FCC PART 90 EMI MEASUREMENT AND TEST REPORT

For

YULONG COMPUTER TELECOMMUNICATION SCIENTIFIC (SHENZHEN) CO. LTD

8/F, B TOWER, HIGH TECH. PLAZA, TIANAN CRYBERPARK, SHENZHEN, CHINA

FCC ID: R38YLWM0404

This Report Concerns: **Equipment Type:** Original Report Wireless Data Modem **Test Engineer:** Ming Jin **Report Number:** R0404063 **Report Date:** 2004-04-26 **Reviewed By:** Ling Zhang **Prepared By:** Bay Area Compliance Laboratory Corporation 230 Commercial Street Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is specially limited to the above client company and product model. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED GRANT/SUBMISSION	
TEST METHODOLOGY	
TEST FACILITY	3
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
SPECIAL ACCESSORIES	
SCHEMATICS / BLOCK DIAGRAM	
EQUIPMENT MODIFICATIONS	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
POWER SUPPLY AND LINE FILTERS	
CONFIGURATION OF TEST SYSTEM	
TEST SETUP BLOCK DIAGRAM	
REQUIREMENTS OF PROVISIONS	
REQUIREMENTS OF TROVISIONS REQUIREMENTS AND TEST SUMMARY	
REQUIREMENTS AND TEST SUMMARY LABELING REQUIREMENT	
§2.1046 AND §90.205(J) - CONDUCTED OUTPUT POWER	
PROVISION APPLICABLE.	
TEST PROCEDURE	
TEST EQUIPMENT	
TEST RESULTS	
§2.1049, AND §90.209 - OCCUPIED BANDWIDTH OF EMISSION	
Provision Applicable	
TEST PROCEDURE	
TEST EQUIPMENT	
TEST RESULTS	
§2.1053 AND §90.210 - RADIATED SPURIOUS EMISSION	13
PROVISION APPLICABLE.	13
TEST PROCEDURE	
TEST EQUIPMENT	
TEST RESULT	
§2.1051 AND §90.210 - SPURIOUS EMISSION AT ANTENNA TERMINAL	15
STANDARD APPLICABLE	15
MEASUREMENT PROCEDURE	
TEST EQUIPMENT	
TEST RESULT	
§90.265(B)(3) - FREQUENCY STABILITY MEASUREMENT	17
PROVISION APPLICABLE	
TEST PROCEDURE	
TEST EQUIPMENT	17

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The YULONG COMPUTER TELECOMMUNICATION SCIENTIFIC (SHENZHEN) CO. LTD's Model: PIP-900 or the "EUT" as referred to in this report is a wireless data modem, transmitter part, which measures approximately 11.2cmL x 5.8cmW x 3.0cmH. The EUT operates at frequency 896 – 901MHz with maximum ERP of 1.36W, frequency tolerance 1.5ppm and emission designator F3D.

* The test data gathered are from production sample, serial number: PIP-900-001, provided by the manufacturer.

Objective

This report is prepared on behalf of *YULONG COMPUTER TELECOMMUNICATION SCIENTIFIC* (SHENZHEN) CO. LTD in accordance with Part 90 Subpart A Subpart I and Subpart S of the Federal Communication Commissions rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules for effective radiated power, modulation characteristics, occupied bandwidth, radiated spurious emissions, and frequency stability.

Related Grant/Submission

No Related Submittals.

Test Methodology

Measurements contained in this report were also conducted with TIA/EIA Standard 603, Telecommunications Industry Association Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, CISPR 22: 1997, and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

SYSTEM TEST CONFIGURATION

Justification

The EUT was tested under typical operating modes to represent the worst-case results during the final qualification test.

Special Accessories

As shown in the test setup block diagram, interface cable used for compliance testing is shielded as normally supplied by customer and its respective support equipment manufacturers.

Schematics / Block Diagram

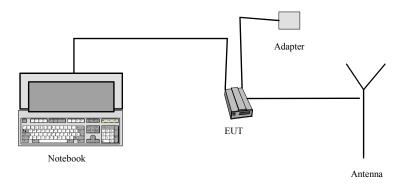
Please refer to Appendix D.

Equipment Modifications

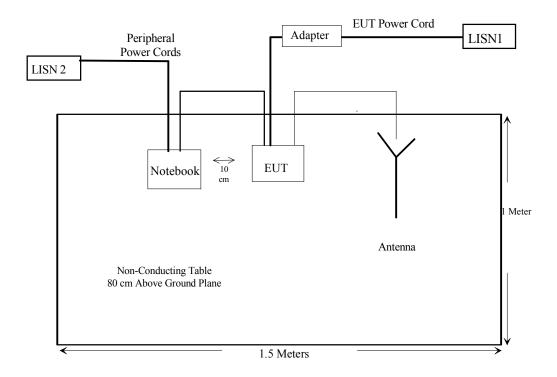
No modification was made by BACL Corp. to make sure the EUT to comply with the applicable limits.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Dell	Notebook PC	PS04RC	N/A	N/A


External I/O Cabling List and Details

Cable Description	Length (M)	From	То
RSS232 and Power Cable	0.5	RSS232 and Power Cable	Notebook PC / RSS232 Port
RSS232 and Power Cable	0.5	EUT / RSS232 Port	AC/DC Adapter
Antenna Cable	1.0	EUT / Antenna Port	Antenna


Power Supply and Line Filters

Manufacturer	Description	Model	Serial Number	FCC ID
Yulong	AC Power supply	PRS-Z30US7	N/A	N/A

Configuration of Test System

Test Setup Block Diagram

REQUIREMENTS OF PROVISIONS

Requirements and Test Summary

FCC Rules	Rules Description	Result
2.1046 90.205 (j)	RF Output Power	Complied
2.1049 90.210 (j)	Occupied Bandwidth	Complied
2.1053 90.210	Radiated Spurious Emission	Complied
2.1051 90.210	Spurious Emission at Antenna Port	Complied
2.1055 90.213	Frequency Stability Vs. Temperature Vs. Voltage	Complied

Labeling Requirement

Each equipment for which a type acceptance applications is filed on or after May 1, 1981, shall bear an identification plate or label pursuant to §2.295 (Identification of Equipment) and §2.926 (FCC identifier)

In August 1996 the Federal Communications Commissions (FCC) adopted RF exposure guidelines with safety levels for hand-held wireless devices.

Generally users manual contains a RF exposure statement to indicate compliance with FCC requirements.

§2.1046 and §90.205(j) - CONDUCTED OUTPUT POWER

Provision Applicable

Per FCC §2.1046 and §90.205(j): the output power shall not exceed 100W.

Test Procedure

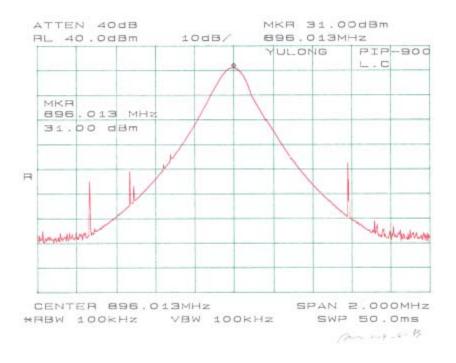
The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuator.

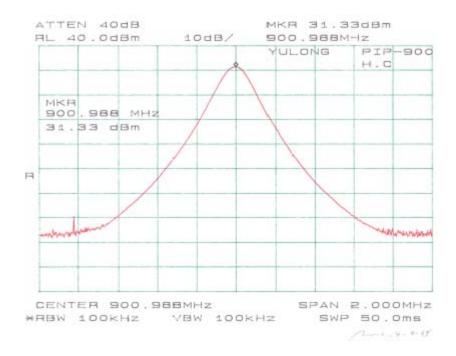
Test Equipment

Manufacturer	Description	Model	Serial Number	Cal. Due Date
Hewlett Packard	Spectrum Analyzer	HP8565C	06042	2004-05-03
Hewlett Packard	Plotter	HP7470A	N/A	N/A

^{*} **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Results


Environmental Conditions


Temperature:	25° C
Relative Humidity:	38 %
ATM Pressure:	1032mbar

The testing was performed by Ming Jing on 2004-04-25.

Frequency	Output Power in dBm	Output Power in W
896.013	31.00	1.259
900.988	31.33	1.358

Please refer to the following plots.

§2.1049, and §90.209 - OCCUPIED BANDWIDTH OF EMISSION

Provision Applicable

Per FCC §2.1049, and §90.209, the emission bandwidth shall not exceed 12.5KHz.

For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.

On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.

On any frequency removed from the center of the assigned channel by more than 250 percent at least:

 $50 + 10 \log(P) dBm$

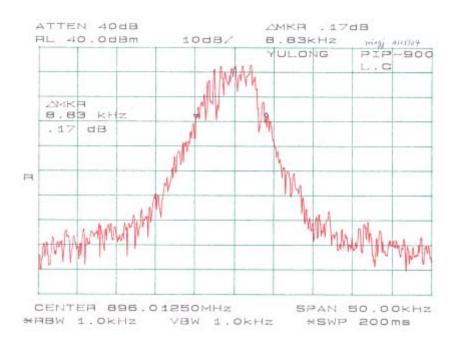
Test Procedure

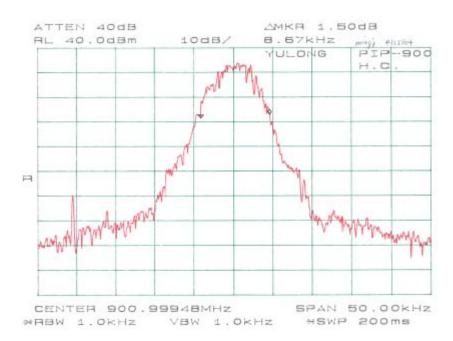
The transmitter was connected to a spectrum analyzer via a low lose cable. The resolution bandwidth of the spectrum analyzer was set up to 1KHz and the spectrum of the transmitting signal was recorded. This spectrum was compared to the required emission mask.

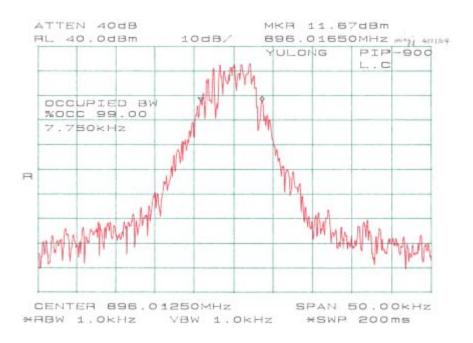
Test Equipment

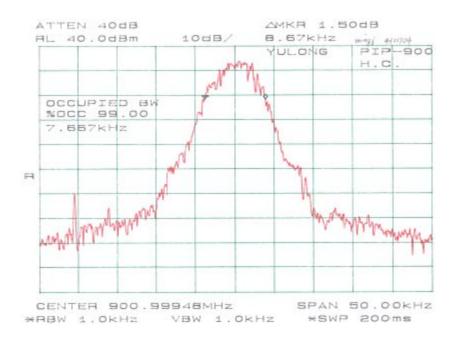
Manufacturer	Description	Model No.	Serial No.	Calibration Date
Agilent	DRG Spectrum Analyzer	8565EC	3946A00131	2003-06-30
Hewlett Packard	Plotter	HP7470A	N/A	N/A
NAAYAN	Audio Generator	NY2201	00042	N/A

Test Results


Environmental Conditions


Temperature:	25° C
Relative Humidity:	38 %
ATM Pressure:	1032mbar


The testing was performed by Ming Jing on 2004-04-25.


Test Result: Pass

Please refer the following curve and plots.

§2.1053 and §90.210 (j) – RADIATED SPURIOUS EMISSION

Provision Applicable

Per FCC §2.1053and FCC §90.210 (j)

On any frequency removed from the center of the assigned channel by more than 250 percent at least:

 $50 + 10 \log(P) dBm$

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dBm = 50 + 10 \log(P)$

Test Equipment

Manufacturer	Description	Model	Serial Number	Cal. Date
EMCO	Biconical Antennas	3110B	9603-2315	2003-10-11
EMCO	Log-Periodic Antenna	3148	0004-1155	2003-10-11
A.H. System	Horn Antenna	SAS-200/571	2455-261	2003-08-02
Agilent	DRG Spectrum Analyzer	8565EC	3946A00131	2003-06-30
Rohde & Schwarz	Signal Generator	SMIQ03	DE237467	2003-07-03
Mini-Circuits	High Pass Filter	NHP-1200	10312	N/R

^{*} Statement of Traceability: BACL Corp. certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Result

Environmental Conditions

Temperature:	25° C
Relative Humidity:	38 %
ATM Pressure:	1032mbar

The testing was performed by Ming Jing on 2004-04-25.

Low Frequency: -1.1 dB at 2688.0375 MHz High Frequency: -1.1 dB at 2702.9625 MHz

Primary scan at Low Frequency 896.0125MHz

EUT					Generator					Standard		
Indicat	ed	Table	Test An	itenna	Sul	stitution		Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm	H/V	Corrected	DB	dBm	dBm	DB
896.0125	104.2	30	1.2	v	896.0125	26.53	V	6.5	0.2	32.83		
896.0125	99.6	130	1.8	h	896.0125	21.92	h	6.5	0.2	28.22		
2688.0375	43.2	195	1.3	h	2688.0375	-29.1	h	8.7	0.7	-21.1	-20	-1.1
2688.0375	42.6	172	1.4	V	2688.0375	-29.3	v	8.7	0.7	-21.3	-20	-1.3
1792.025	45.2	160	1.2	h	1792.025	-27.7	h	6.8	0.5	-21.4	-20	-1.4
1792.025	44.9	270	1.4	V	1792.025	-28.1	v	6.8	0.5	-21.8	-20	-1.8
3584.05	33.2	172	1.4	V	3584.05	-34.8	v	10.8	0.9	-24.9	-20	-4.9
3584.05	30.1	195	1.3	h	3584.05	-37.1	h	10.8	0.9	-27.2	-20	-7.2

Primary scan at High Frequency 900.987MHz

EUT					Generator					Standard		
Indicat	ed	Table	Test An	itenna	Sul	ostitution	Ī	Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm	H/V	Corrected	DB	dBm	dBm	DB
900.9875	102.8	74	1.5	V	900.9875	25.27	v	6.5	0.2	31.57		
900.9875	99.2	190	1.2	h	900.9875	21.85	h	6.5	0.2	28.15		
2702.9625	42.7	64	1.3	v	2702.9625	-29.1	v	8.7	0.7	-21.1	-20	-1.1
1801.975	45.1	55	1.5	v	1801.975	-27.5	V	6.8	0.5	-21.2	-20	-1.2
2702.9625	41.8	90	1.3	h	2702.9625	-30.2	h	8.7	0.7	-22.2	-20	-2.2
1801.975	43.5	95	1.2	h	1801.975	-29	h	6.8	0.5	-22.7	-20	-2.7
3603.95	32.7	64	1.3	V	3603.95	-35.4	v	10.8	0.9	-25.5	-20	-5.5
3603.95	32.4	90	1.3	h	3603.95	-35.8	h	10.8	0.9	-25.9	-20	-5.9

Result: Pass

Test was performed in three orthogonal plane.

§2.1051 and §90.210 - SPURIOUS EMISSION AT ANTENNA TERMINAL

Standard Applicable

Per FCC §2.1051and FCC §90.210

On any frequency removed from the center of the assigned channel by more than 250 percent at least:

 $50 + 10 \log(P) dBm$

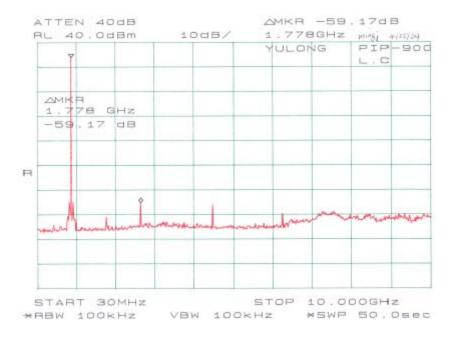
Measurement Procedure

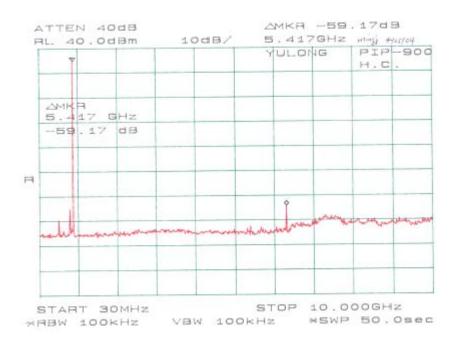
The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment

Manufacturer	Description	Model No.	Serial No.	Calibration Date
Agilent	DRG Spectrum Analyzer	8565EC	3946A00131	2003-06-30

^{*} **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.


Test Result


Environmental Conditions

Temperature:	25° C
Relative Humidity:	38 %
ATM Pressure:	1032mbar

The testing was performed by Ming Jing on 2004-04-25.

Please refer to following plots.

§90.265(b)(3) - FREQUENCY STABILITY MEASUREMENT

Provision Applicable

According to §90.265(b)(3), the frequency stability of the wireless microphones shall limit the total emission to within +-32.5KHz of the assigned frequency.

Test Procedure

Frequency stability versus environmental temperature

The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feedthrough attenuators. The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency of the output signal was recorded from the counter.

Frequency Stability versus Input Voltage

At room temperature (25±5°C), an external variable DC power supply was connected to the EUT. The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage.

Test Equipment

Manufacturer	Description	Model	Serial Number	Cal. Date
Tenney	Temperature Chamber -50° to $+100^{\circ}$ C	Versa	12.222-193	2003-04-23
Agilent	DRG Spectrum Analyzer	8565EC	3946A00131	2003-06-30

^{*} **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Results

Reference Frequency: 896.0125 MHz, Limit: 1.5 ppm						
Environment Temperature	Power Supplied	Frequency Measure with Time Elapsed				
(°C)	(Vac)	MCF (MHz)	Error (ppm)			
60	120	896.0117	-0.9			
50	120	896.0119	-0.7			
40	120	896.0119	-0.7			
30	120	896.0121	-0.4			
20	120	896.0121	-0.4			
10	120	896.0121	-0.4			
0	120	896.0124	-0.1			
-10	120	896.0127	0.2			
-20	120	896.0129	0.4			
-30	120	896.0129	0.4			

Frequency Stability Versus Input Voltage

Reference Frequency: 896.1025 MHz, Limit: 1.5 ppm							
Power Supplied	Frequency Measure with Time Elapsed						
(Vac)	Frequency (MHz)	Error (ppm)					
102	896.0119	-0.7					
120	896.0121	-0.4					
138	896.0127	0.2					