

FCC and IC Certification

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF

TEL:+82 31 330-1700

FAX:+82 31 322 2332

FCC and IC EVALUATION REPORT FOR CERTIFICATION

Applicant:

SmartThings Inc.

Dates of Issue: Mar 08, 2016

Test Report No.: NK-15-R-134

Palo Alto, California, USA

Test Site: Nemko Korea Co., Ltd.

(Post code: 94301)

Attn.: Martin Hernandez-Palomares

R3YF-USB-US-V1 10734A-FUSBUSV1

SmartThings

SmartThings Inc. 456 University Avenue, Palo Alto, California, USA, 94301. Martin Hernandez-Palomares Telephone No.: +1-650-600-8159

Brand Name

FCC ID

IC

Contact Person

Applied Standard: FCC 47 CFR Part 15.249 and IC RSS-210 Issue 8

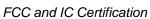
Classification: Digital modulation Transmitter

EUT Type: Extend USB Stick

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: Wonho Son


Engineer

Deothaku Mor of. 2016
Reviewed By: Deokha Ryu

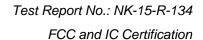
Technical Manager

SmartThings, Inc.

Page 1 of 58

TABLE OF CONTENTS

1.	Scope	4
2.	Introduction (Site Description)	5
	2.1 Test facility	5
	2.2 Accreditation and listing	6
3.	Test Conditions & EUT Information	7
	3.1 Operation During Test	7
	3.1.1 Table of test power setting	7
	3.1.2 Table of test channels	7
	3.1.3 Table of test modes	8
	3.1.4 Antenna information	8
	3.2 Support Equipment	9
	3.3 Setup Drawing	9
	3.4 EUT Information	10
4.	Summary of Test Results	11
5.	Recommendation / Conclusion	12
6.	Antenna Requirements	12
7.	Description of Test	13
	7.1 Conducted Emissions	13
	7.2 Radiated Emissions	14
	7.3 Field Strength of Fundamental	15
	7.4 Field Strength of Harmonics	15
	7.5 Emissions Radiated Outside of the Fundamental Frequency Band	16
	7.6 Duty Cycle	17
	7.7 99% Emission Bandwidth	18
8.	Test Data	19
	8.1 Conducted Emissions	19



Test Report No.: NK-15-R-134

Page 3 of 58

FCC and IC Certification

	8.2 Radiated Emissions	23
	8.3 Field Strength of Fundamental	30
	8.4 Emissions Radiated Outside of the Fundamental Frequency Band	33
	8.5 99% Emission Bandwidth	37
9.	Test Equipment	40
10.	Accuracy of Measurement	41
Apper	ndix A: Labelling Requirement	43
Apper	ppendix B: Photographs of Test Set-up	
Apper	ppendix C: EUT Photographs	
Appendix D: Maximum Permissible Exposure		57

1. SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15 and IC RSS-247 Issue1.

> SmartThings, Inc. **Responsible Party:**

Martin Hernandez-Palomares **Contact Person:**

SmartThings, Inc. Manufacturer:

456 University Avenue,

Palo Alto, California, USA, 94301

FCC ID: R3YF-USB-US-V1

IC 10734A-FUSBUSV1

Model: F-USB-US-V1

Brand Name: SmartThings

EUT Type: Extend USB Stick

Classification: Digital modulation Transmitter

FCC 47 CFR Part 15 subpart C Sections 15.205, Applied Standard:

15.207, 15.209 and 15.249 and IC RSS-210 Issue 8

Test Procedure(s): ANSI C63.10-2013

Dates of Test: January 25, 2016 ~ February 24, 2016

Place of Tests: Nemko Korea Co., Ltd.

2. INTRODUCTION

2.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in determining radiated and conducted emissions emanating from SmartThings, Inc. FCC ID: R3YF-USB-US-V1 and IC: 10734A-FUSBUSV1

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory .

The site address 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPULIC OF.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 km (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 km (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014 according to §2.948.

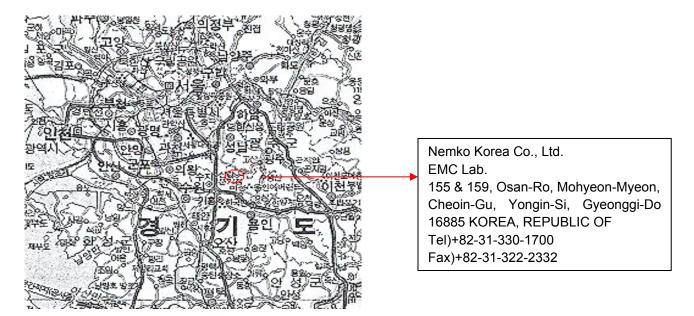


Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

SmartThings, Inc.
FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

2.2 Accreditation and listing

	Accreditation number	
CAB Accreditation for DOC		Designation No. KR0026
KOLAS (C) TETRO NO. 102	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)	Registration No. 155
Industry Canada	Canada IC Registered site	Site No. 2040E
VEI	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118
IECEE SCHEME	EMC CBTL	-
	KCC(RRL)Designated Lab.	Registration No. KR0026

SmartThings, Inc.
FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

3. TEST CONDITIONS & EUT INFORMATION

3.1 Operation During Test

The EUT is the transceiver which is the module supporting the Zigbee/Z-wave mode. (1Tx / 1Rx) During the test, The Laptop and Test Jig were used to control the EUT and then a test program(Tera-Term) was executed to operate duty cycle of EUT constantly (Duty cycle < 98%).

The EUT was tested at the lowest channel, middle channel and the highest channel with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

3.1.1 Table of test power setting

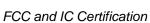
Channel	Frequency (MHz)	Data Rate	Power Setting
1	908.40	40 kbps	10
2	908.42	9.6 kbps	11
3	916.00	100 kbps	15

3.1.2 Table of test channels

Test Channel (CH)	Frequency (MHz)	Modulation Type
1	908.40	FSK
2	908.42	FSK
3	916.00	GFSK

FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

SmartThings, Inc.

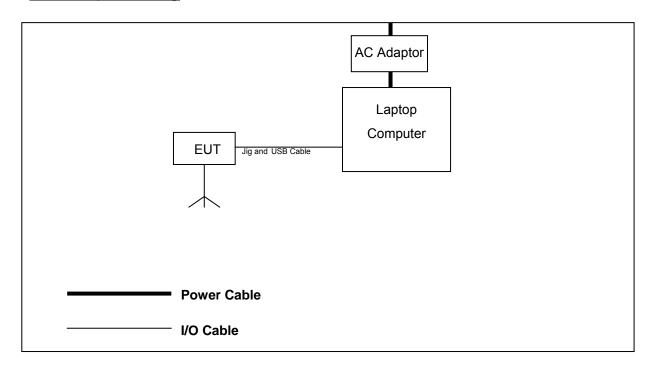


3.1.3 Table of test modes

Test Items	Frequency (MHz)	Data rate (Mbps)	Test Channel (CH)
	908.40	40 kbps	1
Conducted Emissions	908.42	9.6 kbps	2
	916.00	100 kbps	3
	908.40	40 kbps	1
Radiated Emissions	908.42	9.6 kbps	2
	916.00	100 kbps	3
	908.40	40 kbps	1
Field Strength of Fundamental	908.42	9.6 kbps	2
	916.00	100 kbps	3
	908.40	40 kbps	1
Field Strength of Harmonics	908.42	9.6 kbps	2
	916.00	100 kbps	3
	908.40	40 kbps	1
Emissions Radiated Outside of the Fundamental Frequency Band	908.42	9.6 kbps	2
	916.00	100 kbps	3

3.1.4 Antenna information:

Frequency band	Mode	Antenna TX mode	Support MIMO
900 MHz	Z-wave	■ 1TX, □ 2TX	☐ Yes, ■ No
2.4 GHz	Zigbee	■ 1TX, □ 2TX	☐ Yes, ■ No



3.2 Support Equipment

EUT	SmartThings, Inc. Model : F-USB-US-V1	S/N: N/A
Laptop Computer	Samsung Electronics Co., Ltd. Model : NT- R580	FCC DOC S/N: ZNU793BZ200566M
AC/DC Adapter	Chicony Power Technology Co., Ltd. Model : A10-090P1A 1.5 m unshielded power cable	FCC DOC S/N : AD-9019S

3.3 Setup Drawing

FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

SmartThings, Inc.

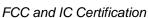
Page 10 of 58

3.4 EUT Information

The EUT is the SmartThings Wireless Zigbee/Z-wave Dongle FCC ID: R3YF-USB-US-V1, IC: 10734A-FUSBUSV1.

Specifications:

Specifications:	
Category	ZigBee/Z-wave Dongle
Model Name	F-USB-US-V1
Brand Name	SmartThings
Frequency of Operation	908.42 MHz, 908.40 MHz, 916.00 MHz
Number of Channels	3
Antenna Gain (peak)	Zigbee Ant : 3.6 dBi Z-wave Ant : 3.4 dBi
Antenna Setup	1TX / 1RX
Modulations	FSK (9.6 kbps) for 908.42 MHz FSK (40 kbps) for 908.40 MHz GFSK (100 kbps) for 916.00 MHz
Temperature Range	-20 °C ~ +50 °C
Voltage	5.0 Vdc
Dimensions (W x H x D)	80.1 mm x 20.6 mm X 7.0 mm
Weight	16 g
H/W Status	
S/W Status	-
Operational Description	F-USB-US-V1 is the 802.15.4 ZigBee, ITU-T G.9959 Z-wave COMBO Module that acts as a communication controller for users of a wireless device to connect to SMART TV.


Page 11 of 58

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

	FCC	IC		
Name of Test	Paragraph	Paragraph	Result	Remark
	No.	No.		
		RSS-GEN		
Conducted Emission	15.207	Issue 4	Complies	
		8.8		
		RSS-GEN		
Radiated Emission	15.209	Issue 4	Complies	
		8.9		
		RSS-210		
Field Strength of Fundamental	15.249 (a)	Issue 8	Complies	
		A2.9 (a)		
		RSS-210		
Field Strength of Harmonics	15.249 (a)	Issue 8	Complies	
		A2.9 (a)		
Emissions Radiated Outside of the		RSS-210		
	15.249 (d)	Issue 8	Complies	
Fundamental Frequency Band		A2.9 (b)		

5. RECOMMENDATION/CONCLUSION

The data collected shows that the SmartThings ZigBee/Z-wave Dongle FCC ID:R3YF-USB-US-V1, IC:10734A-FUSBUSV1 is in compliance with Part 15.249 of the FCC Rule and RSS-210 Issue 8 of the IC Specification.

6. ANTENNA REQUIREMENTS

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the SmartThings ZigBee/Z-wave Dongle FCC ID: R3YF-USB-US-V1, IC: 10734A-FUSBUSV1 is permanently attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

SmartThings, Inc.

7. DESCRIPTION OF TESTS

7.1 Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 meter shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6. A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 1.5 m away from the side of wall of the shielded room Rohde & Schwarz (ESH3-Z5) and (ESH2-Z5) of the 50 ohm/50 µH Line Impedance Stabilization Network (LISN) are bonded to the shielded room. The EUT is powered from the Rohde & Schwarz LISN (ESH3-Z5) and the support equipment is powered from the Rohde & Schwarz LISN (ESH2-Z5). Power to the LISNs are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ". If DC power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs, All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentinefashion) to a 1 meter length. Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 kHz to 30 MHz with 200 msec sweep time. The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCS30). The detector functions were set to CISPR quasi-peak mode & average mode. The bandwidth of receiver was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission. Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

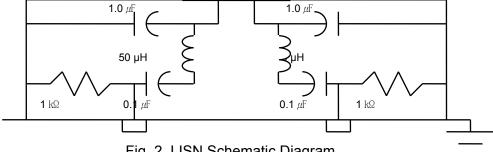


Fig. 2. LISN Schematic Diagram

SmartThings, Inc. FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

7.2 Radiated Emissions

The measurement was performed at the test site that is specified in accordance with ANCI C63.10-2013.

The spurious emission was scanned from 9 kHz to 30 MHz using Loop Antenna(Rohde&Schwarz, HFH2-Z2) and 30 to 1000 MHz using Trilog broadband test antenna(Schwarzbeck, VULB 9163). Above 1 GHz, Horn antenna (Schwarzbeck BBHA 9120D: up to 18 GHz, Q-par Angus QSH20S20: 18 to 26.5 GHz, QSH22K20: up to 40 GHz) was used.

For emissions testing at below 1GHz, The test equipment was placed on turntable with 0.8 m above ground. For emission measurements above 1 GHz, The test equipment was placed on turntable with 1.5 m above ground. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, cable, wire arrangement and mode of operation that has the highest amplitude relative to the limit was selected. Then, the turn table was rotated from 0° to 360° and an antenna mast was moved from 1 m to 4 m height to maximize the suspected highest amplitude signal. The final maximized level was recorded.

At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in ANSI 63.10 − 2013. Peak emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. Average emission levels were measured by setting the analyzer RBW = 1 MHz, VBW* = 1 kHz, Detector = Peak, Trace mode = max hold, when the EUT was configured to transmit with duty cycle ≥ 98 percent.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100	3
88–216	150	3
216–960	200	3
Above 960	500	3

Radiated Emissions Limits per 47 CFR 15.209(a) and RSS-GEN Issue 4 8.9

Note:

*VBW was reduced until no significant variations in the displayed signal are observed in subsequent traces and VBW was no less than 1Hz as specified in 4.1.4.2.3 in ANSI 63.10-2013.

FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

SmartThings, Inc.

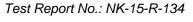
7.3 Field Strength of Fundamental

Test Procedure

The Transmit Radiated Field Strength was measured at a 3-meter test distance. The EMI Receiver was used to obtain the final test data.

Fundamental frequency	Field strength of fundamental (millivolts/meter)
902-928 MHz	50
2400-2483.5 MHz	50
5725-5875 MHz	50
24.0-24.25 GHz	250

Limits per 47 CFR 15.249(a) and RSS-210 A2.9(a)


7.4 Field Strength of Harmonics

Test Procedure

The Transmit Radiated Field Strength was measured at a 3-meter test distance. The EMI Receiver was used to obtain the final test data.

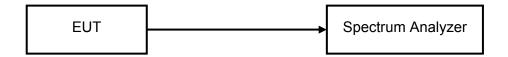
Fundamental frequency	Field strength of harmonics (microvolts/meter)
902-928 MHz	500
2400-2483.5 MHz	500
5725-5875 MHz	500
24.0-24.25 GHz	2500

Limits per 47 CFR 15.249(a) and RSS-210 A2.9(a)

FCC and IC Certification

7.5 Emissions Radiated Outside of the Fundamental Frequency Band

Test Procedure


The Band Edge measurement was measured using the EMI Receiver at a 3-meter test distance to obtain the final test data. The lower and upper channels were tuned during the low and high bandedge test.

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209 and RSS-Gen 8.9, whichever is the lesser attenuation.

7.6 Duty Cycle

Test Setup

Test Procedure

EUTs duty cycle are measured at middle channel with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

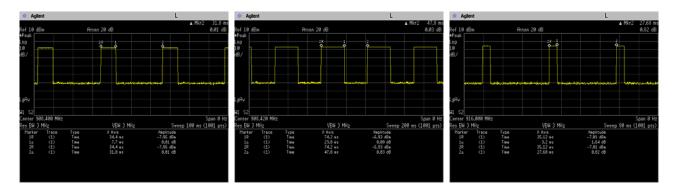
Center frequency = Center frequency of the transmission

Span = zero

RBW = 20 MHz

VBW = 20 MHz

Detector = peak

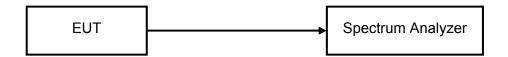

Sweep time = 5 ms

Trace mode = view

The marker function on the spectrum analyzer is used to determine the duty cycle.

Following the result of the duty cycle measurement according to the above test procedure

Frequency (MHz)	Data Rate (kbps)	Duty Cycle (%)
908.40	40	24.21
908.42	9.6	49.79
916.00	100	11.56


SmartThings, Inc.

Page 17 of 58

7.7 99% Emission Bandwidth

Test Setup

Test Procedure

EUTs 99% bandwidth is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

RBW = 1kHz

 $VBW \geq 3 \times RBW$

Detector = Peak

Trace mode = max hold

Sweep = auto couple

The bandwidth measurement function on the spectrum analyzer is used to measure the 99% emission bandwidth.

SmartThings, Inc.

Page 18 of 58

8. TEST DATA

8.1 Conducted Emissions

FCC §15.207, IC RSS-Gen Issue 4

908.40 MHz

Frequency	Level((dBµV)	*)Factor	**) Line	Limit(dBµV)		Margi	in(dB)
(MHz)	Q-Peak	Average	(dB)		Q-Peak	Average	Q-Peak	Average
0.18	41.8	38.1	10.3	L	64.5	54.5	22.7	16.4
0.41	43.6	37.6	10.5	N	57.6	47.6	14.0	10.0
0.47	47.3	36.6	10.5	N	56.5	46.5	9.2	9.9
0.53	49.2	39.8	10.5	N	56.0	46.0	6.8	6.2
0.94	48.2	35.4	10.5	N	56.0	46.0	7.8	10.6
15.10	43.4	39.6	11.5	L	60.0	50.0	16.6	10.4

Line Conducted Emissions Tabulated Data

908.42 MHz

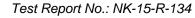
Frequency	Level	(dBµV)	*)Factor	**) Line	Limit((dBµV)	Margi	Margin(dB)	
(MHz)	Q-Peak	Average	(dB)		Q-Peak	Average	Q-Peak	Average	
0.18	45.2	39.4	10.4	N	64.5	54.5	19.3	15.1	
0.41	43.1	34.9	10.4	L	57.6	47.6	14.5	12.7	
0.47	47.2	38.4	10.4	L	56.5	46.5	9.3	8.1	
0.53	48.0	39.0	10.5	N	56.0	46.0	8.0	7.0	
0.94	48.4	34.4	10.5	N	56.0	46.0	7.6	11.6	
15.10	43.1	40.2	11.4	N	60.0	50.0	16.9	9.8	

Line Conducted Emissions Tabulated Data

916.00 MHz

Frequency	Level	Level(dBµV)		**) Line	Limit(dBµV)		Margi	in(dB)
(MHz)	Q-Peak	Average	(dB)		Q-Peak	Average	Q-Peak	Average
0.18	41.6	37.7	10.3	L	64.5	54.5	22.9	16.8
0.24	40.1	37.8	10.4	N	62.1	52.1	22.0	14.3
0.41	44.2	37.9	10.5	N	57.6	47.6	13.4	9.7
0.53	48.9	39.8	10.5	N	56.0	46.0	7.1	6.2
0.94	48.0	33.5	10.5	N	56.0	46.0	8.0	12.5
15.10	43.4	40.0	11.5	L	60.0	50.0	16.6	10.0

Line Conducted Emissions Tabulated Data



Test Report No.: NK-15-R-134

FCC and IC Certification

Notes:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.
- 3. *) Factor = LISN + Cable Loss
- 4. **) LINE : L = Line , N = Neutral
- 5. The limit is on the FCC Part section 15.207(a) and IC RSS-GEN Issue 4 8.8

PLOTS OF EMISSIONS

Worst Channel: 908.42 MHz

Conducted Emission at the Mains port (Line)

NEMKO KOREA (NK-15-R-134)

24 Feb 2016 14:51

Conducted Emissions

BUT: Extend USB Stick

Manuf: Samsung Electronics. Co., Ltd.

Op Cond: a.c. 120 V / 60 Hz // Z-wave/908.42MHz

 Operator:
 Wonho. Son

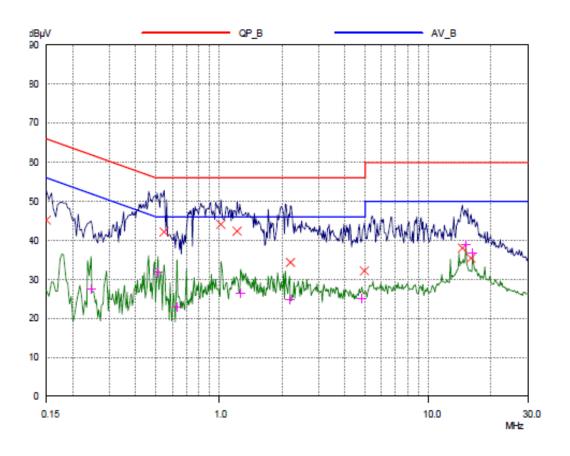
 Test Spec:
 FCC Part 15

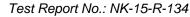
 Comment:
 MODEL: F-USB-US-K1

 LINE: NEUTRAL-PE

Result File: r134-zl1.dat : New Measurement

Scan Settings (1 Range)


Frequencies Receiver Settings Start IF BW Detector Stop Step M-Time Atten Preamp OpRge PK+AV 150kHz 30MHz 3.9063kHz 9kHz 20msec OFF 60dB 20 dB


 Transducer
 No.
 Start
 Stop
 Name

 1
 150kHz
 30MHz
 ESH3_Z5_Line

Final Measurement: Detectors: X QP / + AV

Meas Time: 1sec Subranges: 8 Acc Margin: 60 dB

PLOTS OF EMISSIONS

Worst Channel: 908.42 MHz

Conducted Emission at the Mains port (Neutral)

NEMKO KOREA (NK-15-R-134)

24 Feb 2016 15:38

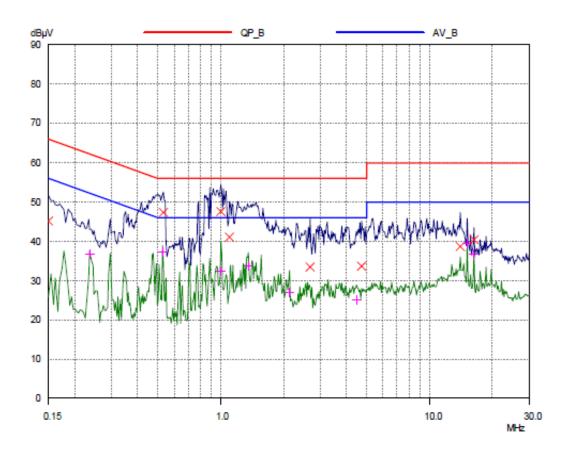
Conducted Emissions

BUT: Extend USB Stick

Manuf: Samsung Electronics. Co., Ltd.
Op Cond: a.c. 120 V / 60 Hz // Z-wave/908.42MHz

Operator: Wonho. Son
Test Spec: FCC Part 15
Comment MODEL: F-US

Comment MODEL: F-USB-US-K1 LINE: NEUTRAL-PE


Result File: r134-zn.dat : New Measurement

Scan Settings (1 Range) Frequencies Receiver Settings -IF BW Start Step Detector Stop M-Time Atten Preamp OpRge 150kHz 30MHz 3.9063kHz 9kHz PK+AV 20msec 20 dB OFF 60dB

Transducer No. Start Stop Name 1 150kHz 30MHz ESH3 Z5 Neutral

Final Measurement: Detectors: X QP / + AV Meas Time: 1sec

Subranges: 8
Acc Margin: 60 dB

SmartThings, Inc.

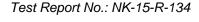
TEST DATA

8.2 Radiated Emissions

FCC §15.209, IC RSS-Gen Issue 4

908.40 MHz (Below 1 GHz)

Frequency	Reading	Pol*	Antenna Heights	Turntable	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
312.13	54.90	Н	100	234	-20.2	34.7	46.0	11.3
324.01	58.70	Н	100	66	-19.8	38.9	46.0	7.1
335.99	53.10	Н	100	60	-19.2	33.9	46.0	12.1
456.12	53.30	V	117	2	-16.4	36.9	46.0	9.1
528.00	50.20	Н	170	19	-14.5	35.7	46.0	10.3
540.03	47.90	V	100	166	-14.3	33.6	46.0	12.4


908.42 MHz (Below 1 GHz)

Frequency	Reading	Pol*	Antenna Heights	Turntable	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
312.03	55.20	Н	100	131	-20.2	35.0	46.0	11.0
324.01	59.50	Н	100	62	-19.8	39.7	46.0	6.3
444.14	50.30	Н	185	34	-16.7	33.6	46.0	12.4
456.02	52.70	V	116	2	-16.4	36.3	46.0	9.7
528.05	47.70	Н	170	19	-14.5	33.2	46.0	12.8
540.03	48.00	V	100	163	-14.3	33.7	46.0	12.3

916.00 MHz (Below 1 GHz)

310.00 11111	z (DCIOW I C	30 Mil 2 (Delow 1 G112)							
Frequency	Reading	Pol*	Antenna Heights	Turntable	AF+CL+Amp	Result	Limit	Margin	
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)**	(dBµV/m)	(dBµV/m)	(dB)	
311.93	52.80	Н	100	122	-20.2	32.6	46.0	13.4	
324.01	59.70	Н	100	58	-19.8	39.9	46.0	6.1	
336.04	52.90	Н	100	68	-19.2	33.7	46.0	12.3	
456.02	52.80	Н	221	35	-16.4	36.4	46.0	9.6	
528.00	49.60	V	130	167	-14.5	35.1	46.0	10.9	
539.98	49.60	V	116	167	-14.3	35.3	46.0	10.7	

Radiated Measurements at 3meters

FCC and IC Certification

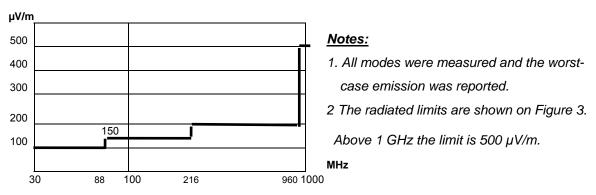
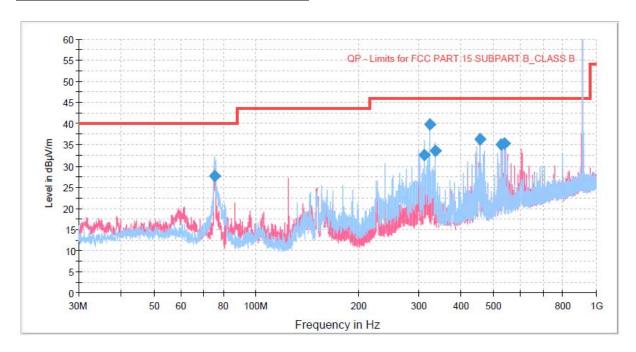


Fig. 3. Limits at 3 meters


- 3. *Pol. H = Horizontal, V = Vertical
- 4. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 5. Measurements using CISPR quasi-peak mode.
- 6. There were no radiated emissions other than harmonics found below 30 MHz.
- 7. The radiated emissions testing were made by rotating through three orthogonal axes. The worst date was recorded.

SmartThings, Inc.
FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

PLOTS OF EMISSIONS

Worst Channel: 916.00 MHz (below 1GHz)

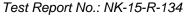
TEST DATA

FCC §15.209, IC RSS-Gen Issue 4

908.40 (Above 1 GHz with Field Strength of Harmonics)

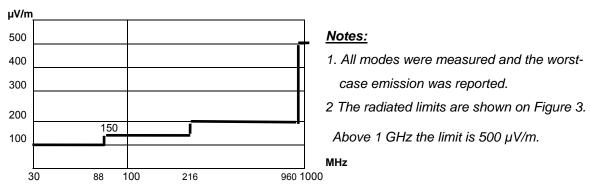
Frequency	Pol*	Detector**	AF+CL+Amp	Result	Limit	Margin	Comment
(MHz)	(H/V)	(PK/AV)	(dB)***	(dBµV/m)	(dBµV/m)	(dB)	
1061.25	V	PK	-3.9	41.6	74.0	32.4	
1061.25	V	AV	-3.9	29.6	54.0	24.4	
1816.84	V	PK	-1.8	40.4	74.0	33.6	2nd Harmonic
1816.84	V	AV	-1.8	33.5	54.0	20.5	2nd Harmonic
2132.50	V	PK	-0.4	49.7	74.0	24.3	
2132.50	V	AV	-0.4	33.1	54.0	20.9	

908.42 (Above 1 GHz with Field Strength of Harmonics)


Frequency	Pol*	Detector**	AF+CL+Amp	Result	Limit	Margin	Comment
(MHz)	(H/V)	(PK/AV)	(dB)***	(dBµV/m)	(dBµV/m)	(dB)	
1056.75	V	PK	-3.9	41.0	74.0	33.0	
1056.75	V	AV	-3.9	29.7	54.0	24.3	
1816.94	V	PK	-1.8	40.8	74.0	33.2	2nd Harmonic
1816.94	V	AV	-1.8	34.1	54.0	19.9	2nd Harmonic
2124.50	V	PK	-0.5	48.9	74.0	25.1	
2124.50	V	AV	-0.5	34.0	54.0	20.0	

916.00 (Above 1 GHz with Field Strength of Harmonics)

Frequency	Pol*	Detector**	AF+CL+Amp	Result	Limit	Margin	Comment
(MHz)	(H/V)	(PK/AV)	(dB)***	(dBµV/m)	(dBµV/m)	(dB)	
1056.50	V	PK	-3.9	39.5	74.0	34.5	
1056.50	V	AV	-3.9	30.0	54.0	24.0	
1832.01	V	PK	-1.7	41.0	74.0	33.0	2nd Harmonic
1832.01	V	AV	-1.7	32.2	54.0	21.8	2nd Harmonic
2128.50	٧	PK	-0.5	48.9	74.0	25.1	
2128.50	V	AV	-0.5	32.9	54.0	21.1	
2362.25	V	PK	0.3	42.7	74.0	31.3	
2362.25	٧	AV	0.3	33.3	54.0	20.7	


Radiated Measurements at 3meters

SmartThings, Inc.
FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

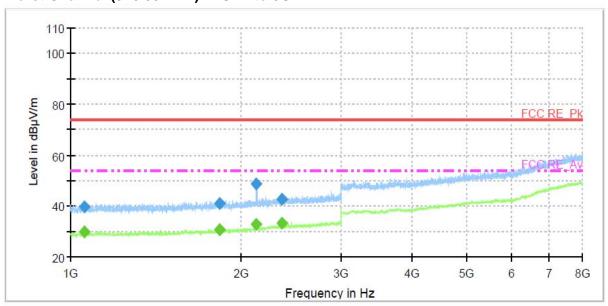
FCC and IC Certification

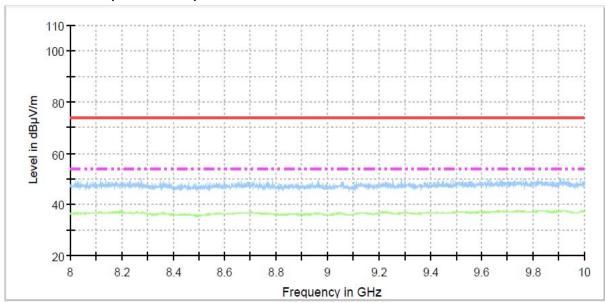
- Fig. 3. Limits at 3 meters
- 3. *Pol. H = Horizontal, V = Vertical
- 4. ** Detector. PK = Peak, AV = Average.

 For 2nd Harmonic, Peak detector was used in AV measurements with RBW = 1 MHz, VBW = 1 kHz.
- 5. *** AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 6. Measurements using peak and average mode.
- 7. The radiated emissions testing were made by rotating through three orthogonal axes.

 The worst date was recorded.
- 8. The spectrum was measured from 9 kHz to 10th harmonic and the worst-case emissions were reported.
- 9. No significant emissions were found beyond the 2nd harmonic for this device.

SmartThings, Inc.

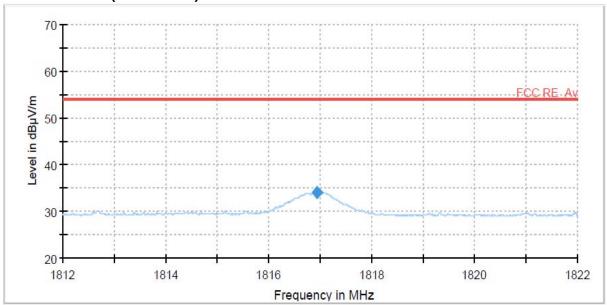

Page 27 of 58


PLOTS OF EMISSIONS

Above 1GHz to 10th Harmonic of highest fundamental frequency

Worst Channel (916.00 MHz): 1GHz to 8GHz

Worst Channel (916.00 MHz): 8GHz to 10GHz


SmartThings, Inc.
FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

PLOTS OF EMISSIONS

Field Strength of Harmonics

Worst Channel (908.42 MHz) : 2nd Harmonic

SmartThings, Inc.
FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1

TEST DATA

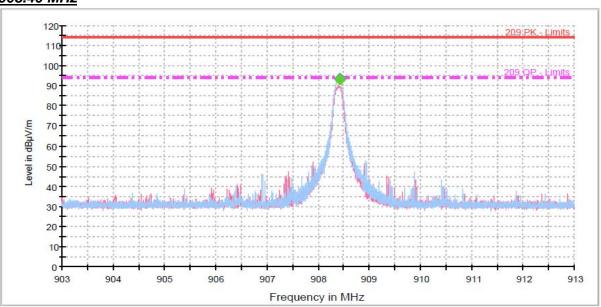
8.3 Field Strength of Fundamental

FCC §15.249, IC RSS-210 Issue 8, A2.9(a)

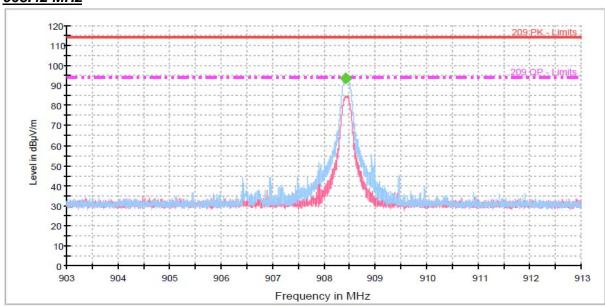
Test Mode: Set to Lowest channel, Middle channel and Highest channel

Frequency	Reading	Pol*	Antenna Heights	Turntable	AF+CL+Amp	Result	Detector	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)**	(dBµV/m)	(PK/QP)***	(dBµV/m)	(dB)
908.40	102.30	Н	100	229	-8.8	93.5	PK	114.0	20.5
908.40	102.20	Н	100	229	-8.8	93.4	QP	94.0	0.6
908.42	102.50	Н	100	43	-8.8	93.7	PK	114.0	20.3
908.42	102.40	Н	100	43	-8.8	93.6	QP	94.0	0.4
916.00	103.00	Н	100	220	-8.7	94.3	PK	114.0	19.7
916.00	102.40	Н	100	220	-8.7	93.7	QP	94.0	0.3

Notes:

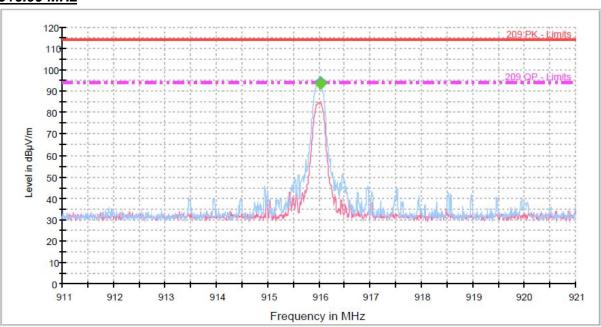

- 1. *Pol. H = Horizontal, V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. ***Detector. PK = Peak, QP = Quasi Peak
- 4. RBW = 120 kHz, VBW = 300 kHz
- 5. The radiated emissions testing were made by rotating through three orthogonal axes.

The worst date was recorded.



PLOTS OF EMISSIONS

908.40 MHz


908.42 MHz

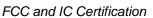
PLOTS OF EMISSIONS

916.00 MHz

TEST DATA

8.4 Emissions Radiated Outside of the Fundamental Frequency band

FCC §15.249, IC RSS-210 Issue 8, A2.9 (b)


Test Mode: Set to Lowest channel, Middle channel and Highest channel

908.40 MHz

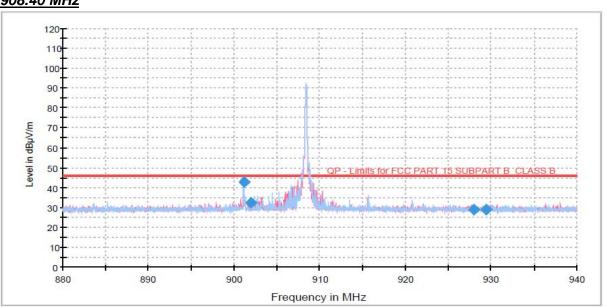
Frequency	Reading	Pol**	Antenna Heights	Turntable	AF+CL+Amp	Result	****Detector	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)***	(dBµV/m)	PK/QP	(dBµV/m)	(dB)
901.12	51.80	Н	100	40	-9.0	42.8	PK	46.0	3.2
902.00	41.50	V	200	67	-9.0	32.5	PK	46.0	13.5
*908.39	-	-	-	-	-	-	-	-	-
928.00	38.10	V	100	238	-9.2	28.9	PK	46.0	17.1
929.40	37.90	V	200	284	-9.2	28.7	PK	46.0	17.3

908.42 MHz

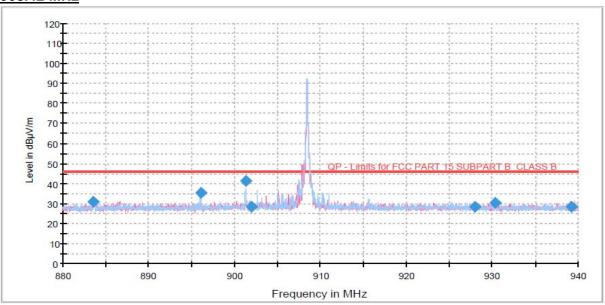
Frequency	Reading	Pol**	Antenna Heights	Turntable	AF+CL+Amp	Result	****Detector	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)***	(dBµV/m)	PK	(dBµV/m)	(dB)
883.59	40.00	V	200	33	-9.3	30.7	PK	46.0	15.3
869.02	44.60	Н	100	114	-9.1	35.5	PK	46.0	10.5
901.25	50.10	Н	100	284	-9.0	41.1	PK	46.0	4.9
902.00	37.60	Н	400	143	-9.0	28.6	PK	46.0	17.4
*908.42	-	-	-	-	-	-	-	-	-
928.00	37.50	V	300	18	-9.2	28.3	PK	46.0	17.7
930.33	39.60	V	400	299	-9.2	30.4	PK	46.0	15.6
939.16	37.80	V	300	39	-9.3	28.5	PK	46.0	17.5

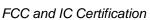
916.00 MHz

Frequency	Reading	Pol**	Antenna Heights	Turntable	AF+CL+Amp	Result	****Detector	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)***	(dBµV/m)	PK	(dBµV/m)	(dB)
883.60	39.80	V	200	314	-9.3	30.5	PK	46.0	15.5
892.89	40.40	V	300	325	-9.1	31.3	PK	46.0	14.7
902.00	37.90	Н	200	280	-9.0	28.9	PK	46.0	17.1
*916.00	-	-	-	-	-	-	-	-	-
928.00	42.90	Н	100	60	-9.2	33.7	PK	46.0	12.3
931.17	37.80	Н	200	121	-9.2	28.6	PK	46.0	17.4
934.79	37.20	Н	200	222	-9.2	28.0	PK	46.0	18.0

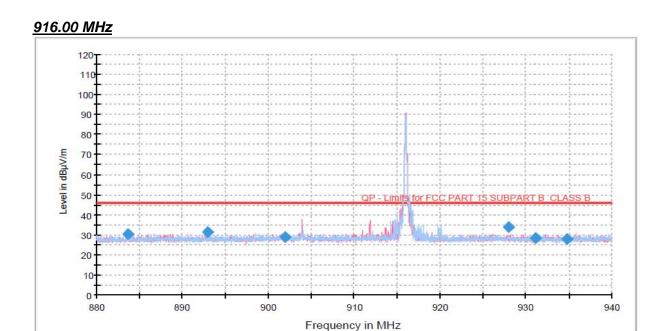

Note(s):

- 1. " * ": Fundamental frequency
- 2. **Pol. H = Horizontal V = Vertical
- 3. ***AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 4. ****Detector PK = Peak
- 5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. Peak emissions were measured using RBW = 100 kHz, VBW = 300 kHz




PLOT OF TEST DATA

908.40 MHz

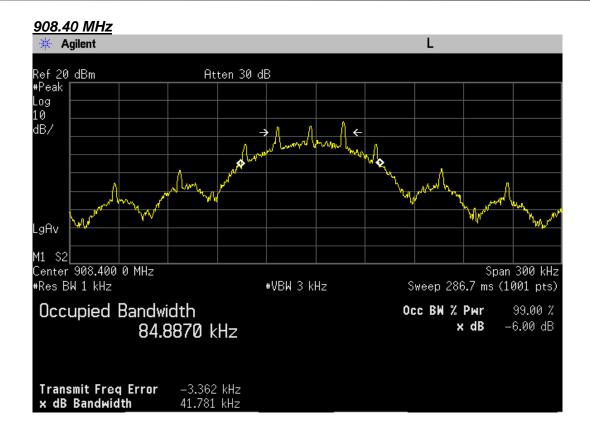

908.42 MHz

PLOT OF TEST DATA

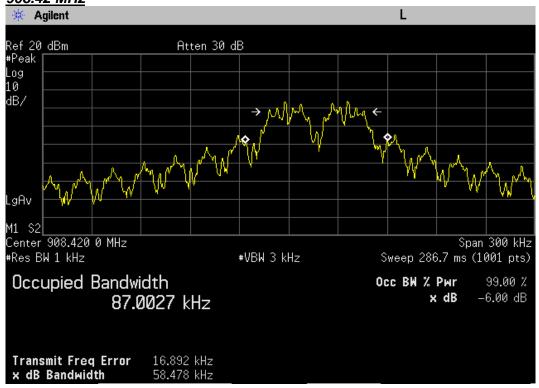
TEST DATA

8.5 99% Emission Bandwidth

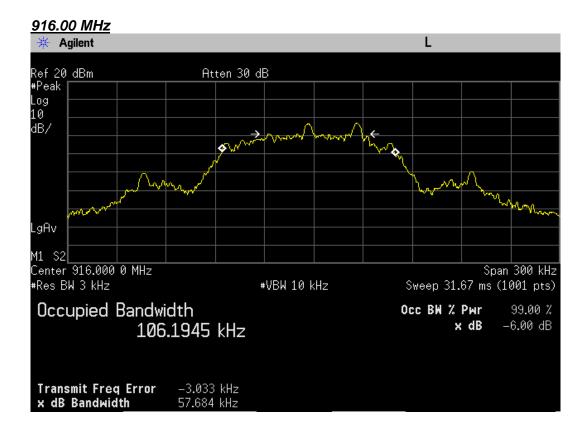
IC RSS-GEN Issue 4 6.6


Channel	Frequency (MHz)	99% bandwidth (kHz)
Lowest	908.40	84.89
Middle	908.42	87.00
Highest	916.00	106.19

Notes:


The cable and attenuator loss from 30 MHz to 25 GHz was reflected in spectrum analyzer with correction factor for this testing.

PLOTS OF EMISSIONS



908.42 MHz

PLOTS OF EMISSIONS

9. TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R&S	ESU 40	100202	Apr. 01 2015	1 year
2	*Test Receiver	R&S	ESCS30	100302	Oct. 06 2015	1 year
3	Attenuator	AGILENT	8491B	57773	Oct. 06 2015	1 year
4	*Attenuator	FAIRVIEW	SA3N5W-06	N/A	Apr. 01 2015	1 year
5	*Attenuator	FAIRVIEW	SA3N5W-10	N/A	Apr. 01 2015	1 year
6	*Attenuator	WEINSCHEL	56-10	58765	Apr. 02 2015	1 year
7	*Amplifier	R&S	SCU 01	10030	Apr. 01 2015	1 year
8	*Amplifier	R&S	SCU18	10065	Apr. 01 2015	1 year
9	*Amplifier	R&S	SCU26	10011	Jul. 17 2015	1 year
10	Amplifier	R&S	SCU40	10008	Aug. 10 2015	1 year
11	*Pre Amplifier	HP	8449B	3008A00107	Jan. 07 2016	1 year
12	Spectrum Analyzer	R&S	FSW43	100732	Apr. 07 2015	1 year
13	*Spectrum Analyzer	Agilent	E4440A	MY44022567	Apr. 01 2015	1 year
14	*Spectrum Analyzer	R&S	FSP40	100361	Jul. 16 2015	1 year
15	DC Power Supply	HP	6574A	US36340190	Jul. 17 2015	1 year
16	*Loop Antenna	R&S	HFH2-Z2	100279	Feb. 22 2016	2 year
17	Wideband Power Sensor	R&S	NRP-Z81	100634	Jul. 17 2015	1 year
18	*Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-474	Sep. 01 2014	2 year
19	*Horn Antenna	Q-par Angus	QSH20S20	8179	Apr. 30 2015	2 year
20	*Horn Antenna	Q-par Angus	QSH22K20	8180	Apr. 30 2015	2 year
21	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9163	9163-454	Nov. 11 2014	2 year
22	*LISN	R&S	ESH3-Z5	833874/006	Oct. 06 2015	1 year
23	*Controller	INNCO	CO2000-G	CO2000/562/23890210/L	N/A	N/A
24	*Turn Table	INNCO	DT3000-3T	N/A	N/A	N/A
25	*Antenna Mast	INNCO	MA4000-EP	N/A	N/A	N/A
26	*Open Switch And Control Unit	R&S	OSP-120	100015	N/A	N/A
27	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
28	*Position Controller	INNCO	CO2000	12480406/L	N/A	N/A
29	*Turn Table	INNCO	DS1200S	N/A	N/A	N/A
30	*Antenna Mast	INNCO	MA4000	N/A	N/A	N/A
31	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
32	Shielded Room	Seo-Young EMC	N/A	N/A	N/A	N/A
33	*Open Switch And Control Unit	R&S	OSP-120	100081	N/A	N/A

^{*)} Test equipment used during the test

10. ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95%

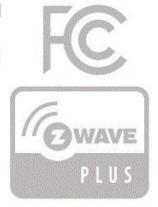
1. Conducted Uncertainty Calculation

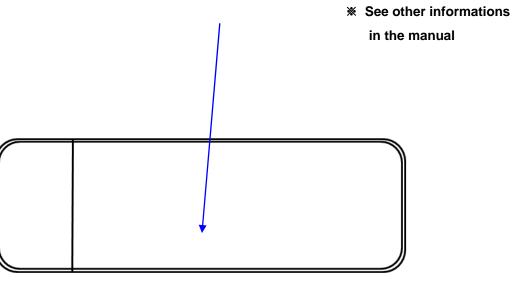
		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN-Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	LAMN	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	dVSW	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVPA	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVPR	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVNF	± 0.00	-	-	0.00	1	0.00
AMN Impedance	dZ	± 1.80	triangular	2.449	0.73	1	0.73
@ Mismatch	М	+ 0.70	U-Shaped	1.414	0.49	1	0.49
Mismatch	М	- 0.80	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark	a: AMN-Receiver Mismatch : + b: AMN-Receiver Mismatch : -						
Combined Standard Uncertainty	Normal				± 1.	88	
Expended Uncertainty U	Normal (<i>k</i> = 2)			± 3.76			

2. Radiation Uncertainty Calculation

		Uncertainty of <i>Xi</i>		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability	RS	0.34	normal 1	1.00	0.34	1	0.34
Receiver reading	Ri	± 0.02	normal 2	2.00	0.01	1	0.01
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.92	normal 2	2.00	0.46	1	0.46
Pulse repetition rate response	dVpr	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.25	1	0.25
Antenna Factor Calibration	AF	± 2.00	rectangular	√3	1.15	1	1.15
Cable Loss	CL	± 1.00	normal 2	2.00	0.50	1	0.50
Antenna Directivity	AD	± 0.00	rectangular	√3	0.00	1	0.00
Antenna Factor Height Dependence	АН	± 2.00	rectangular	√3	1.15	1	1.15
Antenna Phase Centre Variation	AP	± 0.20	rectangular	√3	0.12	1	0.12
Antenna Factor Frequency Interpolation	Ai	± 0.25	rectangular	√3	0.14	1	0.14
Site Imperfections	Si	± 4.00	triangular	√6	1.63	1	1.63
Measurement Distance Variation	DV	± 0.60	rectangular	√3	0.35	1	0.35
Antenna Balance	Dbal	± 0.90	rectangular	√3	0.52	1	0.52
Cross Polarisation	DCross	± 0.00	rectangular	√3	0.00	1	0.18
Mismatch	М	+ 0.98 - 1.11	U-Shaped	$\sqrt{2}$	0.74	1	0.74
EUT Volume Diameter	Vd	0.33	normal 1	1.00	0.33	1	0.11
Remark							
Combined Standard Uncertainty	Normal						
Expended Uncertainty U	Normal (<i>k</i> = 2)						

SmartThings, Inc.
FCC ID: R3YF-USB-US-V1 / IC: 10734A-FUSBUSV1


APPENDIX A - LABELLING REQUIREMENTS


Labelling Requirements

The sample label shown shall be *permanently affixed* at a conspicuous location on the device and be readily visible to the user at the time of purchase.

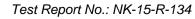
SmartThings, Inc. Extend M/N: F-USB-US-V1 Made in Vietnam. FCC ID: R3YF-USB-US-V1 IC: 10734A-FUSBUSV1

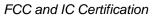
< Bottom Side of EUT >

APPENDIX B - PHOTOGRAPHS OF TEST SET-UP

The **Conducted Test Picture** and **Radiated Test Picture** and show the worst-case configuration and cable placement.

• Conducted Test Picture(Front)

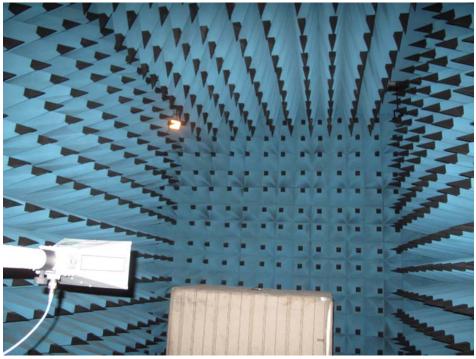


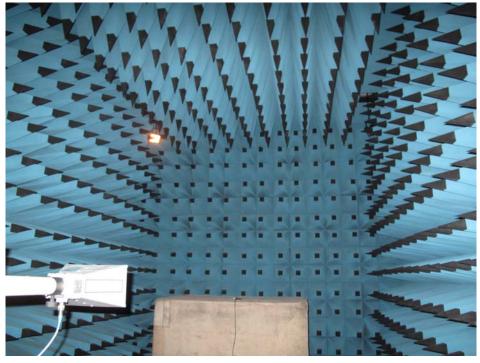

Conducted Test Picture(Rear)

SmartThings, Inc.

Page 44 of 58

Radiated Test Picture (Front)


Radiated Test Picture (Rear)



Above 1GHz Radiated Test Picture (Rear)

APPENDIX C – EUT PHOTOGRAPHS

Front Side View of EUT

SmartThings, Inc.

Page 47 of 58

Rear Side View of EUT

SmartThings, Inc.

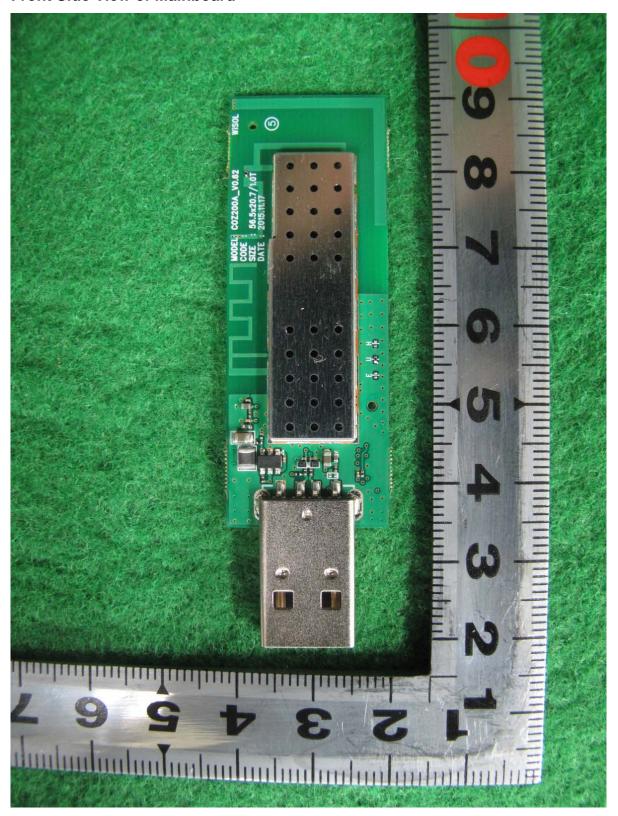
Page 48 of 58

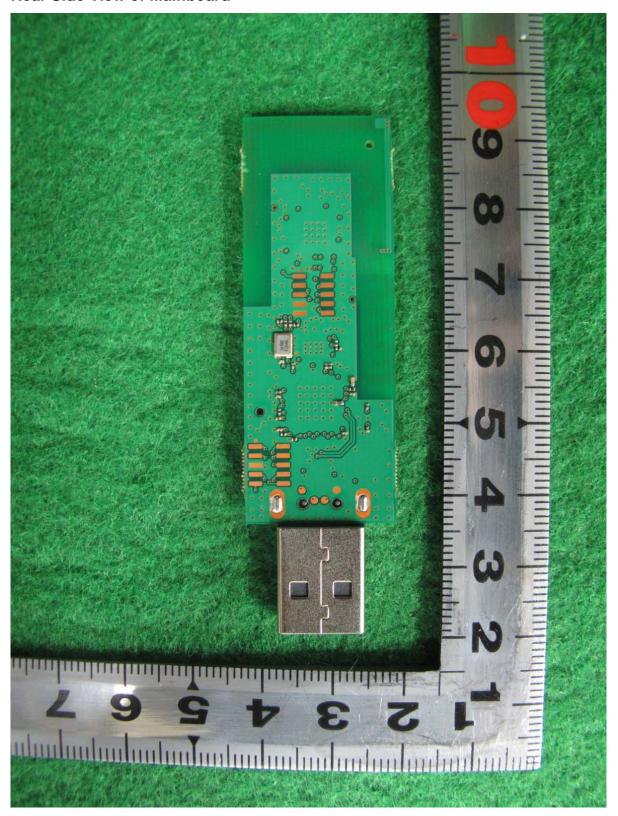
Left Side View of EUT

Right Side View of EUT

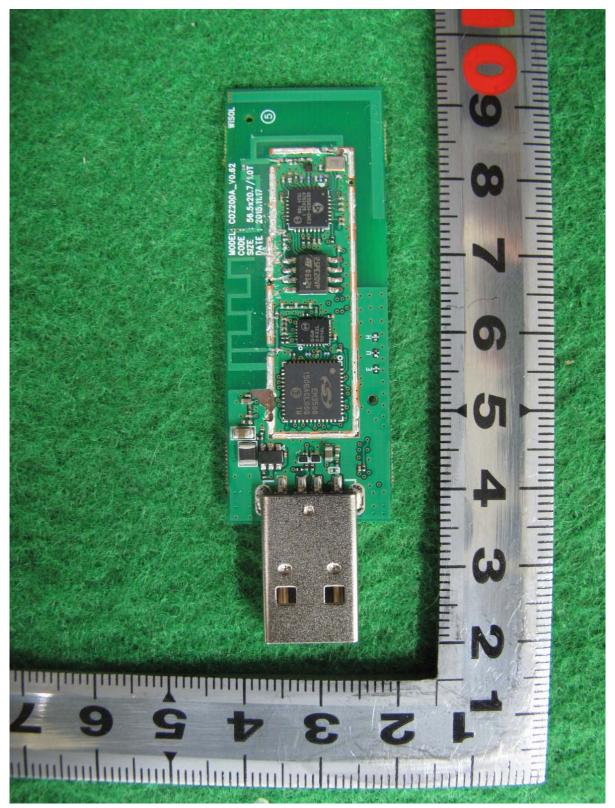
Top Side View of EUT

Bottom Side View of EUT


EUT without cover



Front Side View of Mainboard



Rear Side View of Mainboard

Front Side View of Mainboard without Shielding can

APPENDIX D - Maximum Permissible Exposure

FCC RF Exposure Limit

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the Environmental of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time			
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm^2)	(Minutes)			
(A) Limits for occupational / Contral Exposure							
30 - 300	61.4	0.163	1	6			
300 - 1500			F/300	6			
1500 - 100000			5	6			
(B) Limits for General Population / Uncontrolled Exposure							
30 - 300	27.5	0.073	0.2	30			
300 - 1500			F/1500	30			
1500 - 100000			1	30			

F = Frequency (MHz)

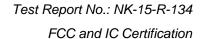
Fries formula

Fries transmission formula : Pd = (Pout * G) / (4 * π * r^2)

 $r = \sqrt{((Pout * G) / 4 * \pi * Pd))}$

Where

Pd = Power density in mW/cm²


Pout = Output power to antenna in mW

G = Gain of antenna in linear scale

 π = 3.1416

r = Distance between observation point center of the radiator in cm

Pd is the limit of MPE, <u>0.61 mW/cm²</u>. If we know the Maximum Gain of the antenna and the total power input to the antenna, through the calculation, we will know the Maximum distance r where the MPE limit is reached and Power density at prediction frequency.

Test Result:

900 MHz band

The maximum antenna gain is 3.4 dBi.

Maximum peak output power at antenna input terminal:	-2.50 (dBm)
Maximum peak output power at antenna input terminal:	0.56 (mW)

Antenna gain(typical): 3.40 (dBi)

Maximum antenna gain: 2.19 (numeric)

Prediction distance: 20 (cm)

Prediction frequency: 916 (MHz)

MPE limit for uncontrolled exposure at prediction frequency: 0.61 (mW/cm^2)

Maximum allowable antenna gain: 37.37 (dBi)

Minimum Distance: 0.40 (cm)

Power density at prediction frequency: 0.000245 (mW/cm^2)

Test result: PASS

Note(s)

The MPE was calculated with maximum permitted output level add to positive power tolerance. According to the operational description submitted by manufacturer, maximum permitted output power is <u>-4.0 dBm</u> and positive tolerance is <u>1.5 dB</u>.