RF Power And Peak Power Spectral Density	45
Photograph Showing Direct Connect Test Setup	46
Photograph Showing Direct Connect Test Setup	47
Photograph Showing Direct Connect Test Setup	48
Photograph Showing Direct Connect Test Setup	49
Photograph Showing Spurious Oats Emissions	50
Photograph Showing Spurious Oats Emissions	51
Photograph Showing Spurious Oats Emissions	52
Photograph Showing Spurious Oats Emissions	53
Photograph Showing Spurious Oats Emissions	54
Photograph Showing Spurious Oats Emissions	55
Photograph Showing Spurious Oats Emissions	56
Photograph Showing Spurious Oats Emissions	57
Appendix B: Test Equipment List	58
Appendix C: Measurement Data Sheets	61

Page 3 of 106 Report No: FC06-042

ADMINISTRATIVE INFORMATION

DATE OF TEST:	June 29 - July 14, 2006
DATE OF RECEIPT:	June 29, 2006
MANUFACTURER:	AvaLAN Wireless Systems, Inc. 2400 El Camino Real, #317 Mountain View, CA 94040
REPRESENTATIVE:	Mike Derby
TEST LOCATION:	CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539
TEST METHOD:	ANSI C63.4 (2003), RSS-210 and RSS-GEN
PURPOSE OF TEST:	To demonstrate the compliance of the 5.8GHz Wireless Ethernet Bridge Module, AW5800m with the requirements for FCC

Page 4 of 106 Report No: FC06-042

Part 15 Subpart B Sections 15.107 and

210 devices.

15.109 Class B, FCC Part 15 Subpart C Sections 15.207, 15.209, 15.247 and RSS-

FCC TO CANADA STANDARD CORRELATION MATRIX

Canadian Standard	Canadian Section	FCC Standard	FCC Section	Test Description
RSS GEN	7.1.4	47CFR	15.203	Antenna Connector Requirements
RSS GEN	7.2.1	47CFR	15.35(c)	Pulsed Operation
RSS GEN	7.2.2	47CFR	15.207	AC Mains Conducted Emissions Requirement
RSS 210	2.1	47CFR	15.215(c)	Frequency Stability Recommendation
RSS 210	2.2	47CFR	15.205	Restricted Bands of Operation
RSS 210	2.6	47CFR	15.209	General Radiated Emissions Requirement
RSS 210	A8.2(1)	47CFR	15.247(a)(2)	Minimum 6dB Bandwidth
RSS 210	A8.2(2)	47CFR	15.247(e)	Peak Power Spectral Density
RSS 210	A8.4(4)	47CFR	15.247(b)(3)	RF Power Output
RSS 210	A8.4(5)	47CFR	15.247(c)(1)	Directional Gain Requirements
RSS 210	A8.4(6)	47CFR	15.247(c)(2)	Beam Steering Antennas
RSS 210	A8.5	47CFR	15.247(d)	Spurious Emissions
	IC 5933		958979	Site File No.

Rule Sections for RSS 210 are taken from RSS 210 Issue 6 Notes:

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

Joyce Walker, Quality Assurance Administrative

Manager

Christine Nicklas, Project Manager & Principal Consultant

Amrinder Brar, Lab Manager

Norberto Gamez Jr., EMC Test Technologist

Art Rice, EMC Test Engineer

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

FCC 15.31(m) Number Of Channels

This device was tested on three channels and operates on 58 channels.

FCC 15.33(a) Frequency Ranges Tested

15.107 Conducted Emissions: 150 kHz – 30 MHz 15.109 Radiated Emissions: 9 kHz – 1000 MHz 15.207 Conducted Emissions: 150 kHz – 30 MHz 15.209/15.247 Radiated Emissions: 9 kHz – 40 GHz

FCC SECTION 15.35: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE									
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING						
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						
RADIATED EMISSIONS	1000 MHz	40 GHz	1 MHz						

FCC 15.203 Antenna Requirements

The antennas are detachable with an RPSMA Female connection on the UUT. This is considered a unique connection; therefore the EUT complies with Section 15.203 of the FCC rules.

FCC 15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

EUT Operating Frequency

The EUT was operating at 5.725-5.850 GHz

Page 6 of 106 Report No: FC06-042

EQUIPMENT UNDER TEST

5.8GHz Wireless Ethernet Bridge Module

Manuf: AvaLAN Wireless Systems, Inc.

Model: AW5800m Serial: 000012

FCC ID: R4N-AW5800m (pending)

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Panel Antenna Power Supply

Manuf: ARC Wireless Solutions Manuf: CUI Inc.

Model: ANT-A-1723-01 Model: DSA-0151A-06

Serial: 00540051116 Serial: NA

Power Supply 10 VDC, 1100mA

Manuf: CUI Stack Model: 48-10-1100D

Serial: NA

Page 7 of 106 Report No: FC06-042

REPORT OF MEASUREMENTS

The following tables report the six highest worst case levels recorded during the tests performed on the EUT. All readings taken are peak readings unless otherwise noted. The data sheets from which these tables were compiled are contained in Appendix C.

	Table 1: FCC 15.107 Six Highest Conducted Emission Levels												
FREQUENCY MHz	METER READING dBμV	COR Lisn dB	RECTION HPF dB	ON FACT Cable dB	ORS Att dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES				
0.338345	33.5	0.3	0.1	0.1	9.7	43.8	49.2	-5.4	W				
0.474331	30.9	0.3	0.0	0.1	9.7	41.0	46.4	-5.4	W				
0.477240	30.7	0.3	0.0	0.1	9.7	40.8	46.4	-5.6	W				
0.515054	30.9	0.3	0.0	0.1	9.7	41.0	46.0	-5.0	В				
0.541234	29.0	0.3	0.0	0.1	9.7	39.1	46.0	-6.9	W				
0.682310	28.0	0.3	0.0	0.2	9.7	38.2	46.0	-7.8	В				

Test Method: ANSI C63.4 (2003) NOTES: B = Black LeadSpec Limit: FCC Part 15 Subpart B Section 15.107 Class B W = White Lead

COMMENTS: Conducted Emissions 0.15-30 MHz. 23dBi Antenna. Receive Mode, set up per ANSI C63.4. NOTE: Changed to different model power supply. Power supply is not supplied by AvaLAN to the customer.

Page 8 of 106 Report No: FC06-042

	Table 2: FCC 15.109 Six Highest Radiated Emission Levels													
FREQUENCY MHz	METER READING dBμV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	CORS	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES					
49.985	53.4	8.5	-26.1	0.7		36.5	40.0	-3.5	VQ					
199.984	50.6	8.6	-25.6	1.4		35.0	43.5	-8.5	V					
399.988	46.9	15.5	-25.9	2.0		38.5	46.0	-7.5	Н					
399.995	50.0	15.5	-25.9	2.0		41.6	46.0	-4.4	VQ					
437.489	44.4	16.5	-26.2	1.9		36.6	46.0	-9.4	Н					
925.003	36.8	23.0	-26.7	2.9		36.0	46.0	-10.0	V					

Test Method: ANSI C63.4 (2003) NOTES: H = Horizontal PolarizationSpec Limit: FCC Part 15 Subpart B Section 15.109 Class B V = Vertical PolarizationTest Distance: V = Vertical PolarizationV = Vertical PolarizationV = Vertical Polarization

COMMENTS: FCC 15.109 Class B. Radiated Emissions 30-1000MHz. 23dBi Antenna. Receive Mode, set up per ANSI C63.4.

Page 9 of 106 Report No: FC06-042

	Table 3: FC 15.207 Six Highest Conducted Emission Levels													
FREQUENCY MHz	METER READING dBμV	COR Lisn dB	RECTIC Cable dB	ON FACT Att dB	TORS HPF dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES					
0.632457	29.1	0.3	0.1	9.7	0.0	39.2	46.0	-6.8	В					
0.714312	28.2	0.3	0.1	9.7	0.0	38.3	46.0	-7.7	В					
0.717221	27.9	0.3	0.1	9.7	0.0	38.0	46.0	-8.0	В					
0.805940	28.7	0.3	0.1	9.7	0.0	38.8	46.0	-7.2	В					
0.809576	28.6	0.3	0.1	9.7	0.0	38.7	46.0	-7.3	В					
0.813212	28.6	0.3	0.1	9.7	0.0	38.7	46.0	-7.3	В					

Test Method: ANSI C63.4 (2003) NOTES: B = Black Lead

Spec Limit: FCC Part 15 Subpart C Section 15.207

COMMENTS: FCC 15.207. Conducted Emissions 0.15-30 MHz. 23dBi Antenna. HIGH Channel. High Channel with the 23dBi antenna produces the worst case emissions.

Page 10 of 106 Report No: FC06-042

	Table 4: 15.31(e)/15.247(b) Voltage Variations Emission Levels													
FREQUENCY MHz	METER READING dBm	COR Att dB	dB	ON FACT Cable dB	ORS VDC dB	CORRECTED READING dBm	SPEC LIMIT dBm	MARGIN dB	NOTES					
5730.771	-16.1	30.5		2.8	12	17.1	30.0	-12.9	N-L					
5730.873	-16.3	30.5		2.8	5	16.9	30.0	-13.1	N-L					
5786.079	-16.5	30.5		2.8	5	16.8	30.0	-13.2	N-M					
5789.053	-16.3	30.5		2.8	12	17.0	30.0	-13.0	N-M					
5849.533	-15.3	30.5		2.8	5	18.0	30.0	-12.0	N-H					
5849.743	-15.4	30.5		2.8	12	17.9	30.0	-12.1	N-H					

Test Method: ANSI C63.4 (2003) NOTES: N = No Polarization

Spec Limit: FCC Part 15 Subpart C Sections 15.31(e)/15.247(b) L = Low M = Mid

H = High

COMMENTS: 15.31(e)/15.247(b) RF Power Output Antenna Conducted. Voltage Variations. Measured at the lowest voltage (5VDC) and the highest voltage (12VDC) the device can operate at. Measured the Peak Output power level for each channel. Voltage was set using a calibrated Digital Multimeter (DMM).

Page 11 of 106 Report No: FC06-042

	Table 5: FCC 15.247(b)(3) RF Power Output													
FREQUENCY MHz	METER READING dBm	COR Ant dB	ARECTIC Att dB	ON FACT	TORS dB	CORRECTED READING dBm	SPEC LIMIT dBm	MARGIN dB	NOTES					
5728.126	-16.4	1.8	28.6			15.8	30.0	-14.2	N-L					
5786.502	-15.9	1.8	28.7			16.4	30.0	-13.6	N-M					
5846.712	-16.1	1.8	28.7			16.2	30.0	-13.8	N-H					

Test Method:

NOTES: N = No Polarization

Spec Limit:

ANSI C63.4 (2003) FCC Part 15 Subpart C Sections 15.247(b)(3)

V = Vertical Polarization

Test Distance: 3 Meters

L = LowM = MidH = High

COMMENTS: 15.247(b)(3) RF Power Output Antenna Conducted.

Page 12 of 106 Report No: FC06-042

T	Table 6: FCC 15.247(d)/15.209 Six Highest Radiated Emission Levels: 9 kHz - 1 GHz													
FREQUENCY MHz	METER READING dBμV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	CORS	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES					
49.993	49.9	8.5	-26.1	0.7		33.0	40.0	-7.0	VQ-2					
400.000	46.3	15.5	-25.9	2.0		37.9	46.0	-8.1	H-2					
400.015	46.2	15.5	-25.9	2.0		37.8	46.0	-8.2	V-1					
450.019	46.2	16.8	-26.7	1.9		38.2	46.0	-7.8	V-1					
525.018	45.5	18.4	-27.0	2.2		39.1	46.0	-6.9	VQ-1					
575.023	43.3	19.2	-27.1	2.3		37.7	46.0	-8.3	V-1					

Test Method: ANSI C63.4 (2003) NOTES: H = Horizontal PolarizationSpec Limit: FCC Part 15 Subpart C Sections 15.247(d)/15.209 V = Vertical Polarization

Test Distance: 3 Meters Q = Quasi Peak Reading

1 = 5 dBi Antenna 2 = 23 dBi Antenna

COMMENTS: See individual data sheets for test conditions.

Page 13 of 106 Report No: FC06-042

	Table 7: FCC 15.209 Six Highest Radiated Emission Levels 1-12.5 GHz												
FREQUENCY MHz	METER READING dBμV	Ant dB	CORF DC dB	RECTION HPF dB	FACTORS Cable dB	Amp dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES			
11194.820	46.4	39.2	-13.6	0.3	9.7	-28.1	53.9	54.0	-0.1	VA-1H			
11195.950	46.4	39.2	-13.6	0.3	9.7	-28.1	53.9	54.0	-0.1	HA-1M			
11196.670	46.3	39.2	-13.6	0.3	9.7	-28.1	53.8	54.0	-0.2	VA-1L			
11455.350	46.1	39.6	-13.6	0.3	9.8	-28.3	53.9	54.0	-0.1	VA-1L			
11455.580	46.1	39.6	-13.6	0.3	9.8	-28.3	53.9	54.0	-0.1	VA-2L			
11457.580	46.1	39.6	-13.6	0.3	9.8	-28.3	53.9	54.0	-0.1	HA-2L			

Test Method: ANSI C63.4 (2003) NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15 Subpart C Section 15.209 V = Vertical Polarization

Spec Limit: FCC Part 15 Subpart C Section 15.209
Test Distance: 3 Meters

A = Average Reading 1 = 5 dBi Antenna 2 = 23 dBi Antenna

L = Low M = Mid H = High

COMMENTS: Spurious Emissions 15.209 1-12.5GHz. 5 dBi and 23 dBi Antennas tested. Measured against 15.209 limits for the Restricted Bands. This data sheet may contain frequencies that do not fall into the restricted band. EUT setup as close to back edge of the table as possible for the cable to reach the antenna. The antenna is orientated in its vertical polarization. Ethernet cable is connected and draped towards the floor off the back edge of the table as per ANSI C63.4. Ethernet port is sending random data out the ethernet cable at all times.

Note: Duty Cycle Correction Factor: The total Period for a single pulse is 1.056ms. The single pulse "OFF" time is 0.8349ms. This gives the single pulse "ON" time of 0.2211ms. The total time the pulses are on versus blanked is greater than 100ms therefore the Duty Cycle is based on the Pulse Train only and does not take into account the Blanking time. This gives the Duty Cycle of On/Period or 0.2211/1.056 or 20.9%. The Duty Cycle Correction Factor is therefore 20Log(20.9) or -13.6dB. This Correction factor is used to calculate the average of a signal where necessary.

Page 14 of 106 Report No: FC06-042

Table 8: FCC 15.247(d) Six Highest Radiated Emission Levels 1-12.5 GHz									
FREQUENCY MHz	METER READING dBμV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS DC dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
5599.100	83.6	34.0	-27.5	6.4	-13.6	82.9	96.9	-14.0	HA-2
5607.600	58.4	34.0	-27.5	6.4	0.0	71.3	84.1	-12.8	V-1
5607.600	57.1	34.0	-27.5	6.4	0.0	70.0	84.1	-14.1	V-1
5609.100	72.3	34.0	-27.5	6.4	0.0	85.2	96.9	-11.7	H-2
5609.500	73.2	34.0	-27.5	6.4	0.0	86.1	96.9	-10.8	H-2
5610.000	74.0	34.0	-27.5	6.4	0.0	86.9	96.9	-10.0	H-2

Test Method: ANSI C63.4 (2003)

Spec Limit: Test Distance: FCC Part 15 Subpart C Section 15.247(d)

3 Meters

NOTES: H = Horizontal Polarization

V = Vertical Polarization A = Average Reading

1 = 5 dBi Antenna 2 = 23 dBi Antenna

COMMENTS: See individual data sheets for test conditions.

Page 15 of 106 Report No: FC06-042

Т	Table 9: FCC 15.247(d)/15.209 Six Highest Radiated Emission Levels: 12.5-40 GHz								
FREQUENCY MHz	METER READING dBμV	COR DC dB	ARECTIC Ant dB	ON FACT WG dB	Cable dB	CORRECTED READING dBm	SPEC LIMIT dBm	MARGIN dB	NOTES
22910.770	49.0	-13.6	-8.7	3.6	14.1	44.4	54.0	-9.6	HA-2
22911.140	49.9	-13.6	-8.7	3.6	14.1	45.3	54.0	-8.7	VA-2
22915.250	52.8	-13.6	-8.7	3.6	14.1	48.2	54.0	-5.8	VA-1
23148.130	48.5	-13.6	-8.9	3.6	14.1	44.0	54.0	-10.0	VA-1
23389.980	49.8	-13.6	-8.9	3.8	14.3	45.5	54.0	-8.5	VA-1
28644.020	27.3	-0.0	2.5	3.9	14.7	48.4	54.0	-5.6	H-2

Test Method: ANSI C63.4 (2003)

Spec Limit: FCC Part 15 Subpart C Sections 15.247(d)/15.209

Test Distance: 3 Meters

NOTES: H = Horizontal Polarization

V = Vertical Polarization A = Average Reading

1 = 5 dBi Antenna

2 = 23 dBi Antenna

COMMENTS: See individual data sheets for test conditions.

Page 16 of 106 Report No: FC06-042

Table 10: FCC 15.247(d) Six Highest Antenna Conducted Emission Levels: 9 kHz - 1 GHz									
FREQUENCY MHz	METER READING dBm	COR	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBm	SPEC LIMIT dBm	MARGIN dB	NOTES
11.800	-87.3			0.1		-87.2	-13.5	-73.7	N
12.160	-87.1			0.1		-87.0	-13.5	-73.5	N
13.600	-86.8			0.0		-86.8	-13.5	-73.3	N
14.500	-86.2			0.0		-86.2	-12.6	-73.6	N
15.950	-87.6			0.0		-87.6	-13.5	-74.1	N
16.490	-85.8			0.0		-85.8	-13.5	-72.3	N

Test Method: ANSI C63.4 (2003) NOTES: $N = No \ Polarization$ Spec Limit: FCC Part 15 Subpart C Section 15.247(d) $V = Vertical \ Polarization$

COMMENTS: 15.247(d) Spurious Emissions Antenna Conducted. Maximized Emissions measured with RBW=100 kHz, VBW=300 kHz from 100 kHz-1 GHz and RBW=10 kHz, VBW=300 kHz from 9-100 kHz. Readings from 10-1000 MHz are made using a 2.1 GHz Low Pass Filter. No signals found below 10 MHz.

Page 17 of 106 Report No: FC06-042

Table 11: FCC 15.247(d) Six Highest Antenna Conducted Emission Levels: 1-40 GHz									
FREQUENCY MHz	METER READING dBμV	COR Cable dB	RECTIO DC dB	ON FACT Att dB	ORS HPF dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
5599.100	-38.1	1.8	-13.6	30.4	0.0	-19.5	-12.6	-6.9	NA-H
5601.100	-38.6	1.8	-13.6	30.4	0.0	-20.0	-13.5	-6.5	NA-M
5602.100	-38.4	1.8	-13.6	30.4	0.0	-19.8	-13.5	-6.3	NA-L
5612.100	-40.8	1.8	-13.6	30.4	0.0	-22.2	-13.5	-8.7	NA-<
5622.100	-42.3	1.8	-13.6	30.4	0.0	-23.7	-13.5	-10.2	NA-L
5624.100	-42.1	1.8	-13.6	30.4	0.0	-23.5	-13.5	-10.0	NA-M

Test Method: ANSI C63.4 (2003) NOTES: N = No Polarization Spec Limit: FCC Part 15 Subpart C Section 15.247(d) A = Average Reading

L = Low

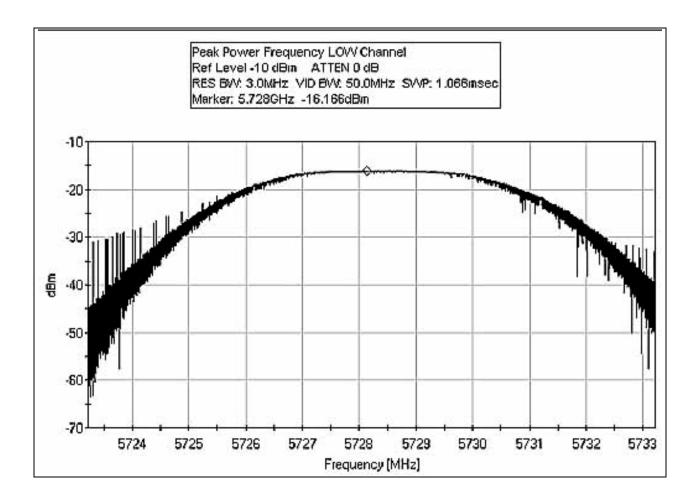
M = MidH = High

COMMENTS: See individual data sheets for test conditions.

Page 18 of 106 Report No: FC06-042

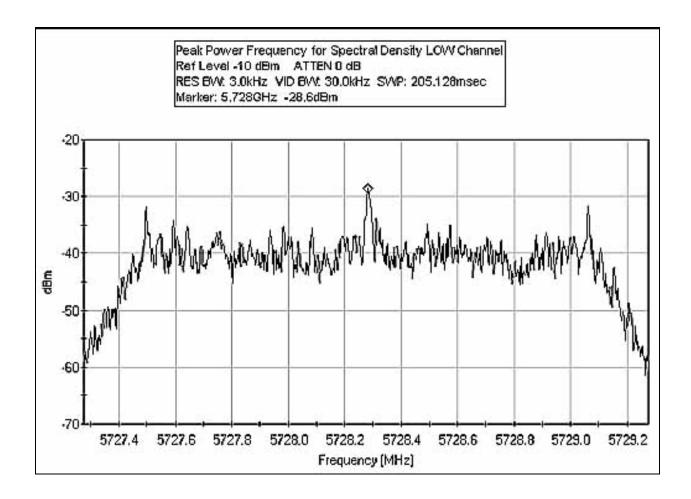
Table 12: FCC 15.247(e) Peak Power Spectral Density									
FREQUENCY MHz	METER READING dBm	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBm	SPEC LIMIT dBm	MARGIN dB	NOTES
5728.281	-30.9					-30.9	8.0	-38.9	N
5786.621	-29.8					-29.8	8.0	-37.8	N
5847.042	-31.0					-31.0	8.0	-39.0	N

ANSI C63.4 (2003) FCC Part 15 Subpart C Section 15.247(e) N = No Polarization Test Method: NOTES:

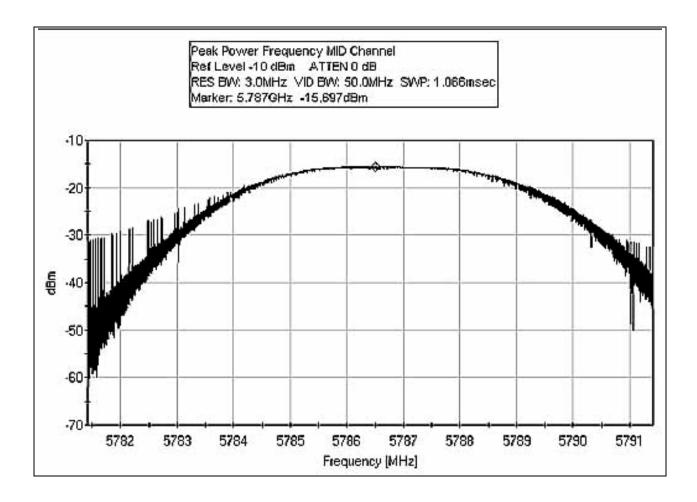

Spec Limit:

COMMENTS: 15.247(e) Peak Power Spectral Density.

Page 19 of 106 Report No: FC06-042


FCC 15.247(e) PEAK POWER LOW CHANNEL

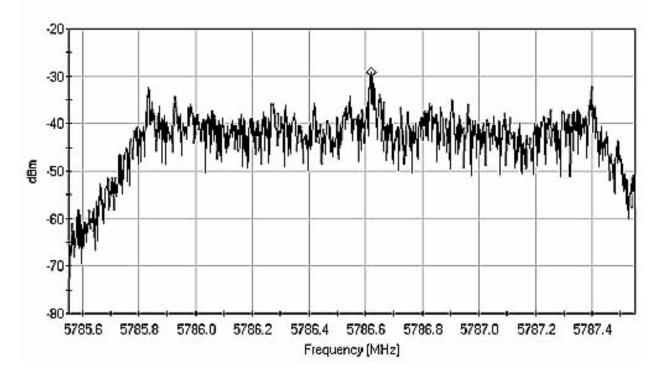
Page 20 of 106 Report No: FC06-042


FCC 15.247(e) PEAK POWER FOR SPECTRAL DENSITY LOW CHANNEL

Page 21 of 106 Report No: FC06-042

FCC 15.247(e) PEAK POWER MID CHANNEL

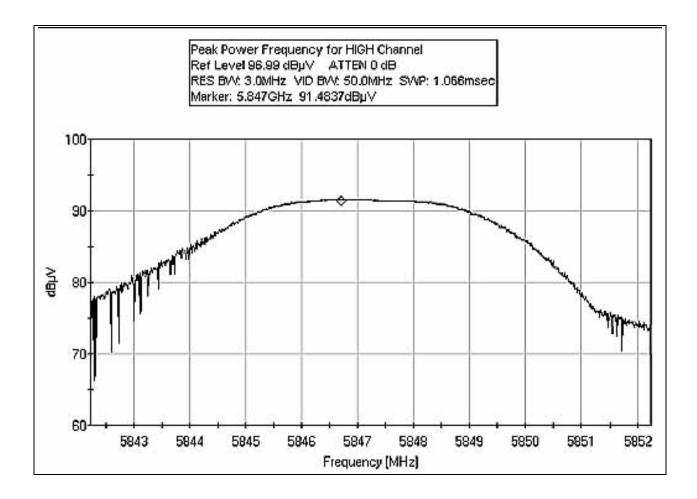
Page 22 of 106 Report No: FC06-042



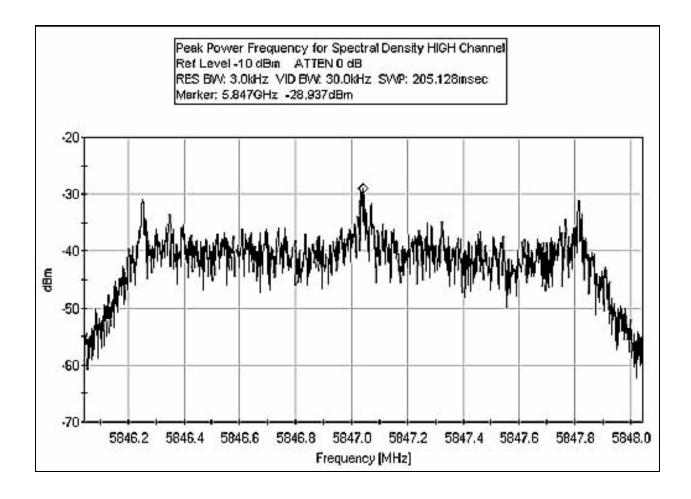
FCC 15.247(e) PEAK POWER FOR SPECTRAL DENSITY MID CHANNEL

Peak Power Frequency for Spectral Density MID Channel Ref Level -10 dBm ATTEN 0 dB

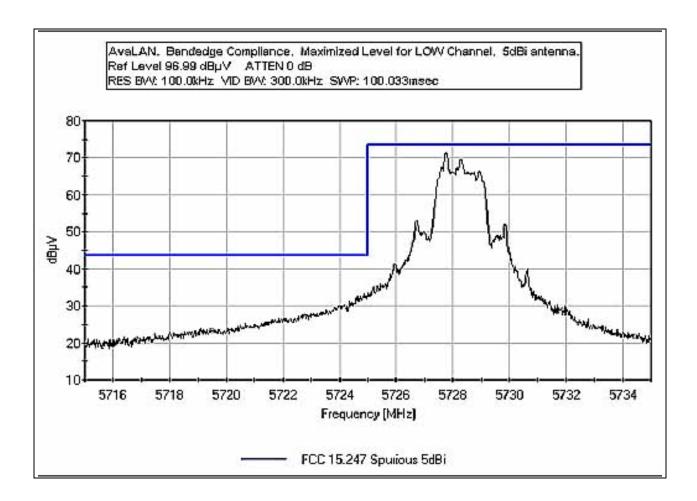
RES BVV: 3.0kHz VID BW: 30.0kHz SWP: 205.128msec


Marker: 5.787GHz -29.222dBm

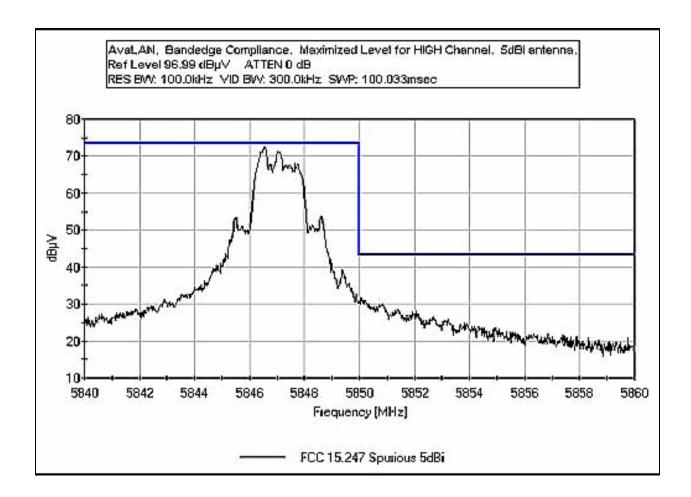
Page 23 of 106 Report No: FC06-042


FCC 15.247(e) PEAK POWER HIGH CHANNEL

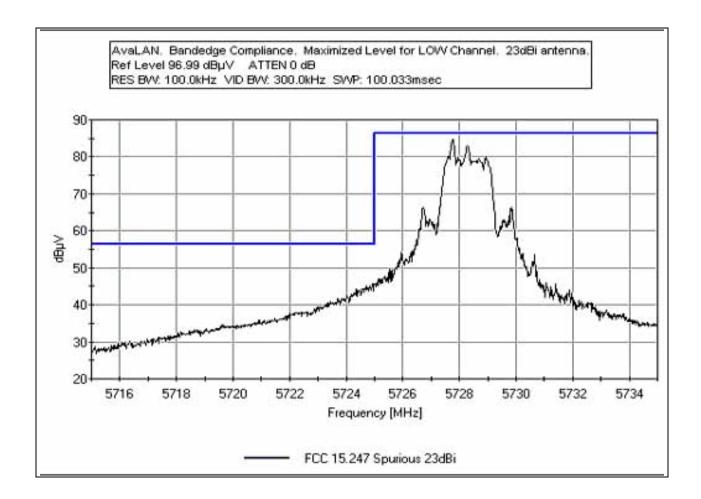
Page 24 of 106 Report No: FC06-042


FCC 15.247(e) PEAK POWER FOR SPECTRAL DENSITY HIGH CHANNEL

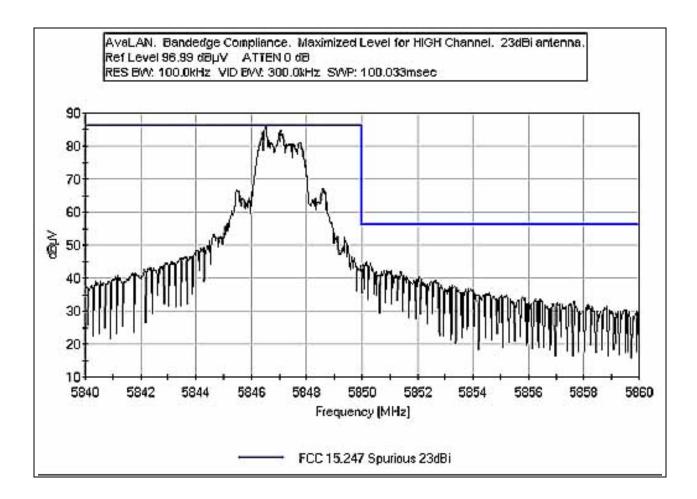
Page 25 of 106 Report No: FC06-042


BANDEDGE LOW CHANNEL 5dBi ANTENNA

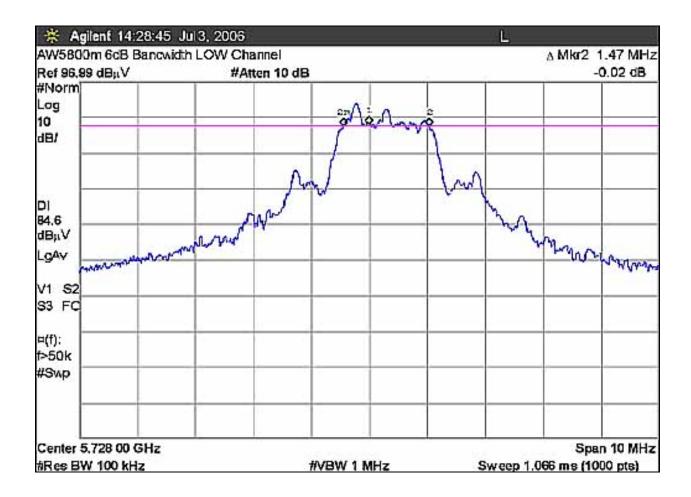
Page 26 of 106 Report No: FC06-042


BANDEDGE HIGH CHANNEL 5dBi ANTENNA

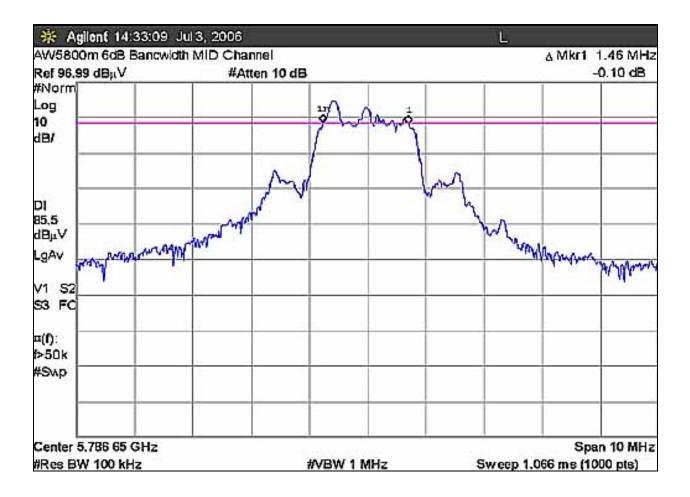
Page 27 of 106 Report No: FC06-042


BANDEDGE LOW CHANNEL 23dBi ANTENNA

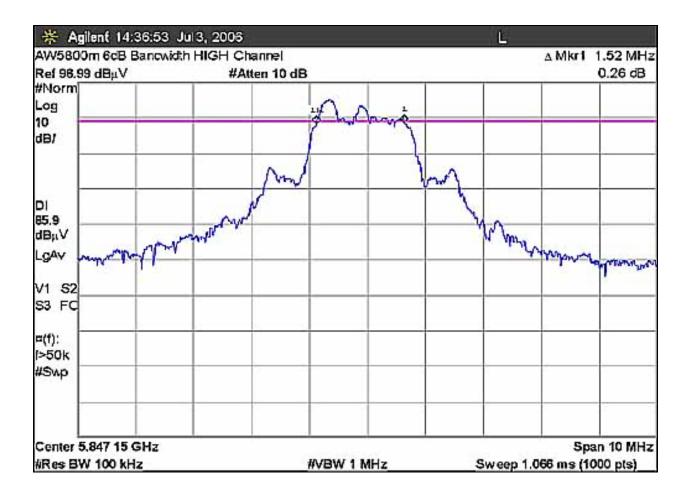
Page 28 of 106 Report No: FC06-042


BANDEDGE HIGH CHANNEL 23dBi ANTENNA

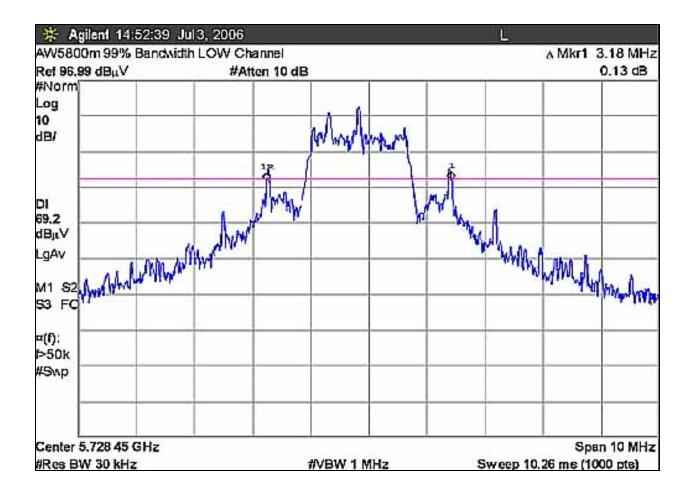
Page 29 of 106 Report No: FC06-042


6 dB BANDWIDTH LOW CHANNEL

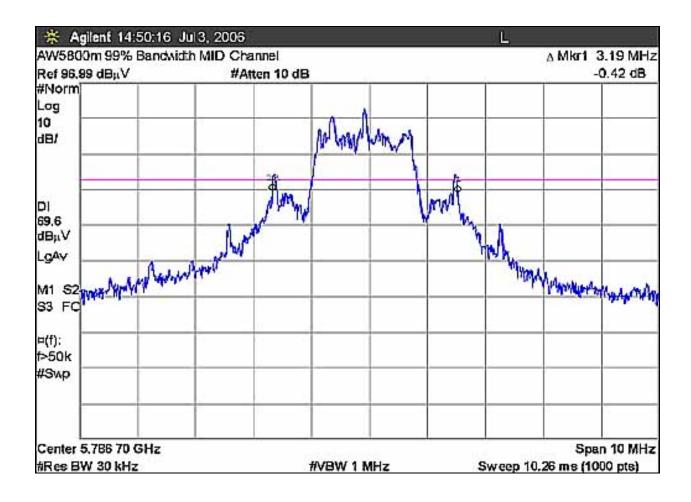
Page 30 of 106 Report No: FC06-042


6 dB BANDWIDTH MID CHANNEL

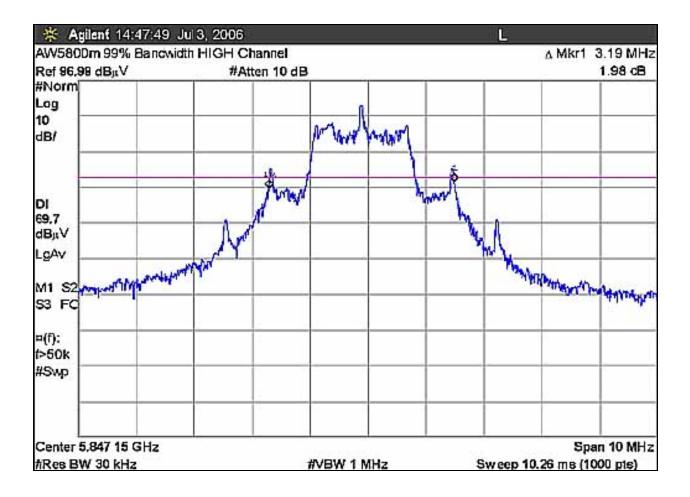
Page 31 of 106 Report No: FC06-042


6 dB BANDWIDTH HIGH CHANNEL

Page 32 of 106 Report No: FC06-042


RSS-210 99% BANDWIDTH LOW CHANNEL

Page 33 of 106 Report No: FC06-042


RSS-210 99% BANDWIDTH MID CHANNEL

Page 34 of 106 Report No: FC06-042

RSS-210 99% BANDWIDTH HIGH CHANNEL

Page 35 of 106 Report No: FC06-042

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	TABLE A: SAMPLE CALCULATIONS								
	Meter reading	$(dB\mu V)$							
+	Antenna Factor	(dB)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
_	Preamplifier Gain	(dB)							
=	Corrected Reading	$(dB\mu V/m)$							

Page 36 of 106 Report No: FC06-042

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the EUT. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For radiated measurements from 30 to 1000 MHz, the biconilog antenna was used. The horn antenna was used for frequencies above 1000 MHz. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page 37 of 106 Report No: FC06-042

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

The LISNs used were $50 \,\mu\text{H}\text{-/+}50$ ohms. A 30 to 50 second sweep time was used for automated measurements in the frequency bands of 150 kHz to 500 kHz, and 500 kHz to 30 MHz. All readings within 20 dB of the limit were recorded, and those within 6 dB of the limit were examined with additional measurements using a slower sweep time.

Antenna Conducted Emissions

For measuring the signal strength on the RF output port of the EUT, the spectrum analyzer was connected directly to the EUT. The sweep time of the analyzer was adjusted so that the spectrum analyzer readings were always in a calibrated range. All readings within 20 dB of the limit were recorded.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. For frequencies exceeding 1000 MHz, the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

Page 38 of 106 Report No: FC06-042

APPENDIX A TEST SETUP PHOTOGRAPHS

Page 39 of 106 Report No: FC06-042

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View 15.107 & 15.207

Page 40 of 106 Report No: FC06-042

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Side View 15.107 & 15.207

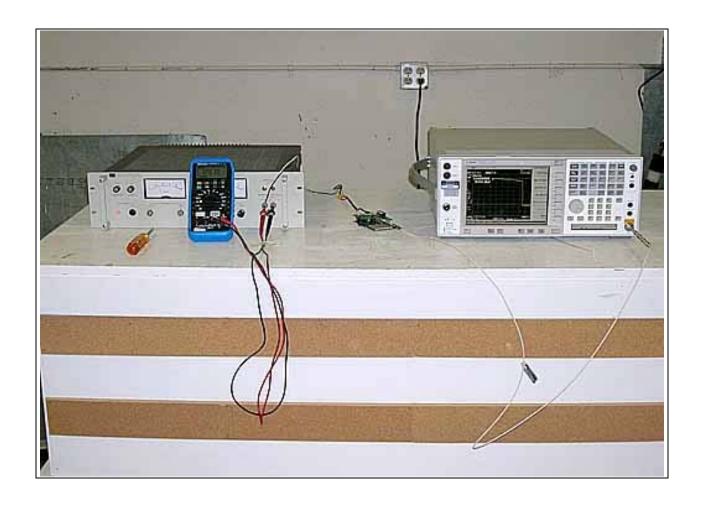
Page 41 of 106 Report No: FC06-042

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View Receiver Panel Antenna 15.109

Page 42 of 106 Report No: FC06-042

PHOTOGRAPH SHOWING RADIATED EMISSIONS



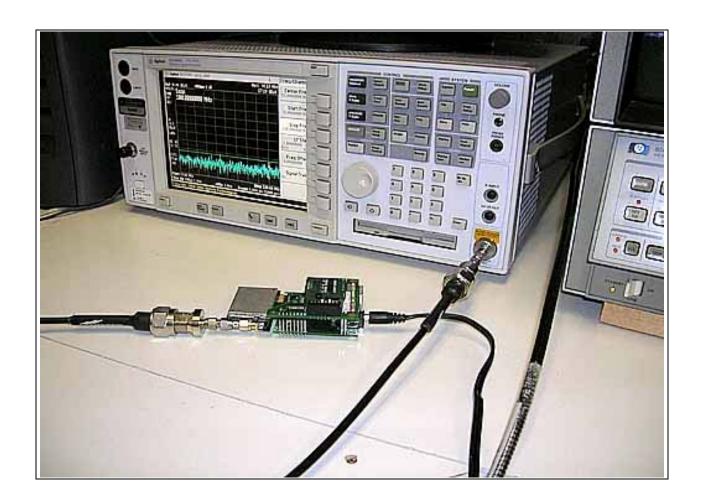
Radiated Emissions - Back View Receiver Panel Antenna 15.109

Page 43 of 106 Report No: FC06-042

PHOTOGRAPH SHOWING VOLTAGE VARIATIONS

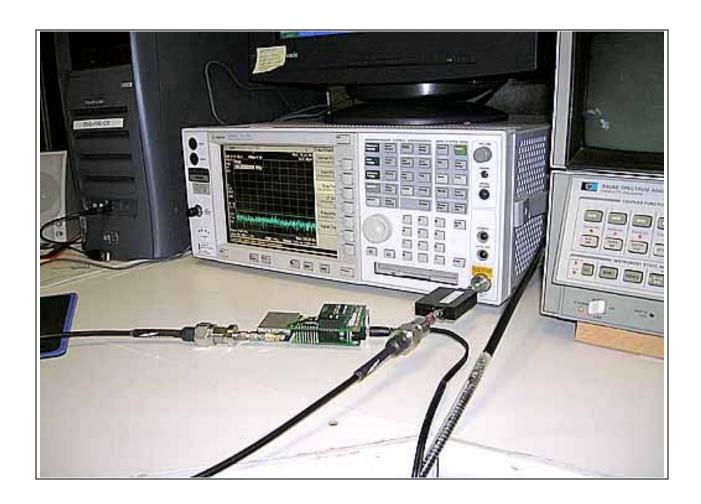
Voltage Variations 15.31(e)/15.247(b)

Page 44 of 106 Report No: FC06-042


RF POWER AND PEAK POWER SPECTRAL DENSITY

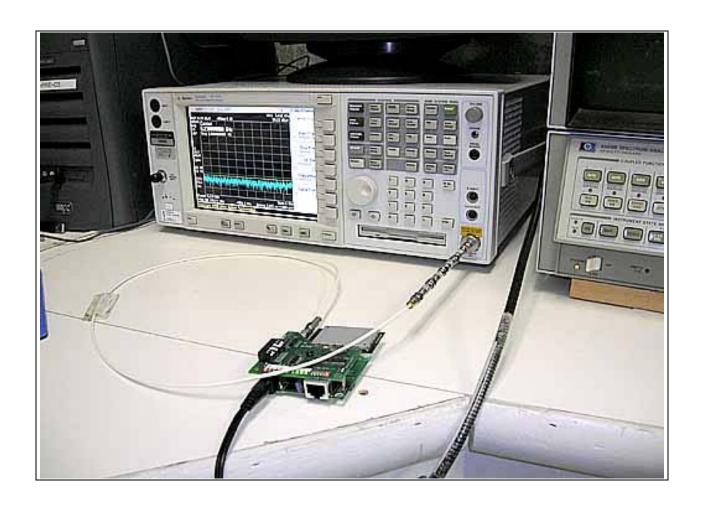
RF Power (15.247(b)(3)) and Peak Power Spectral Density (15.247(e))

Page 45 of 106 Report No: FC06-042



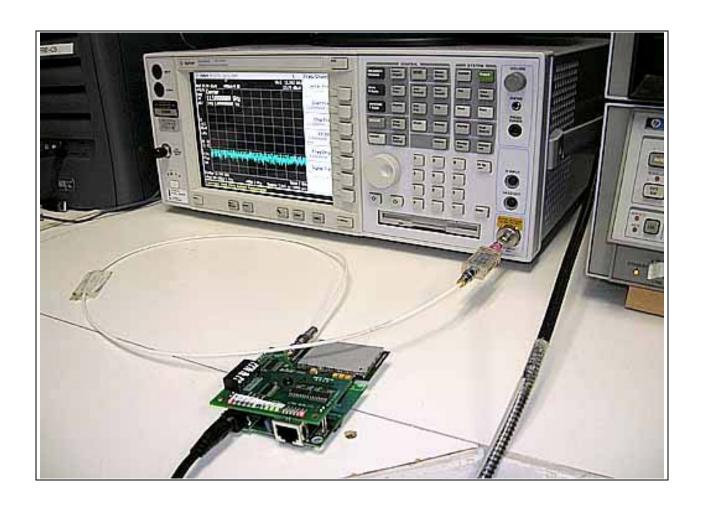
15.247(d) 9 kHz - 10 MHz

Page 46 of 106 Report No: FC06-042



15.247(d) 10-1000 MHz

Page 47 of 106 Report No: FC06-042



15.247(d) 1-8.5 GHz

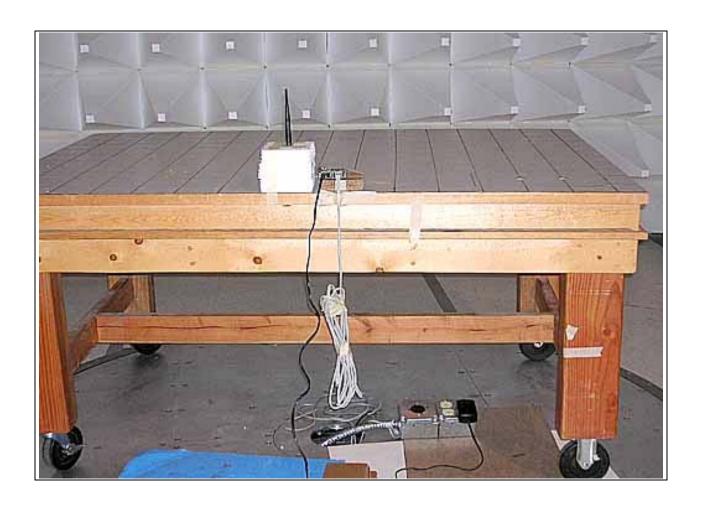
Page 48 of 106 Report No: FC06-042

15.247(d) 8.5-40 GHz

Page 49 of 106 Report No: FC06-042

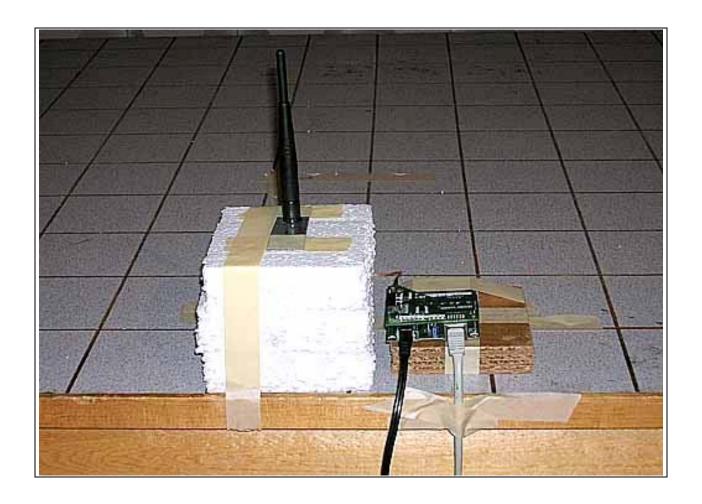
15.247(d) 5dBi Antenna Front

Page 50 of 106 Report No: FC06-042



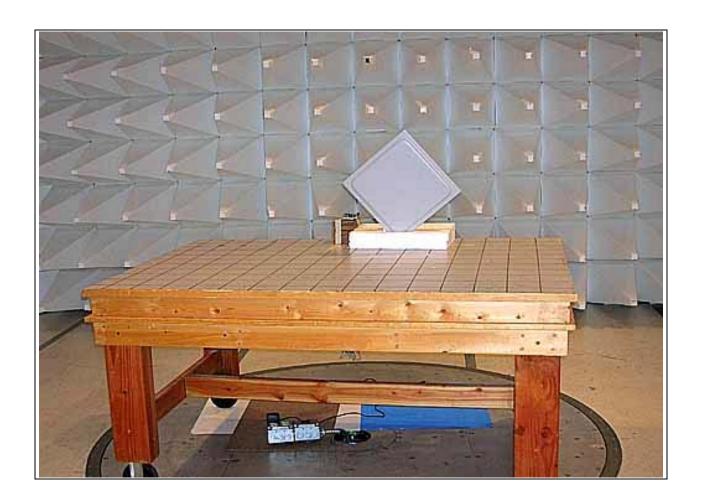
15.247(d) 5dBi Antenna Front Close-up

Page 51 of 106 Report No: FC06-042



15.247(d) 5dBi Antenna Back

Page 52 of 106 Report No: FC06-042

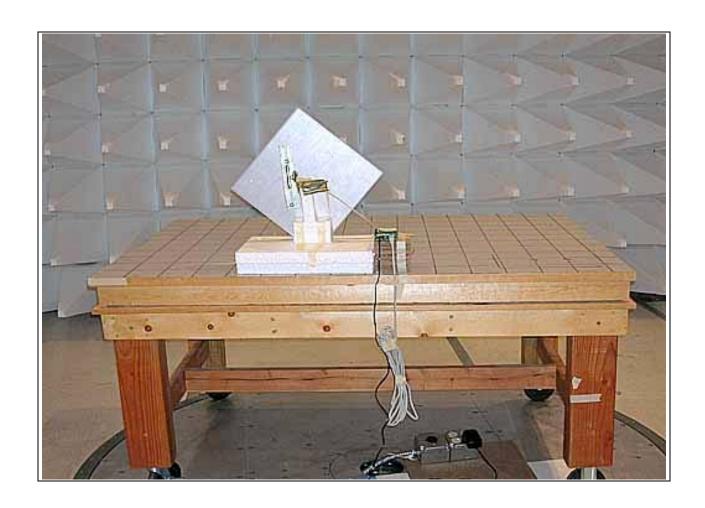


15.247(d) 5dBi Antenna Back Close-up

Page 53 of 106 Report No: FC06-042

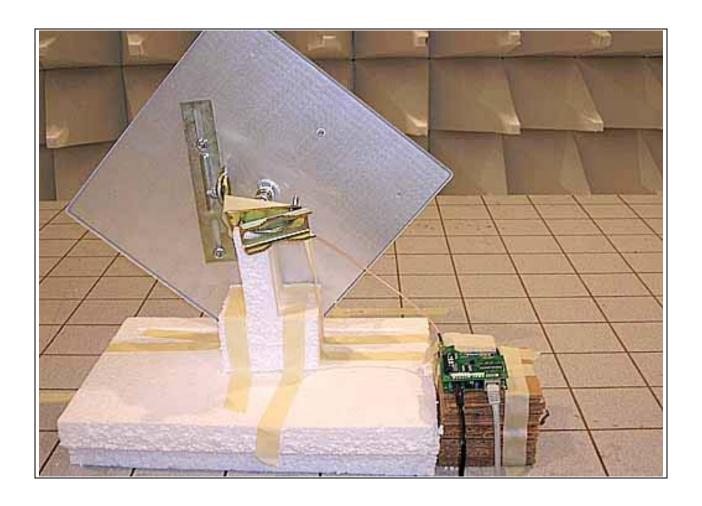
15.247(d) 23dBi Antenna Front

Page 54 of 106 Report No: FC06-042



15.247(d) 23dBi Antenna Front Close-up

Page 55 of 106 Report No: FC06-042



15.247(d) 23dBi Antenna Back

Page 56 of 106 Report No: FC06-042

15.247(d) 23dBi Antenna Back Close-up

Page 57 of 106 Report No: FC06-042

APPENDIX B

TEST EQUIPMENT LIST

FCC 15.107

Function	S/N	Calibration Date	Cal Due Date	Asset #
SA-Display 8568B	2542A12169	11/28/2005	11/28/2007	02662
SA-RF Section 8568B	2601A02492	11/28/2005	11/28/2007	02663
QP Adapter	2043A00188	10/23/2004	10/23/2006	1508
10dB Attenuator	none	10/20/2005	10/20/2007	P02223
CABLE	82' RG8	08/24/2005	08/24/2007	05012
TTE High Pass Filter	H4120	04/20/2005	04/20/2007	05258
LISN	9408-1006	05/23/2005	05/23/2007	00493

FCC 15.109

Function	S/N	Calibration Date	Cal Due Date	Asset #
SA-Display 8568B	2542A12169	11/28/2005	11/28/2007	02662
SA-RF Section 8568B	2601A02492	11/28/2005	11/28/2007	02663
Cable	None	06/21/2005	06/21/2007	P05296
Cable	None	06/21/2005	06/21/2007	P05299
Cable	None	06/21/2005	06/21/2007	P05300
HP8447F opt H64 preamp	2944A03850	03/05/2005	03/05/2007	00501
QP Adapter	2043A00188	10/23/2004	10/23/2006	1508
Bilog Antenna	2630	01/24/2005	01/24/2007	00852

FCC 15.207

Function	S/N	Calibration Date	Cal Due Date	Asset #
10dB Attenuator	none	10/20/2005	10/20/2007	P02223
TTE High Pass Filter	H4120	04/20/2005	04/20/2007	05258
LISN	9408-1006	05/23/2005	05/23/2007	00493
Cable	none	03/01/2006	03/01/2008	PO0875
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668

FCC 15.31(e)/15.247(b)

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668
6dB HF Attenuator	P7612	03/01/2006	03/01/2008	P05413
6dB HF Attenuator	P0519	03/01/2006	03/01/2008	P05412
10dB HF Attenuator	P7186	03/01/2006	03/01/2008	P05411
10dB HF Attenuator	P7169	03/01/2006	03/01/2008	P05410
Cable, HF	n/a	08/09/2005	08/09/2007	P02717
Tektronix DMM914	141024	09/12/2007	09/12/2007	02132
HP P.S 6267B	2712A-10825	NCR	NCR	02498

NCR = No Cal Required

Page 58 of 106 Report No: FC06-042

15.247(d)/15.209 9 kHz-1000 MHz:

Function	S/N	Calibration Date	Cal Due Date	Asset #
SA-Display 8568B	2542A12169	11/28/2005	11/28/2007	02662
SA-RF Section 8568B	2601A02492	11/28/2005	11/28/2007	02663
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668
HP8447F opt H64 preamp	2944A03850	03/05/2005	03/05/2007	00501
Chase Bilog CBL6111C	2630	01/24/2005	01/24/2007	00852
Antenna-Mag Loop-6502	2078	05/13/2005	05/13/2007	00432
Cable	None	06/21/2005	06/21/2007	P05296
Cable	None	06/21/2005	06/21/2007	P05299
Cable	None	06/21/2005	06/21/2007	P05300

FCC 15.247(d)/15.209 1-12.5 GHz, Bandedge and Bandwidth

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668
Cable, HF 36"	n/a	02/08/2005	02/08/2007	P05200
8.2GHz High Pass Filter	3643A00026	03/08/2006	03/08/2008	01417
Preamp, Agilent 83051A	00323	02/27/2006	02/27/2008	02810
Cable, 6'	n/a	06/07/2006	06/07/2008	P04241
HF-Cable FSJ1P-50A-4A		02/20/2006	02/20/2008	P05138
Antenna, Horn 1-18 GHz	1064	03/08/2005	03/08/2007	02061

FCC 15.247(d)/15.209 12.5-40GHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668
HF-Cable-72" Pasternack	None	07/12/2005	07/12/2007	P05317
Cable, HF	n/a	07/12/2005	07/12/2007	P05314
Preamp Miteq 26-40 GHz		09/30/2005	09/30/2007	02695
Active Horn 18-26GHz	1087835	10/25/2005	10/25/2007	02694
Active Horn 12-18GHz	1088714	09/22/2005	09/22/2007	02693
26.5-40GHz WaveGuide	n/a	12/20/2005	12/20/2007	P00930
18-26.5GHz WaveGuide	n/a	12/20/2005	12/20/2007	P00929
12.4-18GHz WaveGuide	n/a	12/19/2005	12/19/2007	P00928
Cable, HF 36"	n/a	02/08/2005	02/08/2007	P05200
Preamp, Agilent 83051A	00323	02/27/2006	02/27/2008	02810

FCC 15.247(d) Antenna Conducted 9 kHz – 1000 MHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668
Cable, HF 36"	n/a	02/08/2005	02/08/2007	P05200
Cable	none	01/03/2005	01/03/2007	01188
2.1GHz Low Pass Filter	11SL10-	03/07/2006	03/07/2008	02748
	2000/U6000-O/O			

Page 59 of 106 Report No: FC06-042

FCC 15.247(d) Antenna Conducted 1-40 GHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668
6dB HF Attenuator	P7612	03/01/2006	03/01/2008	P05413
6dB HF Attenuator	P0519	03/01/2006	03/01/2008	P05412
10dB HF Attenuator	P7186	03/01/2006	03/01/2008	P05411
10dB HF Attenuator	P7169	03/01/2006	03/01/2008	P05410
Cable, HF 36"	n/a	02/08/2005	02/08/2007	P05200
8.2GHz High Pass Filter	3643A00026	03/08/2006	03/08/2008	01417

FCC 15.247(e)

1 00 13.217 (0)				
Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668
Cable, HF 36"	n/a	02/08/2005	02/08/2007	P05200
6dB HF Attenuator	P7612	03/01/2006	03/01/2008	P05413
6dB HF Attenuator	P0519	03/01/2006	03/01/2008	P05412
10dB HF Attenuator	P7186	03/01/2006	03/01/2008	P05411
10dB HF Attenuator	P7169	03/01/2006	03/01/2008	P05410

Page 60 of 106 Report No: FC06-042

APPENDIX C MEASUREMENT DATA SHEETS

Page 61 of 106 Report No: FC06-042

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.107 B COND [AVE]

Work Order #: 85414 Date: 7/13/2006
Test Type: Conducted Emissions Time: 16:43:10
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 115

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: Art Rice Model: AW5800m 120V 60Hz

S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply 10VDC,	CUI Stack	48-10-1100D	none	
1100mA				
Panel Antenna	ARC Wireless Solutions	ANT-A-1723-01	00540051116	

Test Conditions / Notes:

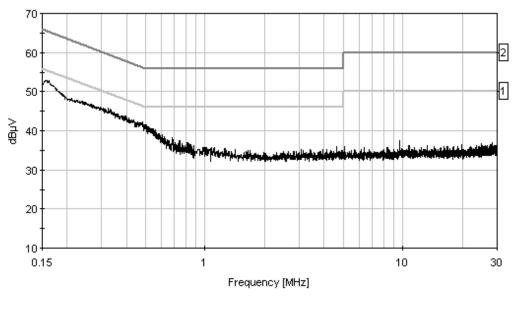
Conducted Emissions 0.15-30 MHz. 23dBi Antenna Receive Mode, set up per ANSI C63.4. NOTE: Changed to different model power supply. Power supply is not supplied by AvaLAN to the customer.

Transducer Legend:

T1=LISN - AN00493 - Black - ELC "OUT"	T2=TTE HP Filter P05258
T3=Cable 82' RG8 PN 05012	T4=ANP02223 10dB Attenuator

Measur	ement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	Hz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	515.054k	30.9	+0.3	+0.0	+0.1	+9.7	+0.0	41.0	46.0	-5.0	Black
2	682.310k	28.0	+0.3	+0.0	+0.2	+9.7	+0.0	38.2	46.0	-7.8	Black
3	641.587k	27.7	+0.3	+0.0	+0.1	+9.7	+0.0	37.8	46.0	-8.2	Black
4	742.668k	27.2	+0.3	+0.0	+0.2	+9.7	+0.0	37.4	46.0	-8.6	Black
5	739.032k	27.0	+0.3	+0.0	+0.2	+9.7	+0.0	37.2	46.0	-8.8	Black
6	813.934k	26.8	+0.3	+0.0	+0.2	+9.7	+0.0	37.0	46.0	-9.0	Black
7	728.124k	26.6	+0.3	+0.0	+0.2	+9.7	+0.0	36.8	46.0	-9.2	Black
8	830.659k	26.6	+0.3	+0.0	+0.2	+9.7	+0.0	36.8	46.0	-9.2	Black
9	823.387k	26.4	+0.3	+0.0	+0.2	+9.7	+0.0	36.6	46.0	-9.4	Black
10	716.489k	26.3	+0.3	+0.0	+0.2	+9.7	+0.0	36.5	46.0	-9.5	Black

Page 62 of 106 Report No: FC06-042



11	847.385k	26.3	+0.3	+0.0	+0.2	+9.7	+0.0	36.5	46.0	-9.5	Black
12	836.477k	26.2	+0.3	+0.0	+0.2	+9.7	+0.0	36.4	46.0	-9.6	Black
13	843.022k	26.1	+0.3	+0.0	+0.2	+9.7	+0.0	36.3	46.0	-9.7	Black
14	4.632M	25.4	+0.4	+0.1	+0.3	+9.8	+0.0	36.0	46.0	-10.0	Black
15	876.473k	25.7	+0.3	+0.0	+0.1	+9.7	+0.0	35.8	46.0	-10.2	Black
16	1.022M	25.4	+0.3	+0.0	+0.2	+9.8	+0.0	35.7	46.0	-10.3	Black
17	1.073M	25.3	+0.3	+0.0	+0.2	+9.8	+0.0	35.6	46.0	-10.4	Black
18	1.115M	25.3	+0.3	+0.0	+0.2	+9.8	+0.0	35.6	46.0	-10.4	Black
19	1.256M	25.1	+0.3	+0.0	+0.2	+9.8	+0.0	35.4	46.0	-10.6	Black
20	3.403M	24.8	+0.4	+0.1	+0.3	+9.7	+0.0	35.3	46.0	-10.7	Black
21	3.067M	24.7	+0.4	+0.1	+0.3	+9.7	+0.0	35.2	46.0	-10.8	Black
22	3.952M	24.6	+0.3	+0.1	+0.3	+9.8	+0.0	35.1	46.0	-10.9	Black
23	4.109M	24.6	+0.3	+0.1	+0.3	+9.8	+0.0	35.1	46.0	-10.9	Black
24	3.135M	24.5	+0.4	+0.1	+0.3	+9.7	+0.0	35.0	46.0	-11.0	Black
25	4.301M	24.5	+0.3	+0.1	+0.3	+9.8	+0.0	35.0	46.0	-11.0	Black
26	4.875M	24.4	+0.4	+0.1	+0.3	+9.8	+0.0	35.0	46.0	-11.0	Black
27	4.977M	24.4	+0.4	+0.1	+0.3	+9.8	+0.0	35.0	46.0	-11.0	Black
28	4.760M	24.2	+0.4	+0.1	+0.3	+9.8	+0.0	34.8	46.0	-11.2	Black
29	4.377M	24.2	+0.3	+0.1	+0.3	+9.8	+0.0	34.7	46.0	-11.3	Black
30	162.000k Ave	15.0	+0.4	+3.0	+0.1	+9.8	+0.0	28.3	55.4	-27.1	Black
٨	161.635k	39.5	+0.4	+3.0	+0.1	+9.8	+0.0	52.8	55.4	-2.6	Black

Page 63 of 106 Report No: FC06-042

CKC Laboratories, Inc. Date: 7/13/2006 Time: 16:43:10 AvaLAN Wireless Systems, Inc. WO#: 85414 FCC 15:107 B COND [AVE] Test Lead: Black 120V 60Hz Sequence#: 115 Polarity: Black

> Page 64 of 106 Report No: FC06-042

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.107 B COND [AVE]

Work Order #: 85414 Date: 7/13/2006
Test Type: Conducted Emissions Time: 16:37:35
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 114

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: Art Rice Model: AW5800m 120V 60Hz

S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply 10VDC,	CUI Stack	48-10-1100D	none	
1100mA				
Panel Antenna	ARC Wireless Solutions	ANT-A-1723-01	00540051116	

Test Conditions / Notes:

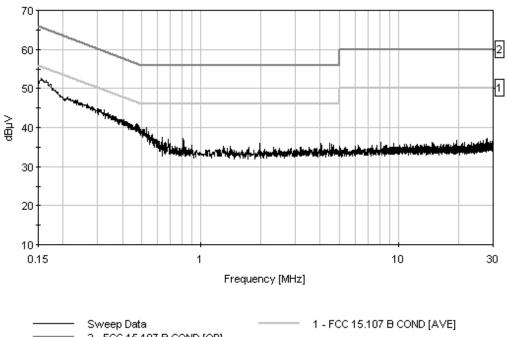
Conducted Emissions 0.15-30 MHz. 23dBi Antenna Receive Mode, set up per ANSI C63.4. NOTE: Changed to different model power supply. Power supply is not supplied by AvaLAN to the customer.

Transducer Legend:

T1=LISN - AN00493 - White - ELC "OUT"	T2=TTE HP Filter P05258
T3=Cable 82' RG8 PN 05012	T4=ANP02223 10dB Attenuator

Measur	Measurement Data: Reading listed by margin.						Test Lead: White				
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	Hz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	338.345k	33.5	+0.3	+0.1	+0.1	+9.8	+0.0	43.8	49.2	-5.4	White
2	474.331k	30.9	+0.3	+0.0	+0.1	+9.7	+0.0	41.0	46.4	-5.4	White
3	477.240k	30.7	+0.3	+0.0	+0.1	+9.7	+0.0	40.8	46.4	-5.6	White
4	541.234k	29.0	+0.3	+0.0	+0.1	+9.7	+0.0	39.1	46.0	-6.9	White
5	567.413k	28.1	+0.3	+0.0	+0.1	+9.7	+0.0	38.2	46.0	-7.8	White
6	634.315k	27.5	+0.3	+0.0	+0.1	+9.7	+0.0	37.6	46.0	-8.4	White
7	813.206k	27.1	+0.3	+0.0	+0.2	+9.7	+0.0	37.3	46.0	-8.7	White
8	579.048k	27.0	+0.3	+0.0	+0.1	+9.7	+0.0	37.1	46.0	-8.9	White
9	585.593k	26.9	+0.3	+0.0	+0.1	+9.7	+0.0	37.0	46.0	-9.0	White
10	678.674k	26.7	+0.3	+0.0	+0.2	+9.7	+0.0	36.9	46.0	-9.1	White

Page 65 of 106 Report No: FC06-042



11	601.591k	26.6	+0.3	+0.0	+0.1	+9.7	+0.0	36.7	46.0	-9.3	White
12	659.767k	26.0	+0.3	+0.0	+0.2	+9.7	+0.0	36.2	46.0	-9.8	White
13	649.586k	25.8	+0.3	+0.0	+0.2	+9.7	+0.0	36.0	46.0	-10.0	White
14	697.582k	25.8	+0.3	+0.0	+0.2	+9.7	+0.0	36.0	46.0	-10.0	White
15	4.037M	25.4	+0.4	+0.1	+0.3	+9.8	+0.0	36.0	46.0	-10.0	White
16	664.858k	25.7	+0.3	+0.0	+0.2	+9.7	+0.0	35.9	46.0	-10.1	White
17	1.987M	25.7	+0.3	+0.1	+0.1	+9.7	+0.0	35.9	46.0	-10.1	White
18	4.479M	25.3	+0.4	+0.1	+0.3	+9.8	+0.0	35.9	46.0	-10.1	White
19	4.586M	25.2	+0.4	+0.1	+0.3	+9.8	+0.0	35.8	46.0	-10.2	White
20	657.586k	25.5	+0.3	+0.0	+0.2	+9.7	+0.0	35.7	46.0	-10.3	White
21	902.518k	25.4	+0.3	+0.0	+0.1	+9.7	+0.0	35.5	46.0	-10.5	White
22	4.683M	24.8	+0.4	+0.1	+0.3	+9.8	+0.0	35.4	46.0	-10.6	White
23	1.302M	24.9	+0.3	+0.0	+0.2	+9.8	+0.0	35.2	46.0	-10.8	White
24	828.478k	24.8	+0.3	+0.0	+0.2	+9.7	+0.0	35.0	46.0	-11.0	White
25	832.841k	24.8	+0.3	+0.0	+0.2	+9.7	+0.0	35.0	46.0	-11.0	White
26	1.740M	24.8	+0.3	+0.1	+0.1	+9.7	+0.0	35.0	46.0	-11.0	White
27	3.514M	24.4	+0.4	+0.1	+0.3	+9.8	+0.0	35.0	46.0	-11.0	White
28	3.186M	24.4	+0.4	+0.1	+0.3	+9.7	+0.0	34.9	46.0	-11.1	White
29	4.011M	24.3	+0.4	+0.1	+0.3	+9.8	+0.0	34.9	46.0	-11.1	White
30	156.000k Ave	15.8	+0.4	+3.5	+0.1	+9.8	+0.0	29.6	55.7	-26.1	White
٨	155.818k	38.7	+0.4	+3.5	+0.1	+9.8	+0.0	52.5	55.7	-3.2	White

Page 66 of 106 Report No: FC06-042

CKC Laboratories, Inc. Date: 7/13/2006 Time: 16:37:35 AvaLAN Wireless Systems, Inc. WO#: 85414 FCC 15.107 B COND [AVE] Test Lead: White 120V 60Hz Sequence#: 114 Polarity: White

2 - FCC 15.107 B COND [QP]

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.109 Class B Radiated

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	CUI Inc.	DSA-0151A-06		
Panel Antenna	ARC Wireless Solutions	ANT-A-1723-01	00540051116	

Test Conditions / Notes:

FCC 15.109 Class B Radiated Emissions 30-1000MHz. 23dBi Antenna Receive Mode, set up per ANSI C63.4.

Transducer Legend:

T1=0852-Bi-Log Antenna	T2=Cable P05296 25' RG214 N-N
T3=Cable P05299 2' RG214 N-N	T4=Cable P05300 12' RG214 N-N
T5=Amp Cal.HP-8447F OPT H64- AN 00501	

Measurement Data: Reading listed by margin.			argin.	Test Distance: 3 Meters							
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	Hz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	49.985M	53.4	+8.5	+0.4	+0.1	+0.2	+0.0	36.5	40.0	-3.5	Vert
(QP		-26.1				55				104
٨	49.981M	53.6	+8.5	+0.4	+0.1	+0.2	+0.0	36.7	40.0	-3.3	Vert
			-26.1				55				104
3	399.995M	50.0	+15.5	+1.1	+0.2	+0.7	+0.0	41.6	46.0	-4.4	Vert
(QP		-25.9				188				99
٨	399.991M	50.1	+15.5	+1.1	+0.2	+0.7	+0.0	41.7	46.0	-4.3	Vert
			-25.9				188				99
5	399.988M	46.9	+15.5	+1.1	+0.2	+0.7	+0.0	38.5	46.0	-7.5	Horiz
			-25.9				108				203
6	199.984M	50.6	+8.6	+0.8	+0.1	+0.5	+0.0	35.0	43.5	-8.5	Vert
			-25.6				311				99
7	437.489M	44.4	+16.5	+1.1	+0.2	+0.6	+0.0	36.6	46.0	-9.4	Horiz
			-26.2				262				161
8	925.003M	36.8	+23.0	+1.8	+0.2	+0.9	+0.0	36.0	46.0	-10.0	Vert
			-26.7				207				137
9	675.004M	40.0	+19.9	+1.5	+0.2	+0.8	+0.0	35.3	46.0	-10.7	Vert
			-27.1				318				165
10	724.995M	38.5	+20.8	+1.5	+0.2	+0.7	+0.0	34.6	46.0	-11.4	Vert
			-27.1				103				153
11	299.994M	44.8	+13.0	+1.0	+0.1	+0.6	+0.0	34.2	46.0	-11.8	Vert
			-25.3				139				162

Page 68 of 106 Report No: FC06-042

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.207 COND [AVE]

Work Order #: 85414 Date: 7/14/2006
Test Type: Conducted Emissions Time: 11:51:17
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 119

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas Model: AW5800m 120V 60Hz

S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply 10VDC,	CUI Stack	48-10-1100D	none
1100mA			
Panel Antenna	ARC Wireless Solutions	ANT-A-1723-01	00540051116

Test Conditions / Notes:

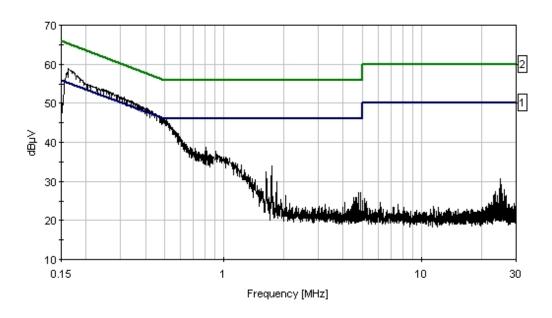
FCC 15.207 Conducted Emissions 0.15-30 MHz 23dBi Antenna. HIGH Channel. High Channel with the 23dBi antenna produces the worst case emissions.

Transducer Legend:

T1=LISN - AN00493 - Black - ELC "OUT"	T2=TTE HP Filter P05258
T3=ANP02223 10dB Attenuator	T4=Cable P00875, 15' RG214/U

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	Hz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	632.457k	29.1	+0.3	+0.0	+9.7	+0.1	+0.0	39.2	46.0	-6.8	Black
2	805.940k	28.7	+0.3	+0.0	+9.7	+0.1	+0.0	38.8	46.0	-7.2	Black
3	809.576k	28.6	+0.3	+0.0	+9.7	+0.1	+0.0	38.7	46.0	-7.3	Black
4	813.212k	28.6	+0.3	+0.0	+9.7	+0.1	+0.0	38.7	46.0	-7.3	Black
5	714.312k	28.2	+0.3	+0.0	+9.7	+0.1	+0.0	38.3	46.0	-7.7	Black
6	717.221k	27.9	+0.3	+0.0	+9.7	+0.1	+0.0	38.0	46.0	-8.0	Black
7	719.402k	27.6	+0.3	+0.0	+9.7	+0.1	+0.0	37.7	46.0	-8.3	Black
8	911.227k	27.7	+0.3	+0.0	+9.7	+0.0	+0.0	37.7	46.0	-8.3	Black
9	739.764k	27.4	+0.3	+0.0	+9.7	+0.1	+0.0	37.5	46.0	-8.5	Black
10	743.400k	27.4	+0.3	+0.0	+9.7	+0.1	+0.0	37.5	46.0	-8.5	Black

Page 69 of 106 Report No: FC06-042



11	750.672k	27.4	+0.3	+0.0	+9.7	+0.1	+0.0	37.5	46.0	-8.5	Black
12	821.211k	26.9	+0.3	+0.0	+9.7	+0.1	+0.0	37.0	46.0	-9.0	Black
13	843.027k	26.8	+0.3	+0.0	+9.7	+0.1	+0.0	36.9	46.0	-9.1	Black
14	852.481k	26.7	+0.3	+0.0	+9.7	+0.0	+0.0	36.7	46.0	-9.3	Black
15	827.029k	26.4	+0.3	+0.0	+9.7	+0.1	+0.0	36.5	46.0	-9.5	Black
16	1.741M	23.7	+0.3	+0.1	+9.7	+0.1	+0.0	33.9	46.0	-12.1	Black
17	1.634M	22.3	+0.3	+0.1	+9.7	+0.1	+0.0	32.5	46.0	-13.5	Black
18	1.349M	21.1	+0.3	+0.0	+9.8	+0.0	+0.0	31.2	46.0	-14.8	Black
19	1.392M	20.6	+0.3	+0.0	+9.8	+0.0	+0.0	30.7	46.0	-15.3	Black
20	1.430M	20.2	+0.3	+0.1	+9.7	+0.1	+0.0	30.4	46.0	-15.6	Black
21	1.843M	19.6	+0.3	+0.1	+9.7	+0.1	+0.0	29.8	46.0	-16.2	Black
22	518.909k Ave	6.9	+0.3	+0.0	+9.7	+0.1	+0.0	17.0	46.0	-29.0	Black
٨	518.909k	34.6	+0.3	+0.0	+9.7	+0.1	+0.0	44.7	46.0	-1.3	Black
24	422.514k Ave	7.9	+0.3	+0.0	+9.7	+0.1	+0.0	18.0	47.4	-29.4	Black
٨	422.514k	37.9	+0.3	+0.0	+9.7	+0.1	+0.0	48.0	47.4	+0.6	Black
26	162.477k Ave	12.4	+0.4	+2.9	+9.8	+0.0	+0.0	25.5	55.3	-29.8	Black
^	162.477k	45.6	+0.4	+2.9	+9.8	+0.0	+0.0	58.7	55.3	+3.4	Black
28	316.968k Ave	9.1	+0.3	+0.2	+9.8	+0.1	+0.0	19.5	49.8	-30.3	Black
٨	316.968k	40.3	+0.3	+0.2	+9.8	+0.1	+0.0	50.7	49.8	+0.9	Black
30	235.052k Ave	10.5	+0.4	+0.2	+9.8	+0.0	+0.0	20.9	52.3	-31.4	Black
٨	235.052k	42.8	+0.4	+0.2	+9.8	+0.0	+0.0	53.2	52.3	+0.9	Black

Page 70 of 106 Report No: FC06-042

CKC Laboratories, Inc. Date: 7/14/2006 Time: 11:51:17 AvaLAN Wireless Systems, Inc. WO#: 85414 FCC 15.207 COND [AVE] Test Lead: Black 120V 60Hz Sequence#: 119 Polarity: Black 23dBi HIGH

— Sweep Data 1 - FCC 15.207 COND [AVE] 2 - FCC 15.207 COND [QP]

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.207 COND [AVE]

Work Order #: 85414 Date: 7/14/2006
Test Type: Conducted Emissions Time: 12:00:29
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 122

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas Model: AW5800m 120V 60Hz

S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply 10VDC,	CUI Stack	48-10-1100D	none
1100mA			
Panel Antenna	ARC Wireless Solutions	ANT-A-1723-01	00540051116

Test Conditions / Notes:

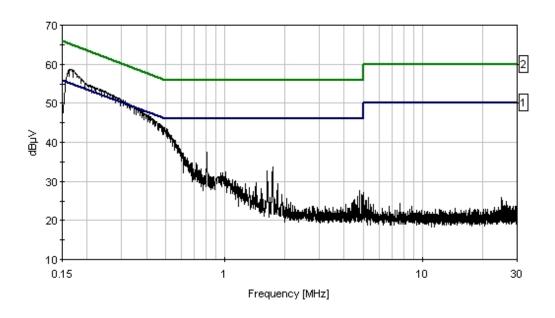
FCC 15.207 Conducted Emissions 0.15-30 MHz 23dBi Antenna. HIGH Channel. High Channel with the 23dBi antenna produces the worst case emissions.

Transducer Legend:

T1=LISN - AN00493 - White - ELC "OUT"	T2=TTE HP Filter P05258
T3=ANP02223 10dB Attenuator	T4=Cable P00875, 15' RG214/U

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	Hz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	810.303k	27.3	+0.3	+0.0	+9.7	+0.1	+0.0	37.4	46.0	-8.6	White
2	612.503k	27.1	+0.3	+0.0	+9.7	+0.1	+0.0	37.2	46.0	-8.8	White
3	807.394k	27.0	+0.3	+0.0	+9.7	+0.1	+0.0	37.1	46.0	-8.9	White
4	616.866k	26.5	+0.3	+0.0	+9.7	+0.1	+0.0	36.6	46.0	-9.4	White
5	620.911k	26.3	+0.3	+0.0	+9.7	+0.1	+0.0	36.4	46.0	-9.6	White
6	624.866k	26.0	+0.3	+0.0	+9.7	+0.1	+0.0	36.1	46.0	-9.9	White
7	651.045k	25.1	+0.3	+0.0	+9.7	+0.1	+0.0	35.2	46.0	-10.8	White
8	677.952k	24.7	+0.3	+0.0	+9.7	+0.1	+0.0	34.8	46.0	-11.2	White
9	716.494k	24.7	+0.3	+0.0	+9.7	+0.1	+0.0	34.8	46.0	-11.2	White
10	679.406k	24.6	+0.3	+0.0	+9.7	+0.1	+0.0	34.7	46.0	-11.3	White

Page 72 of 106 Report No: FC06-042


11	675.770k	24.5	+0.3	+0.0	+9.7	+0.1	+0.0	34.6	46.0	-11.4	White
12	681.588k	24.3	+0.3	+0.0	+9.7	+0.1	+0.0	34.4	46.0	-11.6	White
13	713.585k	24.3	+0.3	+0.0	+9.7	+0.1	+0.0	34.4	46.0	-11.6	White
14	720.857k	24.1	+0.3	+0.0	+9.7	+0.1	+0.0	34.2	46.0	-11.8	White
15	1.736M	23.6	+0.3	+0.1	+9.7	+0.1	+0.0	33.8	46.0	-12.2	White
16	683.769k	23.1	+0.3	+0.0	+9.7	+0.1	+0.0	33.2	46.0	-12.8	White
17	752.127k	23.0	+0.3	+0.0	+9.7	+0.1	+0.0	33.1	46.0	-12.9	White
18	741.946k	22.8	+0.3	+0.0	+9.7	+0.1	+0.0	32.9	46.0	-13.1	White
19	730.310k	22.7	+0.3	+0.0	+9.7	+0.1	+0.0	32.8	46.0	-13.2	White
20	747.763k	22.6	+0.3	+0.0	+9.7	+0.1	+0.0	32.7	46.0	-13.3	White
21	1.634M	22.4	+0.3	+0.1	+9.7	+0.1	+0.0	32.6	46.0	-13.4	White
22	440.949k Ave	6.7	+0.3	+0.0	+9.7	+0.1	+0.0	16.8	47.0	-30.2	White
٨	440.949k	35.6	+0.3	+0.0	+9.7	+0.1	+0.0	45.7	47.0	-1.3	White
24	165.788k Ave	12.2	+0.4	+2.6	+9.8	+0.0	+0.0	25.0	55.2	-30.2	White
٨	165.788k	45.8	+0.4	+2.6	+9.8	+0.0	+0.0	58.6	55.2	+3.4	White
26	528.698k Ave	5.6	+0.3	+0.0	+9.7	+0.1	+0.0	15.7	46.0	-30.3	White
٨	528.698k	31.7	+0.3	+0.0	+9.7	+0.1	+0.0	41.8	46.0	-4.2	White
28	332.221k Ave	8.3	+0.3	+0.2	+9.8	+0.1	+0.0	18.7	49.4	-30.7	White
۸	332.221k	39.2	+0.3	+0.2	+9.8	+0.1	+0.0	49.6	49.4	+0.2	White
30	272.947k Ave	9.3	+0.4	+0.3	+9.8	+0.1	+0.0	19.9	51.0	-31.1	White
۸	272.947k	41.3	+0.4	+0.3	+9.8	+0.1	+0.0	51.9	51.0	+0.9	White

Page 73 of 106 Report No: FC06-042

Sweep Data

CKC Laboratories, Inc. Date: 7/14/2006 Time: 12:00:29 AvaLAN Wireless Systems, Inc. WO#: 85414 FCC 15:207 COND [AVE] Test Lead: White 120V 60Hz Sequence#: 122 Polarity: White 23dBi HIGH

1 - FCC 15.207 COND [AVE]

Page 74 of 106 Report No: FC06-042

2 - FCC 15.207 COND [QP]

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.31(e)/15.247(b) RF Power

Work Order #: 85414 Date: 7/6/2006
Test Type: Maximized Emissions Time: 12:26:09
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 89

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	

Test Conditions / Notes:

15.31(e)/15.247(b) RF Power Output Antenna Conducted. Voltage Variations. Measured at the lowest voltage (5VDC) and the highest voltage (12VDC) the device can operate at. Measured the Peak Output power level for each channel. Voltage was set using a calibrated Digital Multimeter (DMM).

Transducer Legend:

T1=PAD ANP05410 10dB	T2=PAD ANP05411 10dB
T3=PAD ANP05412 6dB	T4=PAD ANP05413 6dB
T5=Cable AN271740 GHz	

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: None					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	Hz	dBm	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	5849.533M	-15.3	+9.6	+9.3	+5.8	+5.8	+0.0	18.0	30.0	-12.0	None
			+2.8						5VDC HI	GH	
2	5849.743M	-15.4	+9.6	+9.3	+5.8	+5.8	+0.0	17.9	30.0	-12.1	None
			+2.8						12VDC H	IGH	
3	5730.771M	-16.1	+9.6	+9.3	+5.7	+5.8	+0.0	17.1	30.0	-12.9	None
			+2.8						12VDC L	OW	
4	5789.053M	-16.3	+9.6	+9.3	+5.8	+5.8	+0.0	17.0	30.0	-13.0	None
			+2.8						12VDC M	IID	
5	5730.873M	-16.3	+9.6	+9.3	+5.7	+5.8	+0.0	16.9	30.0	-13.1	None
			+2.8						5VDC LO	\mathbf{W}	
6	5786.079M	-16.5	+9.6	+9.3	+5.8	+5.8	+0.0	16.8	30.0	-13.2	None
			+2.8						5VDC MI	D	

Page 75 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.247(b)(3) RF Power

Work Order #: 85414 Date: 7/6/2006
Test Type: Maximized Emissions Time: 12:26:09
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 28

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function Manufacturer Model # S/N
5.8GHz Wireless Ethernet AvaLAN Wireless Systems, AW5800m 000012
Bridge Module* Inc.

Support Devices:

Function Manufacturer Model # S/N
Power Supply CUI Inc. DSA-0151A-06

Test Conditions / Notes:

15.247(b)(3) RF Power Output Antenna Conducted.

Transducer Legend:

T1=ANP05200 1-40GHz T2=PAD ANP05410 10dB T3=PAD ANP05411 10dB T4=PAD ANP05412 6dB T5=PAD ANP05413 6dB

Measurement Data: Reading listed by margin. Test Distance: None T1 T2 T4 Dist Corr Polar Freq Rdng Spec Margin T5 dB dB dBm Hz dBm dB dB Table dBm dB Ant 30.0 1 5786.502M -15.9 +1.8+9.6 +9.3+5.8+0.016.4 -13.6 None **MID** 100 +5.8-12 2 5846.712M -16.1 +1.8+9.6+5.8+0.016.2 30.0 -13.8 None +9.3+5.8-12 HIGH 100 3 5728.126M -16.4 +1.8+9.6 +9.3 +5.7 +0.015.8 30.0 -14.2 None +5.8-12 LOW 100

> Page 76 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc.

Specification: FCC 15.247(d)/15.209 9 kHz-1000 MHz

Work Order #: 85414 Date: 7/8/2006
Test Type: Maximized Emissions Time: 09:51:22
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 44

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	
Panel Antenna	ARC Wireless Solutions	ANT-A-1723-01	00540051116

Test Conditions / Notes:

Spurious Emissions Maximized 15.247(d) 9 kHz-1000 MHz. 23dBi Antenna. Tested against 15.209 limits which are tighter than the worst case limit developed from the fundamental peak in 100 kHz RBW. EUT setup as close to back edge of the table as possible for the cable to reach the antenna. The antenna is orientated in its vertical polarization. Ethernet cable is connected and draped towards the floor off the back edge of the table as per ANSI C63.4. Ethernet port is sending random data out the ethernet cable at all times. This data represents the worst case emissions from LOW, MID and HIGH channels. Measurements from 9 kHz-30 MHz were made using a Mag Loop antenna. Measurements from 30-1000 MHz were made using a Bilog antenna

Transducer Legend:

T1=0852-Bi-Log Antenna	T2=Amp Cal.HP-8447F OPT H64- AN 00501
T3=Cable P05299 2' RG214 N-N	T4=Cable P05300 12' RG214 N-N
T5=Cable P05296 25' RG214 N-N	T6=Mag Loop A/N 00432, S/N 2078

Measui	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	Hz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	49.993M	49.9	+8.5	-26.1	+0.1	+0.2	+0.0	33.0	40.0	-7.0	Vert
	QP		+0.4				54				99
^	49.993M	53.3	+0.0	+0.0	+0.0	+0.2	+0.0	36.4	40.0	-3.6	Vert
			+0.4				54				99
3	400.000M	46.3	+15.5	-25.9	+0.2	+0.7	+0.0	37.9	46.0	-8.1	Horiz
			+1.1				301				99
4	136.640k	46.3	+0.0	+0.0	+0.0	+0.1	+0.0	55.9	64.9	-9.0	Paral
			+0.0	+9.5			370				399
5	271.800k	40.2	+0.0	+0.0	+0.0	+0.1	+0.0	49.3	58.9	-9.6	Paral
			+0.0	+9.0							100
6	300.002M	47.0	+13.0	-25.3	+0.1	+0.6	+0.0	36.4	46.0	-9.6	Horiz
			+1.0				258				99
7	135.690k	45.4	+0.0	+0.0	+0.0	+0.1	+0.0	55.0	64.9	-9.9	Perpe
			+0.0	+9.5			275				100

Page 77 of 106 Report No: FC06-042

8	300.000M	46.5	+13.0	-25.3	+0.1	+0.6	+0.0	35.9	46.0	-10.1	Vert
			+1.0				258				99
9	150.000M	46.1	+10.7	-25.7	+0.1	+0.4	+0.0	32.3	43.5	-11.2	Vert
			+0.7				73				99
10	130.500k	43.6	+0.0	+0.0	+0.0	+0.1	+0.0	53.4	65.3	-11.9	Paral
			+0.0	+9.7			370				399
11	130.500k	42.5	+0.0	+0.0	+0.0	+0.1	+0.0	52.3	65.3	-13.0	Perpe
			+0.0	+9.7			275				100
12	49.991M	42.1	+8.5	-26.1	+0.1	+0.2	+0.0	25.2	40.0	-14.8	Horiz
			+0.4				130				218

Page 78 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc.

Specification: FCC 15.247(d)/15.209 9 kHz-1000 MHz

Work Order #: 85414 Date: 7/8/2006
Test Type: Maximized Emissions Time: 12:02:50
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 57

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	
5dBi Antenna	Multiple	5dBi Antenna	

Test Conditions / Notes:

Spurious Emissions Maximized 15.247(d) 9 kHz-100 0MHz. 5dBi Antenna. Tested against 15.209 limits which are tighter than the worst case limit developed from the fundamental peak in 100 kHz RBW. EUT setup as close to back edge of the table as possible for the cable to reach the antenna. The antenna is orientated in its vertical polarization. Ethernet cable is connected and draped towards the floor off the back edge of the table as per ANSI C63.4. Ethernet port is sending random data out the ethernet cable at all times. This data represents the worst case emissions from LOW, MID and HIGH channels. Measurements from 9 kHz-30 MHz were made using a Mag Loop antenna. Measurements from 30-1000 MHz were made using a Bilog antenna

Transducer Legend:

Transaucer Legena.	
T1=0852-Bi-Log Antenna	T2=Amp Cal.HP-8447F OPT H64- AN 00501
T3=Cable P05299 2' RG214 N-N	T4=Cable P05300 12' RG214 N-N
T5=Cable P05296 25' RG214 N-N	T6=Mag Loop A/N 00432, S/N 2078
T7=Duty Cycle AVE Factor	

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	Hz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	525.018M	45.5	+18.4	-27.0	+0.2	+0.7	+0.0	39.1	46.0	-6.9	Vert
	QP		+1.3	+0.0	+0.0		84				100
٨	525.018M	46.0	+18.4	-27.0	+0.2	+0.7	+0.0	39.6	46.0	-6.4	Vert
			+1.3	+0.0	+0.0		84				100
3	450.019M	46.2	+16.8	-26.7	+0.2	+0.6	+0.0	38.2	46.0	-7.8	Vert
			+1.1	+0.0	+0.0		89				99
4	400.015M	46.2	+15.5	-25.9	+0.2	+0.7	+0.0	37.8	46.0	-8.2	Vert
			+1.1	+0.0	+0.0		93				150
5	575.023M	43.3	+19.2	-27.1	+0.2	+0.7	+0.0	37.7	46.0	-8.3	Vert
			+1.4	+0.0	+0.0		244				99
6	137.760k	46.5	+0.0	+0.0	+0.0	+0.1	+0.0	56.1	64.8	-8.7	Paral
			+0.0	+9.5			174				398

Page 79 of 106 Report No: FC06-042

7	133.770k	45.7	+0.0	+0.0	+0.0	+0.1	+0.0	55.4	65.1	-9.7	Paral
			+0.0	+9.6			174				398
8	300.013M	46.0	+13.0	-25.3	+0.1	+0.6	+0.0	35.4	46.0	-10.6	Horiz
			+1.0	+0.0	+0.0		249				99
9	138.360k	44.7	+0.0	+0.0	+0.0	+0.1	+0.0	54.2	64.8	-10.6	Perpe
			+0.0	+9.4	+0.0		309				398
10	200.011M	48.0	+8.6	-25.6	+0.1	+0.5	+0.0	32.4	43.5	-11.1	Horiz
			+0.8	+0.0	+0.0		144				169
11	133.710k	42.4	+0.0	+0.0	+0.0	+0.1	+0.0	52.1	65.1	-13.0	Perpe
			+0.0	+9.6	+0.0		309				398
12	270.710k	47.3	+0.0	+0.0	+0.0	+0.1	+0.0	42.8	59.0	-16.2	Perpe
	Ave		+0.0	+9.0	-13.6		255				398
٨	270.710k	47.3	+0.0	+0.0	+0.0	+0.1	+0.0	56.4	59.0	-2.6	Perpe
			+0.0	+9.0			255				398
14	275.670k	45.0	+0.0	+0.0	+0.0	+0.1	+0.0	40.5	58.8	-18.3	Paral
	Ave		+0.0	+9.0	-13.6						398
٨	275.670k	45.0	+0.0	+0.0	+0.0	+0.1	+0.0	54.1	58.8	-4.7	Paral
			+0.0	+9.0							398

Page 80 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc.

Specification: FCC 15.209 1-12.5 GHz

Work Order #: 85414 Date: 7/6/2006
Test Type: Maximized Emissions Time: 16:31:50
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 30

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	
Panel Antenna	ARC Wireless Solutions	ANT-A-1723-01	00540051116

Test Conditions / Notes:

Spurious Emissions 1-12.5 GHz. 23dBi Antenna. Measured against 15.209 limits for the Restricted Bands. This data sheet may contain frequencies that do not fall into the restricted band. EUT setup as close to back edge of the table as possible for the cable to reach the antenna. The antenna is orientated in its vertical polarization. Ethernet cable is connected and draped towards the floor off the back edge of the table as per ANSI C63.4. Ethernet port is sending random data out the ethernet cable at all times.

Transducer Legend:

T1=ANP05200 1-40GHz	T2=Duty Cycle AVE Factor
T3=HPF 8.2 GHz High Pass	T4=ANP04241 HF-Heliax Cable
T5=P05138 HF Cable 25ft	T6=Horn Antenna AN02061 sn1064 (Fremont)
T7=AMP AN02810 50GHz	

Measurement Data:	Reading listed by margin.	Test Distance: 3 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	Hz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	11457.580M	46.1	+2.8	-13.6	+0.3	+1.5	+0.0	53.9	54.0	-0.1	Horiz
	Ave		+5.5	+39.6	-28.3		198		LOW		158
/	11457.580M	46.1	+2.8	+0.0	+0.3	+1.5	+0.0	67.5	54.0	+13.5	Horiz
			+5.5	+39.6	-28.3		198		LOW		158
3	3 11455.580M	46.1	+2.8	-13.6	+0.3	+1.5	+0.0	53.9	54.0	-0.1	Vert
	Ave		+5.5	+39.6	-28.3		160		LOW		168
/	11455.580M	46.1	+2.8	+0.0	+0.3	+1.5	+0.0	67.5	54.0	+13.5	Vert
			+5.5	+39.6	-28.3		160		LOW		168
	3856.780M	43.1	+1.5	+0.0	+0.0	+1.0	+0.0	53.7	54.0	-0.3	Vert
			+4.0	+31.6	-27.5				MID		126
6	5 11574.170M	44.0	+2.8	-13.6	+0.3	+1.4	+0.0	51.5	54.0	-2.5	Vert
	Ave		+5.5	+39.5	-28.4		192		MID		171
/	11574.170M	44.0	+2.8	+0.0	+0.3	+1.4	+0.0	65.1	54.0	+11.1	Vert
			+5.5	+39.5	-28.4		192		MID		171

Page 81 of 106 Report No: FC06-042

8 11574.320M	43.1	+2.8	-13.6	+0.3	+1.4	+0.0	50.6	54.0	-3.4	Horiz
Ave		+5.5	+39.5	-28.4		202		MID		168
^ 11574.320M	43.1	+2.8	+0.0	+0.3	+1.4	+0.0	64.2	54.0	+10.2	Horiz
		+5.5	+39.5	-28.4		202		MID		168
10 11693.010M	41.0	+2.8	-13.6	+0.3	+1.6	+0.0	48.4	54.0	-5.6	Vert
Ave		+5.6	+39.2	-28.5		186		HIGH		173
^ 11693.010M	41.0	+2.8	+0.0	+0.3	+1.6	+0.0	62.0	54.0	+8.0	Vert
		+5.6	+39.2	-28.5		186		HIGH		173
12 11693.070M	40.3	+2.8	-13.6	+0.3	+1.6	+0.0	47.7	54.0	-6.3	Horiz
Ave		+5.6	+39.2	-28.5		197		HIGH		183
^ 11693.070M	40.3	+2.8	+0.0	+0.3	+1.6	+0.0	61.3	54.0	+7.3	Horiz
		+5.6	+39.2	-28.5		197		HIGH		183
14 3897.280M	44.9	+1.5	-13.6	+0.0	+1.1	+0.0	42.2	54.0	-11.8	Horiz
Ave		+4.2	+31.7	-27.6		118		HIGH		127
^ 3897.280M	44.9	+1.5	+0.0	+0.0	+1.1	+0.0	55.8	54.0	+1.8	Horiz
		+4.2	+31.7	-27.6		118		HIGH		127
16 3857.040M	44.7	+1.5	-13.6	+0.0	+1.0	+0.0	41.7	54.0	-12.3	Horiz
Ave		+4.0	+31.6	-27.5		296		MID		126
^ 3857.040M	44.7	+1.5	+0.0	+0.0	+1.0	+0.0	55.3	54.0	+1.3	Horiz
		+4.0	+31.6	-27.5		296		MID		126
18 3818.181M	44.0	+1.5	-13.6	+0.0	+1.0	+0.0	40.7	54.0	-13.3	Horiz
Ave		+3.8	+31.5	-27.5		119		LOW		139
^ 3818.181M	44.0	+1.5	+0.0	+0.0	+1.0	+0.0	54.3	54.0	+0.3	Horiz
		+3.8	+31.5	-27.5		119		LOW		139
20 3896.960M	43.1	+1.5	-13.6	+0.0	+1.1	+0.0	40.4	54.0	-13.6	Vert
Ave		+4.2	+31.7	-27.6		353		HIGH		123
^ 3896.960M	43.1	+1.5	+0.0	+0.0	+1.1	+0.0	54.0	54.0	+0.0	Vert
		+4.2	+31.7	-27.6		353		HIGH		123
22 3856.780M	43.1	+1.5	-13.6	+0.0	+1.0	+0.0	40.1	54.0	-13.9	Vert
		+4.0	+31.6	-27.5				MID		126
23 3818.334M	42.5	+1.5	-13.6	+0.0	+1.0	+0.0	39.2	54.0	-14.8	Vert
Ave		+3.8	+31.5	-27.5				LOW		136
^ 3818.334M	42.5	+1.5	+0.0	+0.0	+1.0	+0.0	52.8	54.0	-1.2	Vert
		+3.8	+31.5	-27.5		369		LOW		136

Page 82 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc.

Specification: FCC 15.209 1-12.5 GHz

Work Order #: 85414 Date: 7/8/2006
Test Type: Maximized Emissions Time: 15:19:43
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 64

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	
5dBi Antenna	Multiple	5dBi Antenna	

Test Conditions / Notes:

Spurious Emissions 1-12.5GHz. 5dBi Antenna Measured against 15.209 limits for the Restricted Bands. This data sheet may contain frequencies that do not fall into the restricted band. EUT setup as close to back edge of the table as possible for the cable to reach the antenna. The antenna is orientated in its vertical polarization. Ethernet cable is connected and draped towards the floor off the back edge of the table as per ANSI C63.4. Ethernet port is sending random data out the ethernet cable at all times.

Transducer Legend:

T1=ANP05200 1-40GHz	T2=Duty Cycle AVE Factor
T3=HPF 8.2 GHz High Pass	T4=ANP04241 HF-Heliax Cable
T5=P05138 HF Cable 25ft	T6=Horn Antenna AN02061 sn1064 (Fremont)
T7=AMP AN02810 50GHz	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters	ı <i>rement Data:</i> Re	iding listed by margin.	Test Distance: 3 Meters
---	--------------------------	-------------------------	-------------------------

				. 6						
Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7						
Hz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
11455.350M	46.1	+2.8	-13.6	+0.3	+1.5	+0.0	53.9	54.0	-0.1	Vert
Ave		+5.5	+39.6	-28.3		13		LOW		99
11455.350M	46.1	+2.8	+0.0	+0.3	+1.5	+0.0	67.5	54.0	+13.5	Vert
		+5.5	+39.6	-28.3		13		LOW		99
11195.950M	46.4	+2.7	-13.6	+0.3	+1.7	+0.0	53.9	54.0	-0.1	Horiz
Ave		+5.3	+39.2	-28.1		241		MID		154
11195.950M	46.5	+2.7	+0.0	+0.3	+1.7	+0.0	67.6	54.0	+13.6	Horiz
		+5.3	+39.2	-28.1		241		MID		154
11194.820M	46.4	+2.7	-13.6	+0.3	+1.7	+0.0	53.9	54.0	-0.1	Vert
Ave		+5.3	+39.2	-28.1		160		HIGH		199
11194.820M	46.4	+2.7	+0.0	+0.3	+1.7	+0.0	67.5	54.0	+13.5	Vert
		+5.3	+39.2	-28.1		160		HIGH		199
	Hz 11455.350M Ave 11455.350M 11195.950M Ave 11195.950M 11194.820M Ave	Hz dBμV 11455.350M 46.1 Ave 11455.350M 46.1 11195.950M 46.4 Ave 11195.950M 46.5 11194.820M 46.4 Ave	Freq Rdng T1 T5 Hz dBμV dB 11455.350M 46.1 +2.8 Ave +5.5 +5.5 11455.350M 46.1 +2.8 +5.5 +5.5 +5.5 11195.950M 46.4 +2.7 Ave +5.3 11194.820M 46.4 +2.7 Ave +5.3 11194.820M 46.4 +2.7 11194.820M 46.4 +2.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq Rdng T1 T5 T6 T6 T7 T3 T6 T7 T4 Dist T6 T7 Corr Hz dBμV dB dB dB dB dB dB Table dBμV/m $\frac{11455.350M}{40.0}$ 46.1 +2.8 -13.6 +0.3 +1.5 +0.0 53.9 53.9 Ave +5.5 +39.6 -28.3 13 13 -13.6 +0.3 +1.5 +0.0 53.9 11455.350M 46.1 +2.8 +0.0 +0.3 +1.5 +0.0 53.9 -28.3 13 13 11195.950M 46.4 +2.7 -13.6 +0.3 +1.7 +0.0 53.9 -28.1 241 241 11195.950M 46.5 +2.7 +0.0 +0.3 +1.7 +0.0 53.9 -28.1 241 241 11194.820M 46.4 +2.7 -13.6 +0.3 +1.7 +0.0 53.9 -28.1 160 -160 11194.820M 46.4 +2.7 -13.6 +0.3 +1.7 +0.0 53.9 -28.1 160 -160 11194.820M 46.4 +2.7 +0.0 +0.3 +1.7 +0.0 53.9 -28.1 160 -160	Freq Rdng T1 T5 T2 T6 T3 T7 T4 T7 Dist Dist Corr Corr Spec Hz dBμV dB dB dB dB Table dBμV/m dBμV/m 11455.350M 46.1 +2.8 -13.6 +0.3 +1.5 +0.0 53.9 54.0 Ave +5.5 +39.6 -28.3 13 LOW 11455.350M 46.1 +2.8 +0.0 +0.3 +1.5 +0.0 67.5 54.0 LOW +5.5 +39.6 -28.3 13 LOW 11195.950M 46.4 +2.7 -13.6 +0.3 +1.7 +0.0 53.9 54.0 Ave +5.3 +39.2 -28.1 241 MID 11194.820M 46.4 +2.7 +13.6 +0.3 +1.7 +0.0 67.6 54.0 Ave +5.3 +39.2 -28.1 241 MID 11194.820M 46.4 +2.7	Freq Rdng T1 T5 T6 T6 T7 T3 T7 T4 Dist T7 Corr Spec Margin Margin Margin Margin T5 Hz dBμV dB dB dB dB Table dB dBμV/m dB μV/m dB μV/m dB dB 11455.350M 46.1 +2.8 -13.6 +0.3 +1.5 +0.0 53.9 54.0 -0.1 Ave +5.5 +39.6 -28.3 13 LOW +13.5 11455.350M 46.1 +2.8 +0.0 +0.3 +1.5 +0.0 67.5 54.0 +13.5 11195.950M 46.4 +2.7 -13.6 +0.3 +1.7 +0.0 53.9 54.0 -0.1 Ave +5.3 +39.2 -28.1 241 MID -13.6 11195.950M 46.5 +2.7 +0.0 +0.3 +1.7 +0.0 67.6 54.0 +13.6 11194.820M 46.4 +2.7 -13.6 +0.3 +1.7 +0.0 53.9 54.0 -0.1

Page 83 of 106 Report No: FC06-042

7	11196.670M	46.3	+2.7	-13.6	+0.3	+1.7	+0.0	53.8	54.0	-0.2	Vert
	Ave		+5.3	+39.2	-28.1		202		LOW		219
٨	11196.670M	46.3	+2.7	+0.0	+0.3	+1.7	+0.0	67.4	54.0	+13.4	Vert
			+5.3	+39.2	-28.1		202		LOW		219
9	11194.680M	46.3	+2.7	-13.6	+0.3	+1.7	+0.0	53.8	54.0	-0.2	Horiz
	Ave		+5.3	+39.2	-28.1		250		HIGH		149
٨	11194.680M	46.3	+2.7	+0.0	+0.3	+1.7	+0.0	67.4	54.0	+13.4	Horiz
			+5.3	+39.2	-28.1		250		HIGH		149
11	11455.710M	45.9	+2.8	-13.6	+0.3	+1.5	+0.0	53.7	54.0	-0.3	Horiz
	Ave		+5.5	+39.6	-28.3		269		LOW		128
	11455.710M	45.9	+2.8	+0.0	+0.3	+1.5	+0.0	67.3	54.0	+13.3	Horiz
			+5.5	+39.6	-28.3		269		LOW		128
13	11196.770M	45.9	+2.7	-13.6	+0.3	+1.7	+0.0	53.4	54.0	-0.6	Horiz
	Ave	10.7	+5.3	+39.2	-28.1	11.7	238	55.1	LOW	0.0	131
	11196.770M	45.9	+2.7	+0.0	+0.3	+1.7	+0.0	67.0	54.0	+13.0	Horiz
	11170.770141	13.7	+5.3	+39.2	-28.1	11.7	238	07.0	LOW	113.0	131
15	11196.260M	45.8	+2.7	-13.6	+0.3	+1.7	+0.0	53.3	54.0	-0.7	Vert
13	Ave	43.0	+5.3	+39.2	-28.1	⊤1./	200	33.3	MID	-0.7	226
	11196.260M	45.8	+2.7	+0.0	+0.3	+1.7	+0.0	66.9	54.0	+12.9	Vert
	11170.200WI	43.6	+5.3	+39.2	-28.1	+1.7	200	00.9	MID	+12.9	226
17	11574.490M	42.2	+2.8	-13.6	+0.3	+1.4	+0.0	49.7	54.0	-4.3	
1 /		42.2				+1.4		49.7		-4.3	Horiz
	Ave	10.0	+5.5	+39.5	-28.4	. 1. 4	202	(2.2	MID	.0.2	140
^	11574.490M	42.2	+2.8	+0.0	+0.3	+1.4	+0.0	63.3	54.0	+9.3	Horiz
10	4455400015	10.1	+5.5	+39.5	-28.4		202	40.5	MID		140
19	11574.980M	42.1	+2.8	-13.6	+0.3	+1.4	+0.0	49.6	54.0	-4.4	Vert
	Ave		+5.5	+39.5	-28.4		348		MID		230
^	11574.980M	42.1	+2.8	+0.0	+0.3	+1.4	+0.0	63.2	54.0	+9.2	Vert
			+5.5	+39.5	-28.4		348		MID		230
21	11697.260M	40.7	+2.8	-13.6	+0.3	+1.6	+0.0	48.1	54.0	-5.9	Vert
	Ave		+5.6	+39.2	-28.5		13				99
^	11697.260M	40.7	+2.8	+0.0	+0.3	+1.6	+0.0	61.7	54.0	+7.7	Vert
			+5.6	+39.2	-28.5				HIGH		254
23	11694.740M	40.6	+2.8	-13.6	+0.3	+1.6	+0.0	48.0	54.0	-6.0	Horiz
	Ave		+5.6	+39.2	-28.5		13				99
٨	11694.740M	40.6	+2.8	+0.0	+0.3	+1.6	+0.0	61.6	54.0	+7.6	Horiz
			+5.6	+39.2	-28.5		-10		HIGH		99
25	3897.480M	42.0	+1.5	-13.6	+0.0	+1.1	+0.0	39.3	54.0	-14.7	Horiz
	Ave		+4.2	+31.7	-27.6		315		HIGH		180
^	3897.480M	42.0	+1.5	+0.0	+0.0	+1.1	+0.0	52.9	54.0	-1.1	Horiz
			+4.2	+31.7	-27.6		315		HIGH		180
2.7	3897.260M	41.3	+1.5	-13.6	+0.0	+1.1	+0.0	38.6	54.0	-15.4	Vert
-7	Ave		+4.2	+31.7	-27.6		-7	20.0	HIGH	10.1	175
^	3897.260M	41.3	+1.5	+0.0	+0.0	+1.1	+0.0	52.2	54.0	-1.8	Vert
	5077.200111	11.5	+4.2	+31.7	-27.6	11.1	-7	J L . L	HIGH	1.0	175
20	3856.916M	41.3	+1.5	-13.6	+0.0	+1.0	+0.0	38.3	54.0	-15.7	Horiz
	Ave	71.5	+4.0	+31.6	-27.5	11.0	226	30.3	MID	-13.1	189
	3856.916M	41.3	+1.5	+0.0	+0.0	+1.0	+0.0	51.9	54.0	-2.1	
	2020.710M	41.3				+1.0	+0.0 226	51.9		-2.1	Horiz 189
			+4.0	+31.6	-27.5		220		MID		109

Page 84 of 106 Report No: FC06-042

31 3818.168M	41.5	+1.5	-13.6	+0.0	+1.0	+0.0	38.2	54.0	-15.8	Horiz
Ave		+3.8	+31.5	-27.5		50		LOW		147
^ 3818.168M	41.5	+1.5	+0.0	+0.0	+1.0	+0.0	51.8	54.0	-2.2	Horiz
		+3.8	+31.5	-27.5		50		LOW		147
33 3857.007M	39.5	+1.5	-13.6	+0.0	+1.0	+0.0	36.5	54.0	-17.5	Vert
Ave		+4.0	+31.6	-27.5				MID		174
^ 3857.007M	39.5	+1.5	+0.0	+0.0	+1.0	+0.0	50.1	54.0	-3.9	Vert
		+4.0	+31.6	-27.5				MID		174
35 3818.093M	38.9	+1.5	-13.6	+0.0	+1.0	+0.0	35.6	54.0	-18.4	Vert
Ave		+3.8	+31.5	-27.5		16		LOW		159
^ 3818.093M	38.9	+1.5	+0.0	+0.0	+1.0	+0.0	49.2	54.0	-4.8	Vert
		+3.8	+31.5	-27.5		16		LOW		159

Page 85 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.247(d) 1-12.5GHz 23dBi

Work Order #: 85414 Date: 7/6/2006
Test Type: Maximized Emissions Time: 16:53:54
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 31

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	
Panel Antenna	ARC Wireless Solutions	ANT-A-1723-01	00540051116

Test Conditions / Notes:

Spurious Emissions 15.247(d) 1-12.5GHz. 23dBi Antenna. Measured against 15.247 limits for frequencies not within the Restricted Band. All measurements made with RBW=100kHz. EUT setup as close to back edge of the table as possible for the cable to reach the antenna. The antenna is orientated in its vertical polarization. Ethernet cable is connected and draped towards the floor off the back edge of the table as per ANSI C63.4. Ethernet port is sending random data out the ethernet cable at all times.

Transducer Legend:

T1=ANP05200 1-40GHz	T2=Duty Cycle AVE Factor
T3=ANP04241 HF-Heliax Cable	T4=P05138 HF Cable 25ft
T5=Horn Antenna AN02061 sn1064 (Fremont)	T6=AMP AN02810 50GHz

Measu	ırement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	Hz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5610.000M	74.0	+1.8	+0.0	+0.8	+3.8	+0.0	86.9	96.9	-10.0	Horiz
			+34.0	-27.5			357		HIGH		99
2	5609.500M	73.2	+1.8	+0.0	+0.8	+3.8	+0.0	86.1	96.9	-10.8	Horiz
			+34.0	-27.5			356		MID		99
3	5609.100M	72.3	+1.8	+0.0	+0.8	+3.8	+0.0	85.2	96.9	-11.7	Horiz
			+34.0	-27.5					LOW		100
4	5599.100M	83.6	+1.8	-13.6	+0.8	+3.8	+0.0	82.9	96.9	-14.0	Horiz
	Ave		+34.0	-27.5			356		MID		99
٨	5599.100M	83.6	+1.8	+0.0	+0.8	+3.8	+0.0	96.5	96.9	-0.4	Horiz
			+34.0	-27.5			356		MID		99
6	5598.800M	82.5	+1.8	-13.6	+0.8	+3.8	+0.0	81.8	96.9	-15.1	Horiz
	Ave		+34.0	-27.5					LOW		100
٨	5598.800M	82.5	+1.8	+0.0	+0.8	+3.8	+0.0	95.4	96.9	-1.5	Horiz
			+34.0	-27.5					LOW		100

Page 86 of 106 Report No: FC06-042

8 5724.800M	68.8	+1.8 +34.0	+0.0 -27.5	+0.8	+3.9	+0.0	81.8	96.9 LOW	-15.1	Horiz 100
9 5624.000M	68.4	+1.8 +34.0	+0.0 -27.5	+0.8	+3.8	+0.0 357	81.3	96.9 HIGH	-15.6	Horiz 99
10 5599.700M	81.5			.0.0	+3.8		80.8	96.9	-16.1	Horiz
Ave	81.3	+1.8 +34.0	-13.6 -27.5	+0.8	+3.8	+0.0 357	80.8	96.9 HIGH	-10.1	99
^ 5599.700M	81.5	+1.8	+0.0	+0.8	+3.8	+0.0	94.4	96.9	-2.5	Horiz
		+34.0	-27.5			357		HIGH		99
12 5624.600M	67.7	+1.8	+0.0	+0.8	+3.8	+0.0	80.6	96.9	-16.3	Horiz
		+34.0	-27.5			356		MID		99
13 5624.800M	66.7	+1.8	+0.0	+0.8	+3.8	+0.0	79.6	96.9	-17.3	Horiz
		+34.0	-27.5					LOW		100
14 5620.100M	66.5	+1.8	+0.0	+0.8	+3.8	+0.0	79.4	96.9	-17.5	Horiz
		+34.0	-27.5			356		MID		99
15 5598.900M	66.0	+1.8	+0.0	+0.8	+3.8	+0.0	78.9	96.9	-18.0	Vert
		+34.0	-27.5			357		HIGH		99
16 5900.000M	65.1	+1.9	+0.0	+1.0	+3.9	+0.0	78.6	96.9	-18.3	Horiz
		+34.1	-27.4					LOW		99
17 5598.900M	65.2	+1.8	+0.0	+0.8	+3.8	+0.0	78.1	96.9	-18.8	Vert
		+34.0	-27.5			358		MID		99
18 5600.400M	63.5	+1.8	+0.0	+0.8	+3.8	+0.0	76.4	96.9	-20.5	Vert
		+34.0	-27.5			355		LOW		115
19 5580.600M	61.1	+1.8	+0.0	+0.8	+3.8	+0.0	74.0	96.9	-22.9	Horiz
		+34.0	-27.5			356		MID		99
20 5587.100M	60.1	+1.8	+0.0	+0.8	+3.8	+0.0	73.0	96.9	-23.9	Horiz
		+34.0	-27.5			357		HIGH		99
21 5578.300M	59.5	+1.8	+0.0	+0.8	+3.8	+0.0	72.3	96.9	-24.6	Horiz
		+33.9	-27.5					LOW		100
22 5553.400M	58.7	+1.8	+0.0	+0.8	+3.8	+0.0	71.5	96.9	-25.4	Horiz
		+33.9	-27.5					LOW		100
23 5609.600M	56.5	+1.8	+0.0	+0.8	+3.8	+0.0	69.4	96.9	-27.5	Vert
		+34.0	-27.5			357		HIGH		99
24 5858.400M	55.6	+1.8	+0.0	+0.9	+3.9	+0.0	68.9	96.9	-28.0	Horiz
		+34.1	-27.4			357		HIGH		99
25 5608.700M	55.3	+1.8	+0.0	+0.8	+3.8	+0.0	68.2	96.9	-28.7	Vert
		+34.0	-27.5			358		MID		99
26 5611.100M	53.5	+1.8	+0.0	+0.8	+3.8	+0.0	66.4	96.9	-30.5	Vert
		+34.0	-27.5			355		LOW		115
27 5573.700M	53.0	+1.8	+0.0	+0.8	+3.8	+0.0	65.8	96.9	-31.1	Horiz
		+33.9	-27.5			356		MID		99
28 5850.310M	51.7	+1.8	+0.0	+0.9	+3.9	+0.0	65.0	96.9	-31.9	Vert
		+34.1	-27.4			357		HIGH		99
29 5625.500M	51.8	+1.8	+0.0	+0.8	+3.8	+0.0	64.7	96.9	-32.2	Vert
		+34.0	-27.5			357		HIGH		99
30 5769.700M	81.2	+1.8	+0.0	+0.8	+3.9	+0.0	94.3	126.9	-32.6	Horiz
		+34.1	-27.5					LOW		99
31 5624.100M	50.5	+1.8	+0.0	+0.8	+3.8	+0.0	63.4	96.9	-33.5	Vert
		+34.0	-27.5			358		MID		99
32 5723.800M	49.7	+1.8	+0.0	+0.8	+3.9	+0.0	62.7	96.9	-34.2	Vert
		+34.0	-27.5			355		LOW		115

Page 87 of 106 Report No: FC06-042

33 5620.300M	49.6	+1.8	+0.0	+0.8	+3.8	+0.0	62.5	96.9	-34.4	Vert
		+34.0	-27.5			358		MID		99
34 5626.400M	48.6	+1.8	+0.0	+0.8	+3.8	+0.0	61.5	96.9	-35.4	Vert
		+34.0	-27.5			355		LOW		115
35 5622.000M	47.3	+1.8	+0.0	+0.8	+3.8	+0.0	60.2	96.9	-36.7	Vert
		+34.0	-27.5			355		LOW		115
36 5739.500M	75.5	+1.8	+0.0	+0.8	+3.9	+0.0	88.5	126.9	-38.4	Horiz
		+34.0	-27.5					LOW		99
37 5588.400M	44.7	+1.8	+0.0	+0.8	+3.8	+0.0	57.6	96.9	-39.3	Vert
		+34.0	-27.5			357		HIGH		99
38 5579.800M	44.5	+1.8	+0.0	+0.8	+3.8	+0.0	57.3	96.9	-39.6	Vert
		+33.9	-27.5			358		MID		99
39 5327.800M	43.7	+1.8	+0.0	+1.0	+3.7	+0.0	56.1	96.9	-40.8	Horiz
		+33.5	-27.6			357		HIGH		99
40 5579.400M	41.3	+1.8	+0.0	+0.8	+3.8	+0.0	54.1	96.9	-42.8	Vert
10 00771100111		+33.9	-27.5	. 0.0		355	0	LOW		115
41 5776.100M	70.4	+1.8	+0.0	+0.8	+3.9	+0.0	83.5	126.9	-43.4	Horiz
41 3770.100W	70.4	+34.1	-27.5	10.0	13.7	10.0	03.3	LOW	75.7	99
42 5372.600M	40.7	+1.8	+0.0	+0.9	+3.7	+0.0	53.1	96.9	-43.8	Horiz
42 3372.000W	40.7	+33.6	-27.6	+0.9	±3.7	356	33.1	MID	-43.0	99
43 5555.200M	39.3	+1.8	+0.0	+0.8	+3.8	+0.0	52.1	96.9	-44.8	Vert
45 5555.200M	39.3	+33.9	-27.5	+0.8	+3.6	±0.0 355	32.1	LOW	-44.0	115
44 5767 900M	67.3	+33.9		.0.0	.20		90.4		16.5	
44 5767.800M	67.3		+0.0	+0.8	+3.9	+0.0	80.4	126.9	-46.5	Horiz
45 5701 200M	C1 0	+34.1	-27.5	.0.0	.20	357	77.0	HIGH	40.0	99
45 5781.200M	64.8	+1.8	+0.0	+0.8	+3.9	+0.0	77.9	126.9	-49.0	Horiz
46 5012 50014		+34.1	-27.5	. 0. 0	. 2.0	356	70.6	MID	56.0	99
46 5813.500M	57.5	+1.8	+0.0	+0.8	+3.9	+0.0	70.6	126.9	-56.3	Horiz
45 5505 4003 5		+34.1	-27.5	0.0	2.0	0.0		LOW		99
47 5797.400M	56.1	+1.8	+0.0	+0.8	+3.9	+0.0	69.2	126.9	-57.7	Horiz
40. 5000 4000 5		+34.1	-27.5			356		MID		99
48 5832.100M	54.6	+1.8	+0.0	+0.8	+3.9	+0.0	67.8	126.9	-59.1	Horiz
		+34.1	-27.4			357		HIGH		99
49 5768.800M	52.1	+1.8	+0.0	+0.8	+3.9	+0.0	65.2	126.9	-61.7	Vert
		+34.1	-27.5			357		HIGH		99
50 5732.640M	50.8	+1.8	+0.0	+0.8	+3.9	+0.0	63.8	126.9	-63.1	Vert
		+34.0	-27.5			355		LOW		115
51 5770.790M	49.4	+1.8	+0.0	+0.8	+3.9	+0.0	62.5	126.9	-64.4	Vert
		+34.1	-27.5			355		LOW		115
52 5840.100M	48.9	+1.8	+0.0	+0.9	+3.9	+0.0	62.2	126.9	-64.7	Vert
		+34.1	-27.4			357		HIGH		99
53 5793.680M	47.9	+1.8	+0.0	+0.8	+3.9	+0.0	61.0	126.9	-65.9	Vert
		+34.1	-27.5			358		MID		99
54 5777.100M	45.0	+1.8	+0.0	+0.8	+3.9	+0.0	58.1	126.9	-68.8	Vert
		+34.1	-27.5			358		MID		99
55 5773.560M	40.7	+1.8	+0.0	+0.8	+3.9	+0.0	53.8	126.9	-73.1	Vert
		+34.1	-27.5			355		LOW		115
56 5801.730M	39.3	+1.8	+0.0	+0.8	+3.9	+0.0	52.4	126.9	-74.5	Vert
		+34.1	-27.5	. 3.0		358		MID		99
<u> </u>			_,			220				

Page 88 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.247(d) 1-12.5GHz 5dBi

Work Order #: 85414 Date: 7/8/2006
Test Type: Maximized Emissions Time: 14:33:20
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 65

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	CUI Inc.	DSA-0151A-06		
5dBi Antenna	Multiple	5dBi Antenna		

Test Conditions / Notes:

Spurious Emissions 15.247(d) 1-12.5GHz. 5dBi Antenna. Measured against 15.247 limits for frequencies not within the Restricted Band. All measurements made with RBW=100kHz. EUT setup as close to back edge of the table as possible for the cable to reach the antenna. The antenna is orientated in its vertical polarization. Ethernet cable is connected and draped towards the floor off the back edge of the table as per ANSI C63.4. Ethernet port is sending random data out the ethernet cable at all times.

Transducer Legend:

T1=ANP05200 1-40GHz	T2=Duty Cycle AVE Factor
T3=ANP04241 HF-Heliax Cable	T4=P05138 HF Cable 25ft
T5=Horn Antenna AN02061 sn1064 (Fremont)	T6=AMP AN02810 50GHz

Measurement Data:	Reading listed by margin.	Test Distance: 3 Meters
-------------------	---------------------------	-------------------------

			damig mo								
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	Hz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	5607.600M	58.4	+1.8	+0.0	+0.8	+3.8	+0.0	71.3	84.1	-12.8	Vert
			+34.0	-27.5			110		HIGH		144
2	5607.600M	57.1	+1.8	+0.0	+0.8	+3.8	+0.0	70.0	84.1	-14.1	Vert
			+34.0	-27.5			249		LOW		151
3	5608.000M	56.9	+1.8	+0.0	+0.8	+3.8	+0.0	69.8	84.1	-14.3	Vert
			+34.0	-27.5			248		MID		151
4	5597.700M	54.8	+1.8	+0.0	+0.8	+3.8	+0.0	67.7	84.1	-16.4	Horiz
			+34.0	-27.5			106		MID		148
5	5597.200M	68.3	+1.8	-13.6	+0.8	+3.8	+0.0	67.6	84.1	-16.5	Vert
	Ave		+34.0	-27.5			110		HIGH		144
٨	5597.200M	68.3	+1.8	+0.0	+0.8	+3.8	+0.0	81.2	84.1	-2.9	Vert
			+34.0	-27.5			110		HIGH		144
7	5621.500M	53.6	+1.8	+0.0	+0.8	+3.8	+0.0	66.5	84.1	-17.6	Vert
			+34.0	-27.5			249		LOW		151
8	5621.600M	53.0	+1.8	+0.0	+0.8	+3.8	+0.0	65.9	84.1	-18.2	Vert
			+34.0	-27.5			110		HIGH		144

Page 89 of 106 Report No: FC06-042

9 5597.700	M 66.4	+1.8	-13.6	+0.8	+3.8	+0.0	65.7		-18.4	Vert
Ave		+34.0	-27.5			248		MID		151
^ 5597.700	M 66.4	+1.8	+0.0	+0.8	+3.8	+0.0	79.3	84.1	-4.8	Vert
		+34.0	-27.5			248		MID		151
^ 5597.700	M 66.0	+1.8	+0.0	+0.8	+3.8	+0.0	78.9	84.1	-5.2	Vert
		+34.0	-27.5			249		LOW		151
12 5597.700	M 66.0	+1.8	-13.6	+0.8	+3.8	+0.0	65.3	84.1	-18.8	Vert
Ave		+34.0	-27.5			249		LOW		151
13 5621.200	M 50.7	+1.8	+0.0	+0.8	+3.8	+0.0	63.6	84.1	-20.5	Vert
		+34.0	-27.5			248		MID		151
14 5597.600	M 48.9	+1.8	+0.0	+0.8	+3.8	+0.0	61.8	84.1	-22.3	Horiz
		+34.0	-27.5			-4		HIGH		99
15 5598.160	M 46.3	+1.8	+0.0	+0.8	+3.8	+0.0	59.2	84.1	-24.9	Horiz
		+34.0	-27.5			125		LOW		147
16 5588.100	M 44.6	+1.8	+0.0	+0.8	+3.8	+0.0	57.5	84.1	-26.6	Vert
		+34.0	-27.5			110		HIGH		144
17 5607.500	M 44.6	+1.8	+0.0	+0.8	+3.8	+0.0	57.5	84.1	-26.6	Horiz
		+34.0	-27.5			106		MID		148
18 5581.700	M 44.3	+1.8	+0.0	+0.8	+3.8	+0.0	57.2	84.1	-26.9	Vert
		+34.0	-27.5			248		MID		151
19 5859.100	M 43.6	+1.8	+0.0	+0.9	+3.9	+0.0	56.9	84.1	-27.2	Vert
		+34.1	-27.4			110		HIGH		144
20 5559.300	M 43.8	+1.8	+0.0	+0.8	+3.8	+0.0	56.6	84.1	-27.5	Vert
-1		+33.9	-27.5			249		LOW	• • • •	151
21 5579.500	M 43.3	+1.8	+0.0	+0.8	+3.8	+0.0	56.1	84.1	-28.0	Vert
22 7 (21 200	3.5. 20.5	+33.9	-27.5	0.0	2.0	249		LOW	21.5	151
22 5621.200	M 39.5	+1.8	+0.0	+0.8	+3.8	+0.0	52.4	84.1	-31.7	Horiz
22 7 521 100	3.5. 20.5	+34.0	-27.5	0.0	2.0	106		MID	21.5	148
23 5621.400	M 39.5	+1.8	+0.0	+0.8	+3.8	+0.0	52.4	84.1	-31.7	Horiz
24 5600 210	27.6	+34.0	-27.5	. 0. 0	. 2.0	-4	50.5	HIGH	22.6	99
24 5608.310	M 37.6	+1.8	+0.0	+0.8	+3.8	+0.0	50.5	84.1	-33.6	Horiz
25 5607,000	M 27.0	+34.0	-27.5	. 0. 0	. 2.0	125	40.0	LOW	24.2	147
25 5607.900	M 37.0	+1.8	+0.0	+0.8	+3.8	+0.0	49.9	84.1	-34.2	Horiz
26 5000 000	24.5	+34.0	-27.5	. 1. 0	. 2.0	-4	47.0	HIGH	26.2	99
26 5899.000	M 34.5	+1.8	+0.0	+1.0	+3.9	+0.0	47.9	84.1	-36.2	Vert
27 5/21 010	M 240	+34.1	-27.4	10.0	12.0	249	47.0	LOW	26.2	151 Horiz
27 5621.810	M 34.9	+1.8	+0.0	+0.8	+3.8	+0.0	47.8	84.1	-36.3	Horiz
20 5500 500	M 241	+34.0	-27.5	, A O	,20	125	47.0	LOW	27.1	147 Horiz
28 5580.500	M 34.1	+1.8	+0.0	+0.8	+3.8	+0.0	47.0	84.1	-37.1	Horiz
20 5702 000	M 22.2	+34.0	-27.5	10.0	120	106	46.2	MID	27.0	148 Vant
29 5702.900	M 33.3	+1.8	+0.0 -27.5	+0.8	+3.9	+0.0 249	46.3	84.1	-37.8	Vert
30 5579.550	M 21.6	+34.0		10.0	12.0		111	LOW	20.7	151 Horiz
30 3379.330	M 31.6	+1.8 +33.9	+0.0 -27.5	+0.8	+3.8	+0.0 125	44.4	84.1 LOW	-39.7	Horiz 147
31 5375.700	M 31.0			10.0	127		43.4	84.1	-40.7	
31 33/3./00	101 31.0	+1.8	+0.0	+0.9	+3.7	+0.0 248	43.4	84.1 MID	-40./	Vert 151
22 5550 200	M 20.2	+33.6	-27.6	10.0	120		/2 1		41 O	
32 5558.290	M 30.3	+1.8 +33.9	+0.0 -27.5	+0.8	+3.8	+0.0 125	43.1	84.1 LOW	-41.0	Horiz 147
33 5767.700	M 54.5	+33.9		10.0	12.0	+0.0	67.6	114.1	-46.5	
33 3/0/./00	101 34.3		+0.0 27.5	+0.8	+3.9		07.0		-40.3	Vert
<u> </u>		+34.1	-27.5			110		HIGH		144

Page 90 of 106 Report No: FC06-042

34	5766.400M	54.4	+1.8	+0.0	+0.8	+3.9	+0.0	67.5	114.1	-46.6	Vert
			+34.1	-27.5			249		LOW		151
35	5765.300M	50.6	+1.8	+0.0	+0.8	+3.9	+0.0	63.7	114.1	-50.4	Vert
			+34.1	-27.5			248		MID		151
36	5837.600M	46.1	+1.8	+0.0	+0.9	+3.9	+0.0	59.4	114.1	-54.7	Vert
			+34.1	-27.4			110		HIGH		144
37	5766.460M	41.8	+1.8	+0.0	+0.8	+3.9	+0.0	54.9	114.1	-59.2	Horiz
			+34.1	-27.5			328		LOW		160
38	5745.200M	41.2	+1.8	+0.0	+0.8	+3.9	+0.0	54.3	114.1	-59.8	Vert
			+34.1	-27.5			248		MID		151
39	5767.400M	40.7	+1.8	+0.0	+0.8	+3.9	+0.0	53.8	114.1	-60.3	Horiz
			+34.1	-27.5			-4		HIGH		99
40	5765.800M	39.2	+1.8	+0.0	+0.8	+3.9	+0.0	52.3	114.1	-61.8	Horiz
			+34.1	-27.5			106		MID		148
41	5805.900M	31.0	+1.8	+0.0	+0.8	+3.9	+0.0	44.1	114.1	-70.0	Vert
			+34.1	-27.5			249		LOW		151
42	5744.600M	29.1	+1.8	+0.0	+0.8	+3.9	+0.0	42.2	114.1	-71.9	Horiz
			+34.1	-27.5			106		MID		148

Page 91 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.247(d)/15.209 12.5-40GHz

Work Order #: 85414 Date: 7/10/2006
Test Type: Maximized Emissions Time: 12:20:10
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 84

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	
Panel Antenna	ARC Wireless Solutions	ANT-A-1723-01	00540051116

Test Conditions / Notes:

Spurious Emissions 15.247(d) 12.5-40GHz. 23dBi Antenna. Measured against 15.209 limits for the Restricted Bands. This data sheet may contain frequencies that do not fall into the restricted band. EUT setup as close to back edge of the table as possible for the cable to reach the antenna. The antenna is orientated in its vertical polarization. Ethernet cable is connected and draped towards the floor off the back edge of the table as per ANSI C63.4. Ethernet port is sending random data out the ethernet cable at all times. Only LOW Channel had the 6th harmonic.

Transducer Legend:

T1=Duty Cycle AVE Factor	T2=ANT 12-18GHz Active Horn
T3=ANT 18-26GHz Active Horn	T4=Horn AN02695 Miteq Active 26-40GHz
T5=12.4-18 WG F-C3 P00928	T6=18-26.5 WG F-C3
T7=26.5-40 WG F-C3	T8=Cable AN2715 40 GHz
T9=AMP AN02810 50GHz	T10=ANP05200 1-40GHz

Measi	urement Data:	Re	Reading listed by margin. Test Distance: 3 Meters								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	Hz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	28644.020M	27.3	+0.0	+0.0	+0.0	+2.5	+0.0	48.4	54.0	-5.6	Horiz
			+0.0	+0.0	+3.9	+14.7	119		LOW		100
2	22911.140M	49.9	-13.6	+0.0	-8.7	+0.0	+0.0	45.3	54.0	-8.7	Vert
	Ave		+0.0	+3.6	+0.0	+14.1	118		LOW		100
^	22911.140M	49.9	+0.0	+0.0	-8.7	+0.0	+0.0	58.9	54.0	+4.9	Vert
			+0.0	+3.6	+0.0	+14.1	118		LOW		100

Page 92 of 106 Report No: FC06-042

4 22910.770M	49.0	-13.6	+0.0	-8.7	+0.0	+0.0	44.4	54.0	-9.6	Horiz
Ave		+0.0	+3.6	+0.0	+14.1	124		LOW		101
^ 22910.770M	49.0	+0.0	+0.0	-8.7	+0.0	+0.0	58.0	54.0	+4.0	Horiz
		+0.0	+3.6	+0.0	+14.1	124		LOW		101
6 23148.210M	47.2	-13.6	+0.0	-8.8	+0.0	+0.0	42.7	54.0	-11.3	Horiz
Ave	.,.2	+0.0	+3.6	+0.0	+14.3	134	12.7	MID	11.5	101
1110		10.0	13.0	10.0	111.5	131		WIID		101
^ 23148.210M	47.2	+0.0	+0.0	-8.8	+0.0	+0.0	56.3	54.0	+2.3	Horiz
23140.210141	77.2	+0.0	+3.6	+0.0	+14.3	134	30.3	MID	12.3	10112
		10.0	13.0	10.0	117.5	134		WIID		101
8 29232.450M	34.2	-13.6	+0.0	+0.0	+2.7	+0.0	42.1	54.0	-11.9	Vert
Ave	34.2	+0.0	+0.0	+3.9	+14.9	+0.0 119	42.1	HIGH	-11.9	100
Ave		+0.0	+0.0	+3.9	±14.7	117		IIIOII		100
^ 29232.450M	34.2	+0.0	+0.0	+0.0	+2.7	+0.0	55.7	54.0	+1.7	Vert
27232.43UNI	34.2	+0.0 +0.0	+0.0 +0.0	+3.9	+2.7	+0.0 119	55.1	HIGH	+1./	100
		+0.0	+0.0	+3.9	+14.9	119		піоп		100
10 17183.190M	57.6	-13.6	-14.9	+0.0	+0.0	+0.0	41.9	54.0	-12.1	Horiz
	37.0						41.9		-12.1	
Ave		+0.9	+0.0	+0.0	+11.9	292		LOW		100
A 17102 100M	57.6	.00	140	. 0. 0	. 0. 0	. 0. 0		540	. 1 5	TT
^ 17183.190M	57.6	+0.0	-14.9	+0.0	+0.0	+0.0	55.5		+1.5	Horiz
		+0.9	+0.0	+0.0	+11.9	292		LOW		100
12 22207 0103 5	160	10.6	0.0	0.0	0.0	0.0	41.7	740	10.0	T. 7
12 23385.810M	46.0	-13.6	+0.0	-8.9	+0.0	+0.0	41.7		-12.3	Vert
Ave		+0.0	+3.8	+0.0	+14.4	123		HIGH		99
A 22207 0403 f	4.5.0	0.0	0.0	0.0	0.0	0.0		7.1. 0		**
^ 23385.810M	46.0	+0.0	+0.0	-8.9	+0.0	+0.0	55.3		+1.3	Vert
		+0.0	+3.8	+0.0	+14.4	123		HIGH		99
14 23144.360M	46.1	-13.6	+0.0	-8.8	+0.0	+0.0	41.6		-12.4	Vert
Ave		+0.0	+3.6	+0.0	+14.3	123		MID		100
^ 23144.360M	46.1	+0.0	+0.0	-8.8	+0.0	+0.0	55.2	54.0	+1.2	Vert
		+0.0	+3.6	+0.0	+14.3	123		MID		100
16 23386.270M	44.5	-13.6	+0.0	-8.9	+0.0	+0.0	40.2		-13.8	Horiz
Ave		+0.0	+3.8	+0.0	+14.4	124		HIGH		99
^ 23386.270M	44.5	+0.0	+0.0	-8.9	+0.0	+0.0	53.8	54.0	-0.2	Horiz
		+0.0	+3.8	+0.0	+14.4	124		HIGH		99
18 28935.560M	32.2	-13.6	+0.0	+0.0	+2.7	+0.0	39.9	54.0	-14.1	Vert
Ave		+0.0	+0.0	+3.8	+14.8	119		MID		100
^ 28935.560M	32.2	+0.0	+0.0	+0.0	+2.7	+0.0	53.5	54.0	-0.5	Vert
		+0.0	+0.0	+3.8	+14.8	119		MID		100
									_	

Page 93 of 106 Report No: FC06-042

20	17539.460M	53.6	-13.6	-13.7	+0.0	+0.0	+0.0	39.6	54.0	-14.4	Horiz
	Ave		+1.2	+0.0	+0.0	+12.1	292		HIGH		99
^	17539.460M	53.4	+0.0	-13.7	+0.0	+0.0	+0.0	53.0	54.0	-1.0	Horiz
	17339.400W1	33.4	+1.2	+0.0	+0.0	+12.1	292	33.0	HIGH	-1.0	99
			+1.2	+0.0	+0.0	+12.1	292		піоп		99
- 22	17102 0103 6	55.0	10.6	140	0.0	0.0	0.0	20.5	740	14.5	T.7 .
22	17183.010M	55.2	-13.6	-14.9	+0.0	+0.0	+0.0	39.5		-14.5	Vert
	Ave		+0.9	+0.0	+0.0	+11.9	125		LOW		99
^	17183.010M	55.2	+0.0	-14.9	+0.0	+0.0	+0.0	53.1	54.0	-0.9	Vert
			+0.9	+0.0	+0.0	+11.9	125		LOW		99
24	17358.430M	54.3	-13.6	-14.3	+0.0	+0.0	+0.0	39.3	54.0	-14.7	Horiz
	Ave		+0.9	+0.0	+0.0	+12.0	289		MID		99
	1110		10.5	10.0	10.0	112.0	20)		WIID		
	17358.430M	54.3	+0.0	-14.3	+0.0	+0.0	+0.0	52.0	54.0	-1.1	Horiz
	17330.430WI	34.3	+0.0	+0.0	+0.0	+12.0	289	34.9	MID	-1.1	99
			+0.9	+0.0	+0.0	+12.0	289		MID		99
26	17520 55014	52.0	10.6	12.7	. 0. 0	. 0. 0	. 0. 0	20.0	540	15.1	T.7 .
	17539.550M	52.9	-13.6	-13.7	+0.0	+0.0	+0.0	38.9		-15.1	Vert
	Ave		+1.2	+0.0	+0.0	+12.1	124		HIGH		99
^	17539.550M	52.9	+0.0	-13.7	+0.0	+0.0	+0.0	52.5	54.0	-1.5	Vert
			+1.2	+0.0	+0.0	+12.1	124		HIGH		99
28	17361.270M	53.3	-13.6	-14.3	+0.0	+0.0	+0.0	38.3	54.0	-15.7	Vert
	Ave		+0.9	+0.0	+0.0	+12.0	73		MID		99
^	17361.270M	53.3	+0.0	-14.3	+0.0	+0.0	+0.0	51.9	54.0	-2.1	Vert
	17301.27011	55.5	+0.9	+0.0	+0.0	+12.0	73	31.7	MID	2.1	99
			10.7	10.0	10.0	112.0	13		WIID		,,
20	28643.750M	30.5	-13.6	+0.0	+0.0	+2.5	+0.0	20 N	54.0	-16.0	Vert
30		30.3						38.0		-10.0	
	Ave		+0.0	+0.0	+3.9	+14.7	119		LOW		100
<u> </u>	20542 5507 5	20.7	0.6	0.0	0.0		0.0				**
_ ^	28643.750M	30.5	+0.0	+0.0	+0.0	+2.5	+0.0	51.6		-2.4	Vert
			+0.0	+0.0	+3.9	+14.7	119		LOW		100
32	28935.600M	29.2	-13.6	+0.0	+0.0	+2.7	+0.0	36.9	54.0	-17.1	Horiz
	Ave		+0.0	+0.0	+3.8	+14.8	119		MID		100
٨	28935.600M	29.2	+0.0	+0.0	+0.0	+2.7	+0.0	50.5	54.0	-3.5	Horiz
			+0.0	+0.0	+3.8	+14.8	119		MID		100
			10.0	10.0	15.0	111.0	11/				100
L											

Page 94 of 106 Report No: FC06-042

34 28644.020M	27.3	-13.6	+0.0	+0.0	+2.5	+0.0	34.8	54.0	-19.2	Horiz
		+0.0	+0.0	+3.9	+14.7	119		LOW		100
35 29232.230M	26.4	-13.6	+0.0	+0.0	+2.7	+0.0	34.3	54.0	-19.7	Horiz
Ave		+0.0	+0.0	+3.9	+14.9	134		HIGH		100
^ 29232.230M	26.4	+0.0	+0.0	+0.0	+2.7	+0.0	47.9	54.0	-6.1	Horiz
		+0.0	+0.0	+3.9	+14.9	134		HIGH		100
37 34366,420M	32.3	+0.0	+0.0	+0.0	+5.5	+0.0	33.1	54.0	-20.9	Horiz
		+0.0	+0.0	+4.7	+16.1	119		LOW		100
		-30.3	+4.8			-				

Page 95 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.247(d)/15.209 12.5-40GHz

Work Order #: 85414 Date: 7/10/2006
Test Type: Maximized Emissions Time: 12:55:20
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 85

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	
5dBi Antenna	Multiple	5dBi Antenna	

Test Conditions / Notes:

Spurious Emissions 15.247(d) 12.5-40 GHz. 5dBi Antenna. Measured against 15.209 limits for the Restricted Bands. This data sheet may contain frequencies that do not fall into the restricted band. EUT setup as close to back edge of the table as possible for the cable to reach the antenna. The antenna is orientated in its vertical polarization. Ethernet cable is connected and draped towards the floor off the back edge of the table as per ANSI C63.4. Ethernet port is sending random data out the ethernet cable at all times. No signals seen above 29 GHz.

Transducer Legend:

T1=Duty Cycle AVE Factor	T2=ANT 12-18GHz Active Horn
T3=ANT 18-26GHz Active Horn	T4=Horn AN02695 Miteq Active 26-40GHz
T5=12.4-18 WG F-C3 P00928	T6=18-26.5 WG F-C3
T7=26.5-40 WG F-C3	T8=Cable AN2715 40 GHz

Measur	ement Data:	R	eading li	isted by n	nargin.		Tes	st Distance	e: 3 Meter	:S
#	Frod	Ddna	Т1	тэ	Т3	Τ/	Dict	Corr	Spec	

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	Hz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	22915.250M	52.8	-13.6	+0.0	-8.7	+0.0	+0.0	48.2	54.0	-5.8	Vert
	Ave		+0.0	+3.6	+0.0	+14.1	58		LOW		99
^	22915.250M	52.8	+0.0	+0.0	-8.7	+0.0	+0.0	61.8	54.0	+7.8	Vert
			+0.0	+3.6	+0.0	+14.1	58		LOW		99
3	23389.980M	49.8	-13.6	+0.0	-8.9	+0.0	+0.0	45.5	54.0	-8.5	Vert
	Ave		+0.0	+3.8	+0.0	+14.4	32		HIGH		100
^	23389.980M	49.8	+0.0	+0.0	-8.9	+0.0	+0.0	59.1	54.0	+5.1	Vert
			+0.0	+3.8	+0.0	+14.4	32		HIGH		100
5	23148.130M	48.5	-13.6	+0.0	-8.8	+0.0	+0.0	44.0	54.0	-10.0	Vert
	Ave		+0.0	+3.6	+0.0	+14.3	34		MID		99
^	23148.130M	48.5	+0.0	+0.0	-8.8	+0.0	+0.0	57.6	54.0	+3.6	Vert
			+0.0	+3.6	+0.0	+14.3	34		MID		99

Page 96 of 106 Report No: FC06-042

7 22910.890M	47.3	-13.6	+0.0	-8.7	+0.0	+0.0	42.7	54.0	-11.3	Horiz
Ave		+0.0	+3.6	+0.0	+14.1	34		LOW		99
^ 22910.890M	47.3	+0.0	+0.0	-8.7	+0.0	+0.0	56.3	54.0	+2.3	Horiz
		+0.0	+3.6	+0.0	+14.1	34		LOW		99
9 23144.410M	46.3	-13.6	+0.0	-8.8	+0.0	+0.0	41.8	54.0	-12.2	Horiz
Ave		+0.0	+3.6	+0.0	+14.3	28		MID		99
^ 23144.410M	46.3	+0.0	+0.0	-8.8	+0.0	+0.0	55.4	54.0	+1.4	Horiz
		+0.0	+3.6	+0.0	+14.3	28		MID		99
11 23386.080M	46.0	-13.6	+0.0	+0.0	+0.0	+0.0	41.7	54.0	-12.3	Horiz
Ave		+0.0	+0.0	+0.0	+14.4	37		HIGH		99
^ 23386.080M	46.0	+0.0	+0.0	-8.9	+0.0	+0.0	55.3	54.0	+1.3	Horiz
		+0.0	+3.8	+0.0	+14.4	37		HIGH		99
13 17183.220M	55.5	-13.6	-14.9	+0.0	+0.0	+0.0	39.8	54.0	-14.2	Vert
Ave		+0.9	+0.0	+0.0	+11.9	329		LOW		99
^ 17183.220M	55.5	+0.0	-14.9	+0.0	+0.0	+0.0	53.4	54.0	-0.6	Vert
1,100,2201,1	00.0	+0.9	+0.0	+0.0	+11.9	329		LOW	0.0	99
15 17539.560M	53.6	-13.6	-13.7	+0.0	+0.0	+0.0	39.6	54.0	-14.4	Horiz
Ave	33.0	+1.2	+0.0	+0.0	+12.1	312	37.0	HIGH	14,4	99
^ 17539.560M	53.6	+0.0	-13.7	+0.0	+0.0	+0.0	53.2	54.0	-0.8	Horiz
17339.300101	33.0	+1.2	+0.0	+0.0	+12.1	312	33.2	HIGH	-0.6	99
17 17361.420M	53.4	+0.0	-14.3	+0.0	+0.0	+0.0	38.4	54.0	-15.6	Horiz
	33.4	+0.0		+0.0 +0.0		+0.0 317	36.4	MID	-13.0	100
Ave	52.4		+0.0		+12.0		52.0		2.0	
^ 17361.420M	53.4	+0.0	-14.3	+0.0	+0.0	+0.0	52.0	54.0	-2.0	Horiz
10. 17250 26014	50 0	+0.9	+0.0	+0.0	+12.0	317	27.0	MID	160	100
19 17358.360M	52.8	-13.6	-14.3	+0.0	+0.0	+0.0	37.8	54.0	-16.2	Vert
Ave	52.0	+0.9	+0.0	+0.0	+12.0	329	71 4	MID	2.6	99
^ 17358.360M	52.8	+0.0	-14.3	+0.0	+0.0	+0.0	51.4	54.0	-2.6	Vert
	•••	+0.9	+0.0	+0.0	+12.0	329		MID		99
21 29232.700M	29.8	-13.6	+0.0	+0.0	+2.7	+0.0	37.7	54.0	-16.3	Horiz
Ave		+0.0	+0.0	+3.9	+14.9	337		HIGH		100
^ 29232.700M	29.8	+0.0	+0.0	+0.0	+2.7	+0.0	51.3	54.0	-2.7	Horiz
		+0.0	+0.0	+3.9	+14.9	337		HIGH		100
23 17539.600M	50.2	-13.6	-13.7	+0.0	+0.0	+0.0	36.2	54.0	-17.8	Vert
Ave		+1.2	+0.0	+0.0	+12.1	44		HIGH		100
^ 17539.600M	50.2	+0.0	-13.7	+0.0	+0.0	+0.0	49.8	54.0	-4.2	Vert
		+1.2	+0.0	+0.0	+12.1	44		HIGH		100
25 17183.160M	51.0	-13.6	-14.9	+0.0	+0.0	+0.0	35.3	54.0	-18.7	Horiz
Ave		+0.9	+0.0	+0.0	+11.9	255		LOW		99
^ 17183.160M	51.0	+0.0	-14.9	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Horiz
		+0.9	+0.0	+0.0	+11.9	255		LOW		99
27 28638.680M	27.6	-13.6	+0.0	+0.0	+2.5	+0.0	35.1	54.0	-18.9	Vert
Ave		+0.0	+0.0	+3.9	+14.7	312		LOW		100
^ 28638.680M	27.6	+0.0	+0.0	+0.0	+2.5	+0.0	48.7	54.0	-5.3	Vert
		+0.0	+0.0	+3.9	+14.7	312		LOW		100
29 28638.960M	27.3	-13.6	+0.0	+0.0	+2.5	+0.0	34.8	54.0	-19.2	Horiz
Ave		+0.0	+0.0	+3.9	+14.7	323		LOW		100
^ 28638.960M	27.3	+0.0	+0.0	+0.0	+2.5	+0.0	48.4	54.0	-5.6	Horiz
20030.700141	27.5	+0.0	+0.0	+3.9	+14.7	323	.0. r	LOW	5.0	100
<u> </u>		. 5.0	1 3.0	1 3.7	1 4 117	323		2011		100

Page 97 of 106 Report No: FC06-042

31 28935.500M	26.8	-13.6	+0.0	+0.0	+2.7	+0.0	34.5	54.0	-19.5	Horiz
Ave		+0.0	+0.0	+3.8	+14.8	22		MID		100
^ 28935.500M	26.8	+0.0	+0.0	+0.0	+2.7	+0.0	48.1	54.0	-5.9	Horiz
		+0.0	+0.0	+3.8	+14.8	22		MID		100
33 29232.590M	26.6	-13.6	+0.0	+0.0	+2.7	+0.0	34.5	54.0	-19.5	Vert
Ave		+0.0	+0.0	+3.9	+14.9	288		HIGH		100
^ 29232.590M	26.6	+0.0	+0.0	+0.0	+2.7	+0.0	48.1	54.0	-5.9	Vert
		+0.0	+0.0	+3.9	+14.9	288		HIGH		100
35 28930.590M	26.6	-13.6	+0.0	+0.0	+2.7	+0.0	34.3	54.0	-19.7	Vert
Ave		+0.0	+0.0	+3.8	+14.8	309		MID		100
^ 28930.590M	26.6	+0.0	+0.0	+0.0	+2.7	+0.0	47.9	54.0	-6.1	Vert
		+0.0	+0.0	+3.8	+14.8	309		MID		100

Page 98 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc.
Specification: FCC 15.247(d) Spurious Conducted

Work Order #: 85414 Date: 7/5/2006
Test Type: Radiated Scan Time: 16:46:51
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 26

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		
Power Supply	CUI Inc.	DSA-0151A-06	

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

15.247(d) Spurious Emissions Antenna Conducted. Maximized Emissions measured with RBW=100 kHz, VBW=300 kHz from 100 kHz-1 GHz and RBW=10 kHz, VBW=300 kHz from 9-100 kHz. Readings from 9-1000 MHz are made using a 2.1 GHz Low Pass Filter. No signals found below 10 MHz.

Transducer Legend:

T1=Cable 01188

Measur	rement Data:	Re	eading lis	ted by r	nargin.	. Test Distance: None					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	Hz	dΒμV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	16.490M	-85.8	+0.0				+0.0	-85.8	-13.5	-72.3	None
									LOW		
2	13.600M	-86.8	+0.0				+0.0	-86.8	-13.5	-73.3	None
									LOW		
3	12.160M	-87.1	+0.1				+0.0	-87.0	-13.5	-73.5	None
									MID		
4	14.500M	-86.2	+0.0				+0.0	-86.2	-12.6	-73.6	None
									HIGH		
5	11.800M	-87.3	+0.1				+0.0	-87.2	-13.5	-73.7	None
									LOW		
6	10.900M	-86.8	+0.1				+0.0	-86.7	-12.6	-74.1	None
									HIGH		
7	15.950M	-87.6	+0.0				+0.0	-87.6	-13.5	-74.1	None
									MID		
8	16.490M	-86.9	+0.0				+0.0	-86.9		-74.3	None
									HIGH		
9	20.450M	-88.4	+0.1				+0.0	-88.3	-13.5	-74.8	None
									MID		
10	19.550M	-88.3	+0.1				+0.0	-88.2	-12.6	-75.6	None
									HIGH		
11	50.000M	-90.8	+0.2				+0.0	-90.6	-13.5	-77.1	None
									LOW		

Page 99 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc.
Specification: FCC 15.247(d) Spurious Conducted

Work Order #: 85414 Date: 7/5/2006
Test Type: Radiated Scan Time: 16:04:08
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 23

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	

Test Conditions / Notes:

15.247(d) Spurious Emissions Antenna Conducted LOW Channel. Maximized Emissions measured with RBW=1 MHz, VBW=3 MHz. Readings above 8.5 MHz are made using an 8.2 GHz High Pass Filter. Readings from 1-8.5 GHz are made with 32dB of external attenuation in place.

Transducer Legend:

T1=ANP05200 1-40GHz	T2=Duty Cycle AVE Factor
T3=PAD ANP05410 10dB	T4=PAD ANP05411 10dB
T5=PAD ANP05412 6dB	T6=PAD ANP05413 6dB
T7-HPF & 2 GHz High Page	

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Te	st Distan	ce: None		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	Hz	dBm	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	5602.100M	-38.4	+1.8	-13.6	+9.6	+9.3	+0.0	-19.8	-13.5	-6.3	None
	Ave		+5.7	+5.8	+0.0				LOW		
^	5602.100M	-38.4	+1.8	+0.0	+9.6	+9.3	+0.0	-6.2	-13.5	+7.3	None
			+5.7	+5.8	+0.0				LOW		
3	5622.100M	-42.3	+1.8	-13.6	+9.6	+9.3	+0.0	-23.7	-13.5	-10.2	None
	Ave		+5.7	+5.8	+0.0				LOW		
^	5622.100M	-42.3	+1.8	+0.0	+9.6	+9.3	+0.0	-10.1	-13.5	+3.4	None
			+5.7	+5.8	+0.0				LOW		
5	5771.300M	-44.6	+1.8	-13.6	+9.6	+9.3	+0.0	-25.9	-13.5	-12.4	None
	Ave		+5.8	+5.8	+0.0				LOW		
^	5771.300M	-44.6	+1.8	+0.0	+9.6	+9.3	+0.0	-12.3	-13.5	+1.2	None
			+5.8	+5.8	+0.0				LOW		
7	5896.400M	-58.2	+1.8	+0.0	+9.6	+9.3	+0.0	-25.9	-13.5	-12.4	None
			+5.8	+5.8	+0.0				LOW		
8	17183.200M	-34.5	+3.5	+0.0	+0.0	+0.0	+0.0	-30.3	-13.5	-16.8	None
			+0.0	+0.0	+0.7				LOW		

Page 100 of 106 Report No: FC06-042

F										
9 5584.100M	-49.3	+1.8	-13.6	+9.6	+9.3	+0.0	-30.7		-17.2	None
Ave		+5.7	+5.8	+0.0				LOW		
^ 5584.100M	-49.3	+1.8	+0.0	+9.6	+9.3	+0.0	-17.1		-3.6	None
		+5.7	+5.8	+0.0				LOW		
11 5562.100M	-50.3	+1.8	-13.6	+9.6	+9.3	+0.0	-31.7		-18.2	None
Ave		+5.7	+5.8	+0.0				LOW		
^ 5562.100M	-50.3	+1.8	+0.0	+9.6	+9.3	+0.0	-18.1	-13.5	-4.6	None
		+5.7	+5.8	+0.0				LOW		
13 5814.300M	-67.9	+1.8	+0.0	+9.6	+9.3	+0.0	-35.6		-22.1	None
		+5.8	+5.8	+0.0				LOW		
14 16830.300M	-42.5	+3.4	+0.0	+0.0	+0.0	+0.0	-38.4	-13.5	-24.9	None
		+0.0	+0.0	+0.7				LOW		
15 5438.400M	-70.6	+1.8	+0.0	+9.5	+9.3	+0.0	-38.5	-13.5	-25.0	None
		+5.7	+5.8	+0.0				LOW		
16 11240.200M	-43.5	+2.7	+0.0	+0.0	+0.0	+0.0	-40.5	-13.5	-27.0	None
		+0.0	+0.0	+0.3				LOW		
17 16860.400M	-46.6	+3.4	+0.0	+0.0	+0.0	+0.0	-42.5	-13.5	-29.0	None
		+0.0	+0.0	+0.7				LOW		
18 11220.200M	-46.9	+2.7	+0.0	+0.0	+0.0	+0.0	-43.9	-13.5	-30.4	None
		+0.0	+0.0	+0.3				LOW		
19 11286.300M	-47.3	+2.7	+0.0	+0.0	+0.0	+0.0	-44.3		-30.8	None
		+0.0	+0.0	+0.3				LOW		
20 16877.400M	-48.7	+3.4	+0.0	+0.0	+0.0	+0.0	-44.7	-13.5	-31.2	None
		+0.0	+0.0	+0.6				LOW		
21 11457.000M	-47.8	+2.8	+0.0	+0.0	+0.0	+0.0	-44.7		-31.2	None
		+0.0	+0.0	+0.0				LOW		
22 22915.400M	-50.0	+4.1	+0.0	+0.0	+0.0	+0.0	-45.9	-13.5	-32.4	None
		+0.0	+0.0	+0.0				LOW		
23 17014.000M	-51.4	+3.4	+0.0	+0.0	+0.0	+0.0	-47.4	-13.5	-33.9	None
		+0.0	+0.0	+0.6				LOW		
24 11156.200M	-52.8	+2.7	+0.0	+0.0	+0.0	+0.0	-49.8	-13.5	-36.3	None
		+0.0	+0.0	+0.3	•		-	LOW	•	
25 11116.100M	-52.9	+2.7	+0.0	+0.0	+0.0	+0.0	-49.9	-13.5	-36.4	None
		+0.0	+0.0	+0.3	•		-	LOW		
26 16733.200M	-57.4	+3.3	+0.0	+0.0	+0.0	+0.0	-53.4	-13.5	-39.9	None
		+0.0	+0.0	+0.7				LOW		-
27 22744.200M	-59.3	+4.0	+0.0	+0.0	+0.0	+0.0	-55.3	-13.5	-41.8	None
		+0.0	+0.0	+0.0			- /-	LOW	. •	-
28 17357.400M	-60.7	+3.5	+0.0	+0.0	+0.0	+0.0	-56.5	-13.5	-43.0	None
		+0.0	+0.0	+0.7			- /-	LOW		-
29 22573.100M	-61.7	+4.0	+0.0	+0.0	+0.0	+0.0	-57.7	-13.5	-44.2	None
		+0.0	+0.0	+0.0				LOW	·	
30 28644.100M	-66.7	+4.6	+0.0	+0.0	+0.0	+0.0	-62.1	-13.5	-48.6	None
	2 - • •	+0.0	+0.0	+0.0				LOW		
31 9375.400M	-78.6	+2.4	+0.0	+0.0	+0.0	+0.0	-75.7	-13.5	-62.2	None
22,2,10011	. 0.0	+0.0	+0.0	+0.5	. 0.0	. 0.0		LOW	J	
l		10.0	10.0	10.5				2011		

Page 101 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc.
Specification: FCC 15.247(d) Spurious Conducted

Work Order #: 85414 Date: 7/5/2006
Test Type: Radiated Scan Time: 15:57:51
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 24

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	

Test Conditions / Notes:

15.247(d) Spurious Emissions Antenna Conducted MID Channel. Maximized Emissions measured with RBW=1MHz, VBW=3MHz. Readings above 8.5 MHz are made using an 8.2 GHz High Pass Filter. Readings from 1-8.5GHz are made with 32dB of external attenuation in place.

Transducer Legend:

T1=ANP05200 1-40GHz T2=Duty Cycle AVE Factor
T3=PAD ANP05410 10dB T4=PAD ANP05411 10dB
T5=PAD ANP05412 6dB T6=PAD ANP05413 6dB
T7=HPF 8.2 GHz High Pass

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Te	st Distan	ce: None		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	Hz	dBm	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1 :	5601.100M	-38.6	+1.8	-13.6	+9.6	+9.3	+0.0	-20.0	-13.5	-6.5	None
A	Ave		+5.7	+5.8	+0.0				MID		
^	5601.100M	-38.6	+1.8	+0.0	+9.6	+9.3	+0.0	-6.4	-13.5	+7.1	None
			+5.7	+5.8	+0.0				MID		
3	5612.100M	-40.8	+1.8	-13.6	+9.6	+9.3	+0.0	-22.2	-13.5	-8.7	None
Α	Ave		+5.7	+5.8	+0.0				MID		
^	5612.100M	-40.8	+1.8	+0.0	+9.6	+9.3	+0.0	-8.6	-13.5	+4.9	None
			+5.7	+5.8	+0.0				MID		
5	5624.100M	-42.1	+1.8	-13.6	+9.6	+9.3	+0.0	-23.5	-13.5	-10.0	None
A	Ave		+5.7	+5.8	+0.0				MID		
^	5624.100M	-42.1	+1.8	+0.0	+9.6	+9.3	+0.0	-9.9	-13.5	+3.6	None
			+5.7	+5.8	+0.0				MID		
7	5585.100M	-48.5	+1.8	-13.6	+9.6	+9.3	+0.0	-29.9	-13.5	-16.4	None
A	Ave		+5.7	+5.8	+0.0				MID		
٨	5585.100M	-48.5	+1.8	+0.0	+9.6	+9.3	+0.0	-16.3	-13.5	-2.8	None
			+5.7	+5.8	+0.0				MID		
9 1	17255.300M	-36.2	+3.5	+0.0	+0.0	+0.0	+0.0	-32.0	-13.5	-18.5	None
			+0.0	+0.0	+0.7				MID		

Page 102 of 106 Report No: FC06-042

10 5380.400M	-65.1	+1.8	+0.0	+9.5	+9.3	+0.0	-33.0	-13.5	-19.5	None
		+5.7	+5.8	+0.0				MID		
11 16827.800M	-40.3	+3.4	+0.0	+0.0	+0.0	+0.0	-36.2	-13.5	-22.7	None
		+0.0	+0.0	+0.7				MID		
12 11219.200M	-41.0	+2.7	+0.0	+0.0	+0.0	+0.0	-38.0	-13.5	-24.5	None
		+0.0	+0.0	+0.3				MID		
13 11236.200M	-43.0	+2.7	+0.0	+0.0	+0.0	+0.0	-40.0	-13.5	-26.5	None
		+0.0	+0.0	+0.3				MID		
14 16855.400M	-44.4	+3.4	+0.0	+0.0	+0.0	+0.0	-40.3	-13.5	-26.8	None
		+0.0	+0.0	+0.7				MID		
15 16875.400M	-49.3	+3.4	+0.0	+0.0	+0.0	+0.0	-45.3	-13.5	-31.8	None
		+0.0	+0.0	+0.6				MID		
16 23007.000M	-50.3	+4.1	+0.0	+0.0	+0.0	+0.0	-46.2	-13.5	-32.7	None
		+0.0	+0.0	+0.0				MID		
17 11503.000M	-49.8	+2.8	+0.0	+0.0	+0.0	+0.0	-46.7	-13.5	-33.2	None
		+0.0	+0.0	+0.3				MID		
18 17065.100M	-52.1	+3.4	+0.0	+0.0	+0.0	+0.0	-48.1	-13.5	-34.6	None
		+0.0	+0.0	+0.6				MID		
19 22434.400M	-53.3	+4.0	+0.0	+0.0	+0.0	+0.0	-49.3	-13.5	-35.8	None
		+0.0	+0.0	+0.0				MID		
20 11312.300M	-53.6	+2.7	+0.0	+0.0	+0.0	+0.0	-50.6	-13.5	-37.1	None
		+0.0	+0.0	+0.3				MID		
21 11153.200M	-54.3	+2.7	+0.0	+0.0	+0.0	+0.0	-51.3	-13.5	-37.8	None
		+0.0	+0.0	+0.3				MID		
22 11137.100M	-56.6	+2.7	+0.0	+0.0	+0.0	+0.0	-53.6	-13.5	-40.1	None
		+0.0	+0.0	+0.3				MID		
23 16730.200M	-58.3	+3.3	+0.0	+0.0	+0.0	+0.0	-54.3	-13.5	-40.8	None
		+0.0	+0.0	+0.7				MID		
24 22817.300M	-59.9	+4.1	+0.0	+0.0	+0.0	+0.0	-55.8	-13.5	-42.3	None
		+0.0	+0.0	+0.0				MID		
25 17229.200M	-60.5	+3.5	+0.0	+0.0	+0.0	+0.0	-56.3	-13.5	-42.8	None
		+0.0	+0.0	+0.7				MID		
26 22628.100M	-66.0	+4.0	+0.0	+0.0	+0.0	+0.0	-62.0	-13.5	-48.5	None
		+0.0	+0.0	+0.0				MID		
27 22475.500M	-67.1	+4.0	+0.0	+0.0	+0.0	+0.0	-63.1	-13.5	-49.6	None
		+0.0	+0.0	+0.0				MID		
28 28758.300M	-68.4	+4.6	+0.0	+0.0	+0.0	+0.0	-63.8	-13.5	-50.3	None
		+0.0	+0.0	+0.0				MID		

Page 103 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.247 Spurious Conducted

Work Order #: 85414 Date: 7/5/2006
Test Type: Radiated Scan Time: 16:43:26
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 25

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	

Test Conditions / Notes:

15.247(d) Spurious Emissions Antenna Conducted HIGH Channel. Maximized Emissions measured with RBW=1 MHz, VBW=3 MHz. Readings from 10-1000 MHz are made using a 2.1 GHz Low Pass Filter.

Transducer Legend:

T1=ANP05200 1-40GHz	T2=Duty Cycle AVE Factor	
T3=PAD ANP05410 10dB	T4=PAD ANP05411 10dB	
T5=PAD ANP05412 6dB	T6=PAD ANP05413 6dB	
T7=HPF 8.2 GHz High Pass	T8=Filter 2GHz LP AN02748	

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Te	Test Distance: None			
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	Hz	dBm	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	5599.100M	-38.1	+1.8	-13.6	+9.6	+9.3	+0.0	-19.5	-12.6	-6.9	None
	Ave		+5.7	+5.8	+0.0	+0.0			HIGH		
^	5599.100M	-38.1	+1.8	+0.0	+9.6	+9.3	+0.0	-5.9	-12.6	+6.7	None
			+5.7	+5.8	+0.0				HIGH		
3	5623.100M	-41.5	+1.8	-13.6	+9.6	+9.3	+0.0	-22.9	-12.6	-10.3	None
	Ave		+5.7	+5.8	+0.0	+0.0			HIGH		
^	5623.100M	-41.5	+1.8	+0.0	+9.6	+9.3	+0.0	-9.3	-12.6	+3.3	None
			+5.7	+5.8	+0.0				HIGH		
5	5610.100M	-42.1	+1.8	-13.6	+9.6	+9.3	+0.0	-23.5	-12.6	-10.9	None
	Ave		+5.7	+5.8	+0.0	+0.0			HIGH		
^	5610.100M	-42.1	+1.8	+0.0	+9.6	+9.3	+0.0	-9.9	-12.6	+2.7	None
			+5.7	+5.8	+0.0				HIGH		
7	5772.300M	-48.2	+1.8	-13.6	+9.6	+9.3	+0.0	-29.5	-12.6	-16.9	None
	Ave		+5.8	+5.8	+0.0	+0.0			HIGH		
^	5772.300M	-48.2	+1.8	+0.0	+9.6	+9.3	+0.0	-15.9	-12.6	-3.3	None
			+5.8	+5.8	+0.0				HIGH		
9	17543.000M	-36.3	+3.6	+0.0	+0.0	+0.0	+0.0	-32.0	-12.6	-19.4	None
			+0.0	+0.0	+0.7				HIGH		

Page 104 of 106 Report No: FC06-042

10 16821.300M	-40.6	+3.4	+0.0	+0.0	+0.0	+0.0	-36.5	-12.6	-23.9	None
		+0.0	+0.0	+0.7				HIGH		
11 11217.200M	-40.7	+2.7	+0.0	+0.0	+0.0	+0.0	-37.7	-12.6	-25.1	None
		+0.0	+0.0	+0.0				HIGH		
12 16852.400M	-42.3	+3.4	+0.0	+0.0	+0.0	+0.0	-38.2	-12.6	-25.6	None
		+0.0	+0.0	+0.7				HIGH		
13 11235.200M	-42.9	+2.7	+0.0	+0.0	+0.0	+0.0	-39.9	-12.6	-27.3	None
		+0.0	+0.0	+0.3				HIGH		
14 11695.200M	-44.6	+2.8	+0.0	+0.0	+0.0	+0.0	-41.5	-12.6	-28.9	None
		+0.0	+0.0	+0.3				HIGH		
15 16873.400M	-48.5	+3.4	+0.0	+0.0	+0.0	+0.0	-44.4	-12.6	-31.8	None
		+0.0	+0.0	+0.7				HIGH		
16 22428.400M	-54.0	+4.0	+0.0	+0.0	+0.0	+0.0	-50.0	-12.6	-37.4	None
		+0.0	+0.0	+0.0				HIGH		
17 11170.200M	-53.6	+2.7	+0.0	+0.0	+0.0	+0.0	-50.6	-12.6	-38.0	None
		+0.0	+0.0	+0.3				HIGH		
18 16753.300M	-58.2	+3.4	+0.0	+0.0	+0.0	+0.0	-54.1	-12.6	-41.5	None
		+0.0	+0.0	+0.7				HIGH		
19 17560.100M	-58.8	+3.6	+0.0	+0.0	+0.0	+0.0	-54.5	-12.6	-41.9	None
		+0.0	+0.0	+0.7				HIGH		
20 11259.300M	-57.7	+2.7	+0.0	+0.0	+0.0	+0.0	-54.7	-12.6	-42.1	None
		+0.0	+0.0	+0.3				HIGH		
21 29237.200M	-60.4	+4.6	+0.0	+0.0	+0.0	+0.0	-55.8	-12.6	-43.2	None
		+0.0	+0.0	+0.0				HIGH		
22 22467.500M	-60.3	+4.0	+0.0	+0.0	+0.0	+0.0	-56.3	-12.6	-43.7	None
		+0.0	+0.0	+0.0				HIGH		
23 17492.500M	-65.4	+3.6	+0.0	+0.0	+0.0	+0.0	-61.1	-12.6	-48.5	None
		+0.0	+0.0	+0.7				HIGH		
24 23386.400M	-65.6	+4.2	+0.0	+0.0	+0.0	+0.0	-61.4	-12.6	-48.8	None
		+0.0	+0.0	+0.0				HIGH		
25 11720.200M	-64.8	+2.8	+0.0	+0.0	+0.0	+0.0	-61.7	-12.6	-49.1	None
		+0.0	+0.0	+0.3				HIGH		
26 22365.400M	-66.5	+3.9	+0.0	+0.0	+0.0	+0.0	-62.6	-12.6	-50.0	None
		+0.0	+0.0	+0.0				HIGH		
27 11534.000M	-70.5	+2.8	+0.0	+0.0	+0.0	+0.0	-67.4	-12.6	-54.8	None
		+0.0	+0.0	+0.3				HIGH		

Page 105 of 106 Report No: FC06-042

Customer: AvaLAN Wireless Systems, Inc. Specification: FCC 15.247(e) Spectral Density

Work Order #: 85414 Date: 7/6/2006
Test Type: Maximized Emissions Time: 12:33:06
Equipment: 5.8GHz Wireless Ethernet Bridge Sequence#: 27

Module

Manufacturer: AvaLAN Wireless Systems, Inc. Tested By: C. Nicklas

Model: AW5800m S/N: 000012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
5.8GHz Wireless Ethernet	AvaLAN Wireless Systems,	AW5800m	000012
Bridge Module*	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	CUI Inc.	DSA-0151A-06	

Test Conditions / Notes:

15.247(e) Peak Power Spectral Density.

Transducer Legend:

Measurement Data:		Reading listed by margin.			Test Distance: None						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBm	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	5786.621M	-29.8					+0.0	-29.8	8.0	-37.8	None
							-12				100
2	2 5728.281M	-30.9					+0.0	-30.9	8.0	-38.9	None
							-12				100
3	3 5847.042M	-31.0					+0.0	-31.0	8.0	-39.0	None
							-12		HIGH		100

Page 106 of 106 Report No: FC06-042