No.2014EEB00026-SAR Page 1 of 112



## SAR TEST REPORT

## No. 2014EEB00026-SAR

For

Yulong Computer Telecommunication Scientific (Shenzhen) Co. LTD

## **GSM/WCDMA** mobile phone

Model name: Vodafone 888N

With

Hardware Version: T3

## Software Version: 4.4.212.00.T3.140317

## FCC ID: R38YLVODAFONE888N

## Issued Date: 2014-04-02



#### Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

#### Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.



## **Revision Version**

| Report Number    | Revision | Date       | Memo                            |
|------------------|----------|------------|---------------------------------|
| 2014EEB00026-SAR | 00       | 2014-03-29 | Initial creation of test report |
| 2014EEB00026-SAR | 01       | 2014-04-02 | Add conducted power             |



## TABLE OF CONTENT

| 1 TEST LABORATORY                                         | 5  |
|-----------------------------------------------------------|----|
| 1.1 TESTING LOCATION                                      | 5  |
| 1.2 TESTING ENVIRONMENT                                   |    |
| 1.3 Project Data                                          |    |
| 1.4 Signature                                             | 5  |
| 2 STATEMENT OF COMPLIANCE                                 | 6  |
| 3 CLIENT INFORMATION                                      | 7  |
| 3.1 Applicant Information                                 | 7  |
| 3.2 MANUFACTURER INFORMATION                              | 7  |
| 4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 8  |
| 4.1 About EUT                                             |    |
| 4.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST   |    |
| 4.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST    |    |
| 5 TEST METHODOLOGY                                        | 9  |
| 5.1 APPLICABLE LIMIT REGULATIONS                          | 9  |
| 5.2 Applicable Measurement Standards                      |    |
| 6 SPECIFIC ABSORPTION RATE (SAR)                          | 10 |
| 6.1 INTRODUCTION                                          |    |
| 6.2 SAR DEFINITION                                        |    |
| 7 TISSUE SIMULATING LIQUIDS                               | 11 |
| 7.1 TARGETS FOR TISSUE SIMULATING LIQUID                  |    |
| 7.2 DIELECTRIC PERFORMANCE                                |    |
| 8 SYSTEM VERIFICATION                                     | 14 |
| 8.1 System Setup                                          |    |
| 8.2 System Verification                                   |    |
| 8.3 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATIONS    | 15 |
| 9 MEASUREMENT PROCEDURES                                  | 17 |
| 9.1 Tests to be performed                                 |    |
| 9.2 GENERAL MEASUREMENT PROCEDURE                         |    |
| 9.3 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR      | 19 |
| 9.4 Power Drift                                           |    |
| 10 CONDUCTED OUTPUT POWER                                 | 20 |
| 10.1 MANUFACTURING TOLERANCE                              |    |
| 10.2 GSM Measurement result                               | 21 |
| 10.4 WI-FI AND BT MEASUREMENT RESULT                      |    |



| 11 SIMULTANEOUS TX SAR CONSIDERATIONS                               | 23 |
|---------------------------------------------------------------------|----|
| 11.1 Introduction                                                   |    |
| 11.2 TRANSMIT ANTENNA SEPARATION DISTANCES                          | 23 |
| 11.3 Standalone SAR Test Exclusion Considerations                   | 24 |
| 12 EVALUATION OF SIMULTANEOUS                                       | 25 |
| 13 SAR TEST RESULT                                                  | 26 |
| 13.1 SAR TEST RESULT                                                |    |
| 14 SAR MEASUREMENT VARIABILITY                                      | 28 |
| 15 MEASUREMENT UNCERTAINTY                                          | 29 |
| 15.1 MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz-3000MHz)  |    |
| 16 MAIN TEST INSTRUMENTS                                            | 30 |
| ANNEX A GRAPH RESULTS                                               | 31 |
| ANNEX B SYSTEM VERIFICATION RESULTS                                 | 69 |
| ANNEX C SAR MEASUREMENT SETUP                                       | 73 |
| C.1 Measurement Set-up                                              | 73 |
| C.2 DASY4 OR DASY5 E-FIELD PROBE SYSTEM                             |    |
| C.3 E-FIELD PROBE CALIBRATION                                       | 74 |
| C.4 Other Test Equipment                                            | 75 |
| C.4.1 DATA ACQUISITION ELECTRONICS(DAE)                             |    |
| С.4.2 Robot                                                         | 76 |
| C.4.3 MEASUREMENT SERVER                                            |    |
| C.4.4 Device Holder for Phantom                                     | 77 |
| С.4.5 РНАНТОМ                                                       | 77 |
| ANNEX D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM. | 79 |
| D.1 GENERAL CONSIDERATIONS                                          | 79 |
| D.2 BODY-WORN DEVICE                                                |    |
| D.3 DESKBOTTOM DEVICE                                               |    |
| D.4 DUT SETUP PHOTOS                                                |    |
| ANNEX E EQUIVALENT MEDIA RECIPES                                    | 82 |
| ANNEX F SYSTEM VALIDATION                                           | 83 |
| ANNEX H DIPOLE CALIBRATION CERTIFICATE                              | 97 |



## **1 Test Laboratory**

## 1.1 Testing Location

| Company Name: | TMC Shenzhen, Telecommunication Metrology Center of MIIT        |  |  |  |  |
|---------------|-----------------------------------------------------------------|--|--|--|--|
| Address:      | No. 12building, Shangsha Innovation and Technology Park, Futian |  |  |  |  |
|               | District, Shenzhen, P. R. China                                 |  |  |  |  |
| Postal Code:  | 518048                                                          |  |  |  |  |
| Telephone:    | +86-755-33322000                                                |  |  |  |  |
| Fax:          | +86-755-33322001                                                |  |  |  |  |

#### **1.2 Testing Environment**

| Temperature:                | 18°C~25 °C,  |
|-----------------------------|--------------|
| Relative humidity:          | 30%~ 70%     |
| Ground system resistance:   | < 0.5 Ω      |
| Ambient noise & Reflection: | < 0.012 W/kg |

#### 1.3 Project Data

| Project Leader:     | Zhang Bojun                      |  |
|---------------------|----------------------------------|--|
| Test Engineer:      | Cao Junfei                       |  |
| Testing Start Date: | February 20 <sup>th</sup> , 2014 |  |
| Testing End Date:   | February 27 <sup>th</sup> , 2014 |  |

### 1.4 Signature

素洗っと

Cao Junfei (Prepared this test report)

Zhang Bojun (Reviewed this test report)

Lu Minniu Director of the laboratory (Approved this test report)



## 2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Yulong Computer Telecommunication Scientific (Shenzhen) Co. LTD GSM/WCDMA mobile phone Vodafone 888N are as follows:

| Band     | Configuration | Position   | Reported SAR |  |  |  |
|----------|---------------|------------|--------------|--|--|--|
| Ballu    |               |            | 1g (W/Kg)    |  |  |  |
|          | Head          | Left、Touch | 0.390        |  |  |  |
| GSM 1900 | Body worn     | Rear Side  | 0.662        |  |  |  |
|          | Hotspot       | Rear Side  | 0.662        |  |  |  |
|          | Head          | Left、Touch | 0.792        |  |  |  |
| Wi-Fi    | Body worn     | Rear Side  | 0.140        |  |  |  |
|          | Hotspot       | Rear Side  | 0.140        |  |  |  |

#### Table 2.1: Max. Reported SAR (1g)

All the tests are carried out with a fully charged battery.

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The maximum reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **0.792W/kg (1g)**.

|                                        | Position               |       | WiFi  | BT    | Sum   |
|----------------------------------------|------------------------|-------|-------|-------|-------|
| Maximum reported value for Head        | Left hand, Touch cheek | 0.390 | 0.792 | 0.033 | 1.215 |
| Maximum reported<br>SAR value for Body | Rear Side              | 0.662 | 0.140 | 0.016 | 0.818 |

Table 2.2: The sum of reported SAR values

According to the above table, the maximum sum of reported SAR values for GSM, WiFi and BT is**1.215 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13



## **3 Client Information**

### **3.1 Applicant Information**

| Company Name:  | Yulong Computer Telecommunication Scientific (Shenzhen) Co. LTD                                                 |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Address /Post: | Coolpad Information Harbor, 2nd Mengxi Road, Northern Part of Science&Technology Park, Nanshan, Shenzhen, China |  |  |  |  |  |
| City:          | 1                                                                                                               |  |  |  |  |  |
| Postal Code:   | 1                                                                                                               |  |  |  |  |  |
| Country:       | China                                                                                                           |  |  |  |  |  |
| Contact:       | Gangsheng Yang                                                                                                  |  |  |  |  |  |
| Email:         | yang.yang@yulong.com                                                                                            |  |  |  |  |  |
| Telephone:     | +86 13366913523                                                                                                 |  |  |  |  |  |
| Fax:           | 1                                                                                                               |  |  |  |  |  |

## **3.2 Manufacturer Information**

| Company Name:  | Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd |                          |                                |                   |  |  |
|----------------|------------------------------------------------------------------|--------------------------|--------------------------------|-------------------|--|--|
| Address /Post: | Hi-Tech<br>City,Guang                                            | Industry<br>dong Provinc | Park(North),Nanshan<br>e,P.R.C | District,Shenzhen |  |  |
| City:          |                                                                  |                          |                                |                   |  |  |
| Postal Code:   | 1                                                                |                          |                                |                   |  |  |
| Country:       | China                                                            |                          |                                |                   |  |  |
| Contact:       | Zou alin                                                         |                          |                                |                   |  |  |
| Email:         | zoualin@yı                                                       | ulong.com                |                                |                   |  |  |
| Telephone:     | +86 186170                                                       | 029616                   |                                |                   |  |  |
| Fax:           | /                                                                |                          |                                |                   |  |  |



## 4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

#### 4.1 About EUT

| Description:           | GSM/WCDMA mobile phone             |  |
|------------------------|------------------------------------|--|
| Model name:            | Vodafone 888N                      |  |
| Operating mode(s):     | GSM 1900/Wi-Fi 2450                |  |
| Tested Tx Frequency:   | 1850.2 – 1909.8 MHz (GSM 1900)     |  |
| rested ix riequency.   | 2412 – 2462 MHz (Wi-Fi)            |  |
| Test Modulation        | (GSM)GMSK;                         |  |
| GPRS class             | 12                                 |  |
| GPRS capability Class: | В                                  |  |
| EGPRS Multislot Class: | 12 (Downlink only)                 |  |
| Power class:           | GSM1900: tested with power level 0 |  |
| Test device Production | Production unit                    |  |
| information:           |                                    |  |
| Device type:           | Portable device                    |  |
| Antenna type:          | Integrated antenna                 |  |
| Accessories/Body-worn  | 1                                  |  |
| configurations:        |                                    |  |
| Hotspot mode:          | support                            |  |
| Form factor:           | 13.4cm $\times$ 6.5cm              |  |

## 4.2 Internal Identification of EUT used during the test

| EUT                                                                 | SN or IMEI | HW Version | SW Version           |  |  |
|---------------------------------------------------------------------|------------|------------|----------------------|--|--|
| ID*                                                                 |            |            |                      |  |  |
| EUT1                                                                | /          | Т3         | 4.4.212.00.T3.140317 |  |  |
| *EUT ID: is used to identify the test sample in the lab internally. |            |            |                      |  |  |

## 4.3 Internal Identification of AE used during the test

| AE ID*      | Description | Model   | SN | Capacity | Nominal Voltage      | Manufacturer     |
|-------------|-------------|---------|----|----------|----------------------|------------------|
| AE1         | Battery     | CPLD-31 | ,  | 1880mAh  | 3.7V                 | ZHUHAI Coslight  |
| ALI         | Dattery     | 5       | Ι  | TOOUTIAN | 5.7 V                | battery CO.,LTD. |
| AE2         | Hoodoot     | JWEP06  | 1  | 1        | 1                    | Shenzhen Juwei   |
| AE2 Headset | 33-Y27      | 1 1     |    | Ι        | Electronics Co.,Ltd. |                  |



## **5 TEST METHODOLOGY**

#### 5.1 Applicable Limit Regulations

**ANSI C95.1–1999:** IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

#### 5.2 Applicable Measurement Standards

**IEEE 1528–2003:** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

**OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01):** Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

**KDB447498 D01: General RF Exposure Guidance v05:** Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB 648474 D04 Handset SAR v01: SAR Evaluation Considerations for Wireless Handsets.

**865664 D01 SAR measurement 100 MHz to 6 GHz v01:** SAR Measurement Requirements for 100 MHz to 6 GHz

**KDB248227 D01:** SAR Measurement Procedures for 802.11a/b/g transmitters.

**KDB941225 D06:** SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

**865664 D02 SAR Reporting v01:** RF Exposure Compliance Reporting and Documentation Considerations



## 6 Specific Absorption Rate (SAR)

#### 6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

#### 6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density ( $\rho$ ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity,  $\delta T$  is the temperature rise and  $\delta t$  is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of tissue and *E* is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.



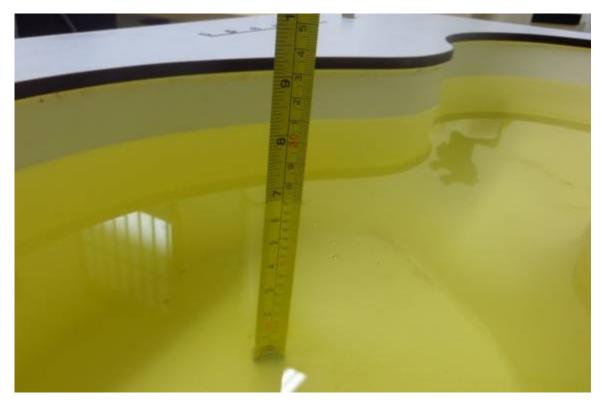
## 7 Tissue Simulating Liquids

## 7.1 Targets for tissue simulating liquid

| Frequency<br>(MHz) | Liquid Type | Conductivity<br>(σ) | ± 5% Range | Permittivity<br>(ε) | ± 5% Range |  |  |  |
|--------------------|-------------|---------------------|------------|---------------------|------------|--|--|--|
| 1900               | Head        | 1.40                | 1.33~1.47  | 40.0                | 38.0~42.0  |  |  |  |
| 1900               | Body        | 1.52                | 1.44~1.60  | 53.3                | 50.6~56.0  |  |  |  |
| 2450               | Head        | 1.80                | 1.71~1.89  | 39.2                | 37.2~41.2  |  |  |  |
| 2450               | Body        | 1.95                | 1.85~2.05  | 52.7                | 50.1~55.3  |  |  |  |

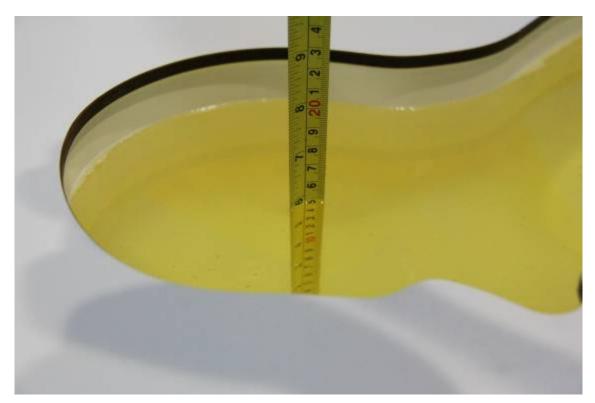
#### Table 7.1: Targets for tissue simulating liquid

#### 7.2 Dielectric Performance

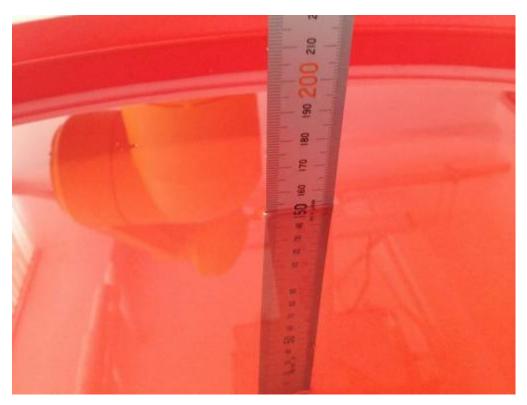

#### Table 7.2: Dielectric Performance of Tissue Simulating Liquid

| Measurement Date<br>(yyyy-mm-dd) | Туре | Frequency | Permittivity<br>ε | Drift  | Conductivity<br>σ (S/m) | Drift  |
|----------------------------------|------|-----------|-------------------|--------|-------------------------|--------|
| 2014-02-22                       | Head | 1900 MHz  | 39.54             | -1.15% | 1.43                    | 2.14%  |
| 2014-02-27                       | Body | 1900 MHz  | 51.44             | -3.49% | 1.55                    | 1.97%  |
| 2014-02-20                       | Head | 2450 MHz  | 40.09             | 2.27%  | 1.86                    | 3.33%  |
| 2014-02-21                       | Body | 2450 MHz  | 52.24             | -0.87% | 1.94                    | -0.51% |






Picture 7-1: Liquid depth in the Head Phantom (1900 MHz) (depth=15.3cm)



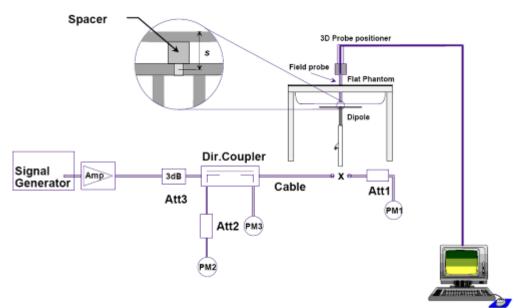

Picture 7-2 Liquid depth in the Flat Phantom (1900MHz) (depth=17.4cm)





Picture 7-3 Liquid depth in the Head Phantom (2450MHz) (depth=15.2cm)




Picture 7-4 Liquid depth in the Flat Phantom (2450MHz) (depth=15.2cm)



## 8 System verification

#### 8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:



Picture 8.1 System Setup for System Evaluation



Picture 8.2 Photo of Dipole Setup



### 8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B. The measured value of annex B is tested with the output power of 250mW, so the measured value of Table 8.1&8.2 is 4 times as big as annex B<sub> $\circ$ </sub>

|              | Table 0.1. System vernication of flead (Output power Twy) |                     |         |                       |         |           |         |  |
|--------------|-----------------------------------------------------------|---------------------|---------|-----------------------|---------|-----------|---------|--|
| Measurement  |                                                           | Target value (W/kg) |         | Measured value (W/kg) |         | Deviation |         |  |
| Date         | Frequency                                                 | 10 g                | 1 g     | 10 g                  | 1 g     | 10 g      | 1 g     |  |
| (yyyy-mm-dd) |                                                           | Average             | Average | Average               | Average | Average   | Average |  |
| 2014-02-22   | 1900 MHz                                                  | 20.9                | 40.0    | 20.44                 | 39.96   | -2.20%    | -0.10%  |  |
| 2014-02-20   | 2450 MHz                                                  | 24.3                | 51.9    | 25.16                 | 54.4    | 3.54%     | 4.82%   |  |

#### Table 8.1: System Verification of Head (output power 1W)

|              | Table 6.2. System vernication of Body (output power Tw) |            |                      |         |              |           |         |  |
|--------------|---------------------------------------------------------|------------|----------------------|---------|--------------|-----------|---------|--|
| Measurement  |                                                         | Target val | alue (W/kg) Measured |         | value (W/kg) | Deviation |         |  |
| Date         | Frequency                                               | 10 g       | 1 g                  | 10 g    | 1 g          | 10 g      | 1 g     |  |
| (yyyy-mm-dd) |                                                         | Average    | Average              | Average | Average      | Average   | Average |  |
| 2014-02-27   | 1900 MHz                                                | 21.4       | 40.3                 | 21.92   | 41.60        | 2.43%     | 3.23%   |  |
| 2014-02-21   | 2450 MHz                                                | 23.7       | 50.8                 | 24.52   | 52.80        | 3.46%     | 3.94%   |  |

#### Table 8.2: System Verification of Body (output power 1W)

## 8.3 Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

| Dipole D1900V2 SN: 5d088 |                 |        |                        |     |  |  |  |
|--------------------------|-----------------|--------|------------------------|-----|--|--|--|
|                          | Head I          | _iquid |                        |     |  |  |  |
| Date of Measurement      | Return Loss(dB) | Δ%     | Impedance ( $\Omega$ ) | ΔΩ  |  |  |  |
| 10/17/2012               | -24.3           | /      | 52.0                   | /   |  |  |  |
| 10/16/2013               | -23.3           | 4.1    | 50.3                   | 1.7 |  |  |  |
|                          | Body I          | _iquid |                        |     |  |  |  |
| Date of Measurement      | Return Loss(dB) | Δ%     | Impedance (Ω)          | ΔΩ  |  |  |  |
| 10/17/2012               | -24.0           | /      | 48.9                   | 1   |  |  |  |
| 10/16/2013               | -23.2           | 3.3    | 47.6                   | 1.3 |  |  |  |



| Dipole D2450V2 SN: 873 |                 |        |                        |     |  |  |
|------------------------|-----------------|--------|------------------------|-----|--|--|
|                        | Head            | Liquid |                        |     |  |  |
| Date of Measurement    | Return Loss(dB) | Δ%     | Impedance (Ω)          | ΔΩ  |  |  |
| 10/18/2012             | -29.3           | 1      | 53.2                   | /   |  |  |
| 10/17/2013             | -28.6           | 2.4    | 52.1                   | 1.1 |  |  |
|                        | Body I          | _iquid |                        |     |  |  |
| Date of Measurement    | Return Loss(dB) | Δ%     | Impedance ( $\Omega$ ) | ΔΩ  |  |  |
| 10/18/2012             | -29.1           | /      | 49.9                   | /   |  |  |
| 10/17/2013             | -27.9           | 4.1    | 48.6                   | 1.3 |  |  |



## **9 Measurement Procedures**

#### 9.1 Tests to be performed

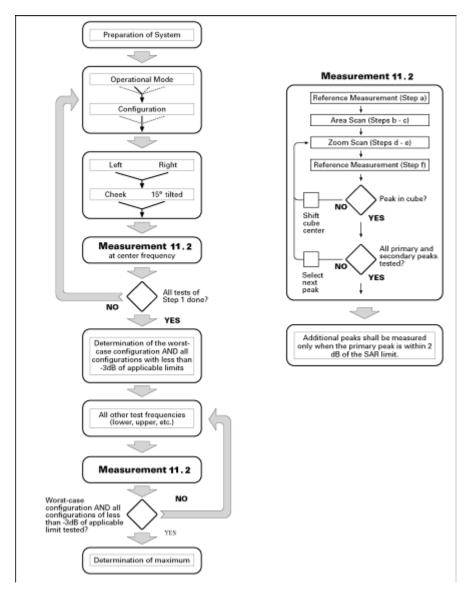
In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of

the transmit frequency band ( $f_c$ ) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and


c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e.,  $N_c$  > 3), then all

frequencies, configurations and modes shall be tested for all of the above test conditions. **Step 2**: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

**Step 3**: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.





Picture 9.1 Block diagram of the tests to be performed

#### 9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.



|                                                                                                           |                                                                |                                                                                            | $\leq$ 3 GHz                                                                                                                                                                                                                                                           | > 3 GHz                                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Maximum distance from closest measurement point<br>(geometric center of probe sensors) to phantom surface |                                                                |                                                                                            | $5 \pm 1 \text{ mm}$                                                                                                                                                                                                                                                   | ½·δ·ln(2) ± 0.5 mm                                                                                                                     |  |
| Maximum probe angle t<br>normal at the measurem                                                           | -                                                              | -                                                                                          | 30°±1°                                                                                                                                                                                                                                                                 | 20°±1°                                                                                                                                 |  |
|                                                                                                           |                                                                |                                                                                            | $\leq 2 \text{ GHz:} \leq 15 \text{ mm}$<br>2 – 3 GHz: $\leq 12 \text{ mm}$                                                                                                                                                                                            | $\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$                  |  |
| Maximum area scan spatial resolution: Δx <sub>Area</sub> , Δy <sub>Area</sub>                             |                                                                |                                                                                            | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                                                                                                        |  |
| Maximum zoom scan sp                                                                                      | patial resolut                                                 | ion: Δx <sub>Zoom</sub> , Δy <sub>Zoom</sub>                                               | $\leq 2 \text{ GHz} \leq 8 \text{ mm}$<br>2 - 3 GHz: $\leq 5 \text{ mm}^*$                                                                                                                                                                                             | $3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$                                                     |  |
|                                                                                                           | uniform grid: Δz <sub>Zoom</sub> (n)                           |                                                                                            | ≤ 5 mm                                                                                                                                                                                                                                                                 | $3 - 4 \text{ GHz:} \le 4 \text{ mm}$<br>$4 - 5 \text{ GHz:} \le 3 \text{ mm}$<br>$5 - 6 \text{ GHz:} \le 2 \text{ mm}$                |  |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface                                  | graded                                                         | $\Delta z_{Zoom}(1)$ : between 1 <sup>st</sup><br>two points closest to<br>phantom surface | ≤ 4 mm                                                                                                                                                                                                                                                                 | $3 - 4 \text{ GHz:} \le 3 \text{ mm}$<br>$4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$<br>$5 - 6 \text{ GHz:} \le 2 \text{ mm}$              |  |
|                                                                                                           | grid<br>$\Delta z_{Z,com}(n>1)$ : between<br>subsequent points |                                                                                            | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$                                                                                                                                                                                                                                  |                                                                                                                                        |  |
| Minimum zoom scan<br>volume                                                                               | x, y, z                                                        | 1                                                                                          | $\ge$ 30 mm                                                                                                                                                                                                                                                            | $3 - 4 \text{ GHz}$ : $\geq 28 \text{ mm}$<br>$4 - 5 \text{ GHz}$ : $\geq 25 \text{ mm}$<br>$5 - 6 \text{ GHz}$ : $\geq 22 \text{ mm}$ |  |
| 2011 for details.<br>* When zoom scan is r                                                                | equired and $(, \le 8 \text{ mm}, \le $                        | -<br>the <u>reported</u> SAR from th<br>7 mm and ≤ 5 mm zoom                               | idence to the tissue medium; see<br>te area scan based <i>1-g SAR estime</i><br>scan resolution may be applied, 1                                                                                                                                                      | ation procedures of KDB                                                                                                                |  |

#### 9.3 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.



#### 9.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.1 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

## **10 Conducted Output Power**

#### **10.1 Manufacturing tolerance**

#### Table 10.1: GSM Speech

| GSM 1900            |             |             |             |  |  |  |  |
|---------------------|-------------|-------------|-------------|--|--|--|--|
| Channel             | Channel 810 | Channel 661 | Channel 512 |  |  |  |  |
| Target (dBm)        | 30.0        | 30.0        | 30.0        |  |  |  |  |
| Tolerance $\pm(dB)$ | ±2          | ±2          | ±2          |  |  |  |  |

| GSM 1900 GPRS |                      |         |         |         |  |  |  |
|---------------|----------------------|---------|---------|---------|--|--|--|
|               | Channel              | 810     | 661     | 512     |  |  |  |
| 1 Txslot      | Target (dBm)         | 30.0    | 30.0    | 30.0    |  |  |  |
| I IXSIOL      | Tolerance $\pm$ (dB) | $\pm 2$ | $\pm 2$ | $\pm 2$ |  |  |  |
| 2 Txslots     | Target (dBm)         | 28.0    | 28.0    | 28.0    |  |  |  |
|               | Tolerance $\pm$ (dB) | $\pm 3$ | $\pm 3$ | $\pm 3$ |  |  |  |
| 2Tvoloto      | Target (dBm)         | 26.0    | 26.0    | 26.0    |  |  |  |
| 3Txslots      | Tolerance $\pm$ (dB) | $\pm 3$ | $\pm 3$ | $\pm 3$ |  |  |  |
| 4 Txslots     | Target (dBm)         | 24      | 24      | 24      |  |  |  |
|               | Tolerance $\pm$ (dB) | ±3      | ±3      | ±3      |  |  |  |

#### Table 10.2: GPRS(GMSK Modulation)

|                     | WiFi 802.11b |            |            |  |  |  |  |  |
|---------------------|--------------|------------|------------|--|--|--|--|--|
| Channel             | Channel 1    | Channel 6  | Channel 11 |  |  |  |  |  |
| Target (dBm)        | 12           | 12         | 12         |  |  |  |  |  |
| Tolerance $\pm(dB)$ | 1.5          | 1.5        | 1.5        |  |  |  |  |  |
|                     | WiF          | -i 802.11g |            |  |  |  |  |  |
| Channel             | Channel 1    | Channel 6  | Channel 11 |  |  |  |  |  |
| Target (dBm)        | 12           | 12         | 12         |  |  |  |  |  |
| Tolerance $\pm(dB)$ | 1            | 1          | 1          |  |  |  |  |  |

#### Table 10.3: WiFi



| WiFi 802.11n         |           |            |            |  |  |  |  |
|----------------------|-----------|------------|------------|--|--|--|--|
| Channel              | Channel 1 | Channel 6  | Channel 11 |  |  |  |  |
| Target (dBm)         | 11        | 11         | 11         |  |  |  |  |
| Tolerance $\pm(dB)$  | 1         | 1          | 1          |  |  |  |  |
|                      | Table     | 10.4: BT   |            |  |  |  |  |
| Channel              | Channel 0 | Channel 39 | Channel 78 |  |  |  |  |
| Target (dBm)         | -2        | -2         | -2         |  |  |  |  |
| Tolerance $\pm$ (dB) | 1         | 1          | 1          |  |  |  |  |

#### **10.2 GSM Measurement result**

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

For this device, EGPRS support downlink only, does not support uplink.

#### Table 10.5: The conducted power measurement results for GSM1900

| GSM     | Conducted Power (dBm)  |                      |                        |  |  |  |  |
|---------|------------------------|----------------------|------------------------|--|--|--|--|
|         | Channel 810(1909.8MHz) | Channel 661(1880MHz) | Channel 512(1850.2MHz) |  |  |  |  |
| 1900MHZ | 29.25                  | 29.65                | 30.23                  |  |  |  |  |

## Table 10.6: The conducted power measurement results for GPRS (Hotspot on)

| PCS1900     | Measu | ured Power  | (dBm) | calculation | Averaged Power (dBm) |       |       |  |
|-------------|-------|-------------|-------|-------------|----------------------|-------|-------|--|
| GPRS (GMSK) | 810   | 810 661 512 |       |             | 810                  | 661   | 512   |  |
| 1 Txslot    | 29.30 | 29.64       | 30.15 | -9.03dB     | 20.27                | 20.61 | 21.12 |  |
| 2 Txslots   | 27.68 | 28.04       | 28.76 | -6.02dB     | 21.66                | 22.02 | 22.74 |  |
| 3Txslots    | 26.68 | 27.15       | 27.65 | -4.26dB     | 22.42                | 22.89 | 23.39 |  |
| 4 Txslots   | 25.65 | 26.20       | 26.64 | -3.01dB     | 22.64                | 23.19 | 23.63 |  |

#### Table 10.7: The conducted power measurement results for GPRS (Hotspot off)

| PCS1900     | Measu       | ured Power | (dBm) | calculation | Avera | Averaged Power (dBm) |       |  |  |
|-------------|-------------|------------|-------|-------------|-------|----------------------|-------|--|--|
| GPRS (GMSK) | 810 661 512 |            | 512   |             | 810   | 661                  | 512   |  |  |
| 1 Txslot    | 29.18       | 29.53      | 30.08 | -9.03dB     | 20.15 | 20.5                 | 21.05 |  |  |
| 2 Txslots   | 27.61       | 27.97      | 28.72 | -6.02dB     | 21.59 | 21.95                | 22.7  |  |  |
| 3Txslots    | 26.60       | 27.07      | 27.61 | -4.26dB     | 22.34 | 22.81                | 23.35 |  |  |
| 4 Txslots   | 25.52       | 26.06      | 26.57 | -3.01dB     | 22.51 | 23.05                | 23.56 |  |  |

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

## According to the conducted power as above, the body measurements are performed with 4Txslots for GSM1900.



#### . 10.4 Wi-Fi and BT Measurement result

#### The conducted Power for BT

|               | Measured Power (dBm) |          |          |  |  |  |
|---------------|----------------------|----------|----------|--|--|--|
| madellChannel | Ch 0                 | Ch 39    | Ch 78    |  |  |  |
| model\Channel | 2402 MHz             | 2441 MHz | 2480 MHz |  |  |  |
| GFSK          | -4.67                | -4.74    | -4.43    |  |  |  |
| π/4 DQPSK     | -5.04                | -5.08    | -4.88    |  |  |  |
| 8DPSK         | -5.05                | -5.10    | -4.87    |  |  |  |

#### The conducted power for Wi-Fi is as following:

#### 802.11b/g mode

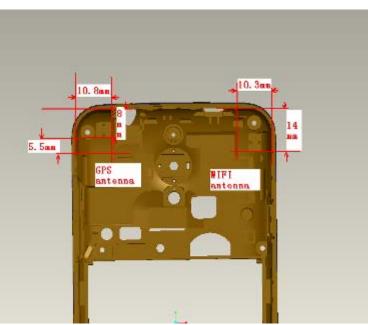
|          | Dete Dete |         | Test Result (dBm) |          |
|----------|-----------|---------|-------------------|----------|
| Mode     | Data Rate | 2412MHz | 2437MHz           | 2462 MHz |
|          | (Mbps)    | (Ch1)   | (Ch6)             | (Ch11)   |
|          | 1         | 11.79   | 12.30             | 12.80    |
| 802.11b  | 2         | 11.81   | 12.33             | 12.82    |
| 002.110  | 5.5       | 12.20   | 12.70             | 13.24    |
|          | 11        | 12.25   | 12.75             | 13.27    |
|          | 6         | 11.97   | 12.54             | 12.95    |
|          | 9         | 11.96   | 12.52             | 12.94    |
|          | 12        | 11.95   | 12.50             | 12.93    |
| 902 11 a | 18        | 11.93   | 12.49             | 12.90    |
| 802.11g  | 24        | 11.91   | 12.47             | 12.88    |
|          | 36        | 11.90   | 12.45             | 12.89    |
|          | 48        | 11.87   | 12.43             | 12.86    |
|          | 54        | 11.86   | 12.42             | 12.85    |

#### 802.11n mode

|         | Data Rate     | Test Result (dBm) |         |          |  |  |  |
|---------|---------------|-------------------|---------|----------|--|--|--|
| Mode    | (MCS Index)   | 2412MHz           | 2437MHz | 2462 MHz |  |  |  |
|         | (INCS IIIdex) | (Ch1)             | (Ch6)   | (Ch11)   |  |  |  |
|         | MCS0          | 10.18             | 10.74   | 11.26    |  |  |  |
|         | MCS1          | 10.17             | 10.72   | 11.24    |  |  |  |
|         | MCS2          | 10.16             | 10.71   | 11.22    |  |  |  |
| 802.11n | MCS3          | 10.12             | 10.68   | 11.19    |  |  |  |
|         | MCS4          | 10.10             | 10.66   | 11.16    |  |  |  |
|         | MCS5          | 10.09             | 10.65   | 11.14    |  |  |  |
|         | MCS6          | 10.08             | 10.64   | 11.13    |  |  |  |
|         | MCS7          | 10.06             | 10.62   | 11.12    |  |  |  |

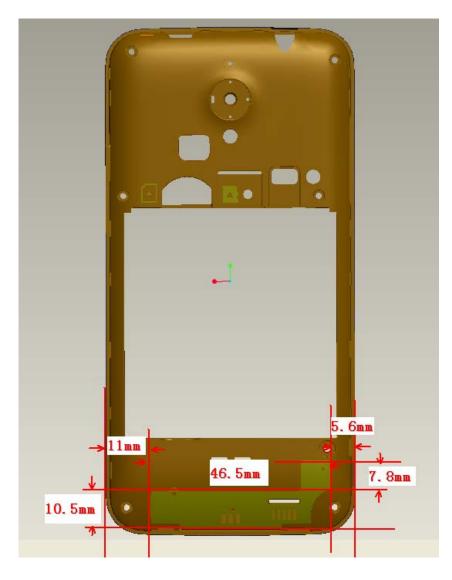


SAR is not required for 802.11g/n channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 1Mbps, and channel 6".


## 11 Simultaneous TX SAR Considerations

#### **11.1 Introduction**

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters, BT and WiFi could not transmit simultaneously since they share an antenna. This EUT really supports GPS Tx function.


### 11.2 Transmit Antenna Separation Distances

| WIFI/BT antenna: PII  | FA            | GPS antenna: MOLOPOLE |  |  |  |
|-----------------------|---------------|-----------------------|--|--|--|
| BAND: 2401~2483N      | /lhz          | BAND:1570-1580MHZ     |  |  |  |
| Gain: -2.4dBi average | ge            | Gain: -2.1dBi average |  |  |  |
| 3.4dBi peak           |               | 3.6 dBi peak          |  |  |  |
| Main antenna: PIFA    |               |                       |  |  |  |
| BAND: GSM1900         |               |                       |  |  |  |
| Antenna gain:         | Average gain( | dBi) Peak gain(dBi)   |  |  |  |
| PCS1900               | -3.2          | 1.8                   |  |  |  |
|                       |               |                       |  |  |  |



Picture 11.1 Antenna Locations





Picture 11.2 Main Antenna Locations

## 11.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances  $\leq$  50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]  $\cdot$  [ $\sqrt{f}(GHz)$ ]  $\leq$  3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 10m test separation distances is 19mW.



#### Appendix A

#### SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and $\leq$ 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

| MHz  | 5  | 10 | 15  | 20  | 25  | mm                    |
|------|----|----|-----|-----|-----|-----------------------|
| 150  | 39 | 77 | 116 | 155 | 194 |                       |
| 300  | 27 | 55 | 82  | 110 | 137 |                       |
| 450  | 22 | 45 | 67  | 89  | 112 |                       |
| 835  | 16 | 33 | 49  | 66  | 82  |                       |
| 900  | 16 | 32 | 47  | 63  | 79  |                       |
| 1500 | 12 | 24 | 37  | 49  | 61  | SAR Test<br>Exclusion |
| 1900 | 11 | 22 | 33  | 44  | 54  | Threshold (mW)        |
| 2450 | 10 | 19 | 29  | 38  | 48  |                       |
| 3600 | 8  | 16 | 24  | 32  | 40  |                       |
| 5200 | 7  | 13 | 20  | 26  | 33  |                       |
| 5400 | 6  | 13 | 19  | 26  | 32  |                       |
| 5800 | 6  | 12 | 19  | 25  | 31  |                       |

#### **Picture 11.3 Power Thresholds**

## 12 Evaluation of Simultaneous

#### Table 12.1: Summary of Transmitters

| Band/Mode F(G        |       | SAR test exclusion<br>threshold (mW) | RF output power (mW) |  |
|----------------------|-------|--------------------------------------|----------------------|--|
| Bluetooth            | 2.441 | 19                                   | 0.79                 |  |
| 2.4GHz WLAN 802.11 b | 2.45  | 19                                   | 22.39                |  |

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi is considered with measurement results of GSM and WiFi. Stand-alone SAR and simultaneous transmission SAR for Bluetooth should not be performed. Stand-alone SAR for BT must be estimated according to following to determine simultaneous transmission SAR, and the result is **0.033**W/kg (1g average) for head SAR, **0.016**W/kg (1g average) for body SAR.

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[ $\sqrt{f_{(GHz)}}/x$ ] W/kg for test separation distances  $\leq 50$  mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

|                                     | Position               | GSM   | WiFi  | BT    | Sum   |  |  |  |
|-------------------------------------|------------------------|-------|-------|-------|-------|--|--|--|
| Maximum reported value for Head     | Left hand, Touch cheek | 0.390 | 0.792 | 0.033 | 1.215 |  |  |  |
| Maximum reported SAR value for Body | Rear Side              | 0.662 | 0.140 | 0.016 | 0.818 |  |  |  |

#### Table 12.2: The sum of reported SAR values

According to the above table, the sum of reported SAR values for GSM ,WiFi and BT <1.6W/kg. So the simultaneous transmission SAR is not required for WiFi transmitter.



## 13 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan and zoom scan based 1-g SAR estimation. In this report, measured SAR results are scaled to the maximum tune-up tolerance limit according the power applied to the individual channels, and the results are shown in the column "reported SAR".

#### 13.1 SAR Test Result

#### Table 13.1: Duty Cycle

|                    | Duty Cycle |
|--------------------|------------|
| Speech for GSM1900 | 1:8.3      |
| GPRS for GSM1900   | 1:2        |
| WiFi 2450          | 1:1        |

| Frequer | су  |       | Teet             | Condu                  | Max            | Measured           | Reported           | Measured          | Reported          | Powe            |
|---------|-----|-------|------------------|------------------------|----------------|--------------------|--------------------|-------------------|-------------------|-----------------|
| MHz     | Ch. | Side  | Test<br>Position | cted<br>Power<br>(dBm) | Power<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | r Drift<br>(dB) |
| 1880    | 661 | Left  | Touch            | 29.65                  | 32             | 0.130              | 0.223              | 0.212             | 0.364             | 0.15            |
| 1880    | 661 | Left  | Tilt             | 29.65                  | 32             | 0.052              | 0.089              | 0.088             | 0.151             | 0.13            |
| 1880    | 661 | Right | Touch            | 29.65                  | 32             | 0.096              | 0.165              | 0.158             | 0.271             | 0.15            |
| 1880    | 661 | Right | Tilt             | 29.65                  | 32             | 0.037              | 0.064              | 0.063             | 0.108             | 0.02            |
| 1909.8  | 810 | Left  | Touch            | 29.25                  | 32             | 0.125              | 0.235              | 0.207             | 0.390             | 0.17            |
| 1850.2  | 512 | Left  | Touch            | 30.23                  | 32             | 0.131              | 0.197              | 0.212             | 0.319             | 0.20            |

#### Table 13.2: SAR Values (GSM 1900 MHz Band - Head)

#### Table 13.3: SAR Values (GSM 1900 MHz Band – Body worn)

| Frequ | uency Mode<br>(number |                  | Test     | Condu<br>cted  | Max            | Measured           | Reported           | Measured          | Reported          | Power         |
|-------|-----------------------|------------------|----------|----------------|----------------|--------------------|--------------------|-------------------|-------------------|---------------|
| MHz   | Ch.                   | of<br>timeslots) | Position | Power<br>(dBm) | Power<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 1880  | 661                   | GPRS (4)         | Front    | 26.20          | 27             | 0.238              | 0.286              | 0.434             | 0.522             | -0.10         |
| 1880  | 661                   | GPRS (4)         | Rear     | 26.20          | 27             | 0.314              | 0.378              | 0.551             | 0.662             | -0.04         |

#### Table 13.4: SAR Values (GSM 1900 MHz Band - Hotspot)

| Freque | ency | Mode<br>(number | Test     | Condu<br>cted | Max   | Measured | Reported | Measured | Reported | Power |
|--------|------|-----------------|----------|---------------|-------|----------|----------|----------|----------|-------|
| MHz    | Ch.  | of              | Position | Power         | Power | SAR(10g) | SAR(10g) | SAR(1g)  | SAR(1g)  | Drift |
|        | On.  | timeslots)      |          | (dBm)         | (dBm) | (W/kg)   | (W/kg)   | (W/kg)   | (W/kg)   | (dB)  |
| 1880   | 661  | GPRS (4)        | Front    | 26.20         | 27    | 0.238    | 0.286    | 0.434    | 0.522    | -0.10 |
| 1880   | 661  | GPRS (4)        | Rear     | 26.20         | 27    | 0.314    | 0.378    | 0.551    | 0.662    | -0.04 |
| 1880   | 661  | GPRS (4)        | Left     | 26.20         | 27    | 0.070    | 0.084    | 0.116    | 0.139    | -0.01 |



| 1880   | 661 | GPRS (4) | Right  | 26.20 | 27 | 0.075 | 0.090 | 0.128 | 0.154 | 0.01 |
|--------|-----|----------|--------|-------|----|-------|-------|-------|-------|------|
| 1880   | 661 | GPRS (4) | Тор    | 26.20 | 27 | 0.020 | 0.024 | 0.032 | 0.038 | 0.15 |
| 1880   | 661 | GPRS (4) | Bottom | 26.20 | 27 | 0.278 | 0.334 | 0.525 | 0.631 | 0.13 |
| 1909.8 | 810 | GPRS (4) | Rear   | 25.65 | 27 | 0.228 | 0.311 | 0.394 | 0.538 | 0.07 |
| 1850.2 | 512 | GPRS (4) | Rear   | 26.64 | 27 | 0.309 | 0.336 | 0.555 | 0.603 | 0.13 |
| 1850.2 | 512 | Speech   | Rear   | 30.23 | 32 | 0.190 | 0.286 | 0.331 | 0.498 | 0.11 |

Note: The distance between the EUT and the phantom bottom is 10mm.

#### Table 13.5: SAR Values (Wi-Fi 802.11 - Head)

| Frequ | ency |           |                   | Test     | Cond<br>ucted  | Max                 | Measured           | Reported           | Measured          | Reported          | Power      |
|-------|------|-----------|-------------------|----------|----------------|---------------------|--------------------|--------------------|-------------------|-------------------|------------|
| MHz   | Ch.  | Side mode |                   | Position | Power<br>(dBm) | wer   Power   (dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift (dB) |
| 2437  | 6    | Left      | 802.11b<br>(1M)   | Touch    | 12.30          | 13.5                | 0.280              | 0.369              | 0.601             | 0.792             | 0.11       |
| 2437  | 6    | Left      | 802.11b<br>(1M)   | Tilt     | 12.30          | 13.5                | 0.211              | 0.278              | 0.476             | 0.627             | 0.06       |
| 2437  | 6    | Right     | 802.11b<br>(1M)   | Touch    | 12.30          | 13.5                | 0.199              | 0.262              | 0.371             | 0.489             | -0.14      |
| 2437  | 6    | Right     | 802.11b<br>(1M)   | Tilt     | 12.30          | 13.5                | 0.176              | 0.232              | 0.339             | 0.447             | -0.20      |
| 2462  | 11   | Left      | 802.11b<br>(1M)   | Touch    | 12.80          | 13.5                | 0.294              | 0.345              | 0.595             | 0.699             | 0.07       |
| 2412  | 1    | Left      | 802.11b<br>(1M)   | Touch    | 11.79          | 13.5                | 0.158              | 0.234              | 0.305             | 0.452             | 0.05       |
| 2462  | 11   | Left      | 802.11b<br>(11M)  | Touch    | 13.27          | 13.5                | 0.284              | 0.299              | 0.573             | 0.604             | 0.11       |
| 2462  | 11   | Left      | 802.11g<br>(6M)   | Touch    | 12.95          | 13                  | 0.192              | 0.194              | 0.388             | 0.392             | 0.19       |
| 2462  | 11   | Left      | 802.11n<br>(MCS0) | Touch    | 11.26          | 12                  | 0.197              | 0.234              | 0.394             | 0.467             | 0.08       |

#### Table 13.6: SAR Values (Wi-Fi 802.11 – Body worn)

| Freque | ency |                 | Toot             | Condu                  | Max                | Measured           | Reported           | Measured          | Reported          | Power         |
|--------|------|-----------------|------------------|------------------------|--------------------|--------------------|--------------------|-------------------|-------------------|---------------|
| MHz    | Ch.  | Mode            | Test<br>Position | cted<br>Power<br>(dBm) | Powe<br>r<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)(<br>W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 2437   | 6    | 802.11b<br>(1M) | Front            | 12.30                  | 13.5               | 0.054              | 0.071              | 0.104             | 0.137             | -0.13         |
| 2437   | 6    | 802.11b<br>(1M) | Rear             | 12.30                  | 13.5               | 0.060              | 0.079              | 0.106             | 0.140             | 0.12          |



| Freque | ency | Mode              | Test     | Condu<br>cted | Max<br>Powe | Measured | Reported  | Measured | Reported | Power |  |  |
|--------|------|-------------------|----------|---------------|-------------|----------|-----------|----------|----------|-------|--|--|
|        |      |                   | Position | Power         | r           | SAR(10g) | SAR(10g)( | SAR(1g)  | SAR(1g)  | Drift |  |  |
| MHz    | Ch.  |                   |          | (dBm)         | (dBm)       | (W/kg)   | W/kg)     | (W/kg)   | (W/kg)   | (dB)  |  |  |
| 2437   | 6    | 802.11b<br>(1M)   | Front    | 12.30         | 13.5        | 0.054    | 0.071     | 0.104    | 0.137    | -0.13 |  |  |
| 2437   | 6    | 802.11b<br>(1M)   | Rear     | 12.30         | 13.5        | 0.060    | 0.079     | 0.106    | 0.140    | 0.12  |  |  |
| 2437   | 6    | 802.11b<br>(1M)   | Left     | 12.30         | 13.5        | 0.023    | 0.030     | 0.041    | 0.054    | 0.10  |  |  |
| 2437   | 6    | 802.11b<br>(1M)   | Right    | 12.30         | 13.5        | 0.020    | 0.026     | 0.036    | 0.047    | 0.12  |  |  |
| 2437   | 6    | 802.11b<br>(1M)   | Тор      | 12.30         | 13.5        | 0.038    | 0.050     | 0.067    | 0.088    | 0.10  |  |  |
| 2462   | 11   | 802.11b<br>(1M)   | Rear     | 12.80         | 13.5        | 0.057    | 0.067     | 0.099    | 0.116    | -0.06 |  |  |
| 2412   | 1    | 802.11b<br>(1M)   | Rear     | 11.79         | 13.5        | 0.029    | 0.043     | 0.049    | 0.073    | 0.15  |  |  |
| 2462   | 11   | 802.11b<br>(11M)  | Rear     | 13.27         | 13.5        | 0.060    | 0.063     | 0.103    | 0.109    | 0.16  |  |  |
| 2462   | 11   | 802.11g<br>(6M)   | Rear     | 12.95         | 13          | 0.039    | 0.039     | 0.068    | 0.069    | 0.02  |  |  |
| 2462   | 11   | 802.11n<br>(MCS0) | Rear     | 11.26         | 12          | 0.039    | 0.046     | 0.068    | 0.081    | 0.02  |  |  |

#### Table 13.7: SAR Values (Wi-Fi 802.11 - Hotspot)

Note: The distance between the EUT and the phantom bottom is 10mm.

## 14 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is  $\geq$  0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is  $\geq$  1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is  $\geq$  1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.



## **15 Measurement Uncertainty**

## 15.1 Measurement Uncertainty for Normal SAR Tests (300MHz-3000MHz)

| 15.  | 15.1 measurement Uncertainty for Normal SAR Tests (300MHZ-3000MHZ) |      |             |                |            |      |      |      |       |          |  |  |
|------|--------------------------------------------------------------------|------|-------------|----------------|------------|------|------|------|-------|----------|--|--|
| No.  | Error Description                                                  | Туре | Uncertainty | Probably       | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree   |  |  |
|      |                                                                    |      | value       | Distribution   |            | 1g   | 10g  | Unc. | Unc.  | of       |  |  |
|      |                                                                    |      |             |                |            |      |      | (1g) | (10g) | freedo   |  |  |
|      |                                                                    |      |             |                |            |      |      |      |       | m        |  |  |
| Meas | Measurement system                                                 |      |             |                |            |      |      |      |       |          |  |  |
| 1    | Probe calibration                                                  | В    | 5.5         | Ν              | 1          | 1    | 1    | 5.5  | 5.5   | $\infty$ |  |  |
| 2    | Isotropy                                                           | В    | 4.7         | R              | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | 8        |  |  |
| 3    | Boundary effect                                                    | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | 8        |  |  |
| 4    | Linearity                                                          | В    | 4.7         | R              | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | 8        |  |  |
| 5    | Detection limit                                                    | В    | 1.0         | Ν              | 1          | 1    | 1    | 0.6  | 0.6   | 8        |  |  |
| 6    | Readout electronics                                                | В    | 0.3         | R              | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | 8        |  |  |
| 7    | Response time                                                      | В    | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | 8        |  |  |
| 8    | Integration time                                                   | В    | 2.6         | R              | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | 8        |  |  |
| 9    | RF ambient conditions-noise                                        | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8        |  |  |
| 10   | RF ambient conditions-reflection                                   | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8        |  |  |
| 11   | Probe positioned mech. restrictions                                | В    | 0.4         | R              | $\sqrt{3}$ | 1    | 1    | 0.2  | 0.2   | 8        |  |  |
| 12   | Probepositioningwithrespecttophantom shell                         | В    | 2.9         | R              | $\sqrt{3}$ | 1    | 1    | 1.7  | 1.7   | 8        |  |  |
| 13   | Post-processing                                                    | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | 8        |  |  |
|      |                                                                    | •    | Test        | sample related | 1          | •    | •    | •    |       |          |  |  |
| 14   | Test sample positioning                                            | А    | 3.3         | N              | 1          | 1    | 1    | 3.3  | 3.3   | 71       |  |  |
| 15   | Device holder<br>uncertainty                                       | А    | 3.4         | N              | 1          | 1    | 1    | 3.4  | 3.4   | 5        |  |  |
| 16   | Drift of output power                                              | В    | 5.0         | R              | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9   | 8        |  |  |
|      |                                                                    |      | Phant       | tom and set-u  | р          |      |      |      |       |          |  |  |
| 17   | Phantom uncertainty                                                | В    | 4.0         | R              | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3   | 8        |  |  |
| 18   | Liquid conductivity<br>(target)                                    | В    | 5.0         | R              | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2   | 8        |  |  |
| 19   | Liquid conductivity<br>(meas.)                                     | А    | 2.06        | N              | 1          | 0.64 | 0.43 | 1.32 | 0.89  | 43       |  |  |
| 20   | Liquid permittivity<br>(target)                                    | В    | 5.0         | R              | $\sqrt{3}$ | 0.6  | 0.49 | 1.7  | 1.4   | 8        |  |  |
| 21   | Liquid permittivity<br>(meas.)                                     | А    | 1.6         | N              | 1          | 0.6  | 0.49 | 1.0  | 0.8   | 521      |  |  |



| Combined standard<br>uncertainty                         | $u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$ |  |  | 9.25 | 9.12 | 257 |
|----------------------------------------------------------|-------------------------------------------------------|--|--|------|------|-----|
| Expanded uncertainty<br>(confidence interval of<br>95 %) | $u_e = 2u_c$                                          |  |  | 18.5 | 18.2 |     |

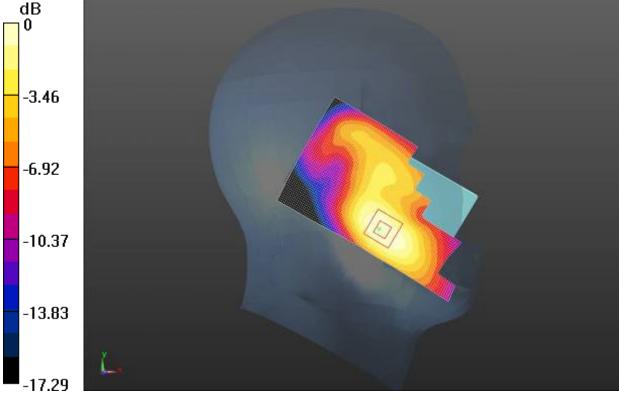
## **16 MAIN TEST INSTRUMENTS**

#### Table 16.1: List of Main Instruments

| No. | Name                  | Туре           | Serial Number | Calibration Date         | Valid Period |  |
|-----|-----------------------|----------------|---------------|--------------------------|--------------|--|
| 01  | Network analyzer      | Agilent E5071C | MY46103759    | December 27,2013         | One year     |  |
| 02  | Power meter           | NRVD           | 101253        | March C 2014             |              |  |
| 03  | Power sensor          | NRV-Z5         | 100333        | March 6,2014             | One year     |  |
| 04  | Signal Generator      | E4438C         | MY45095825    | January 14, 2014         | One year     |  |
| 05  | Amplifier             | VTL5400        | 0404          | No Calibration Requested |              |  |
| 06  | BTS                   | E5515C         | GB47460133    | September 5, 2013        | One year     |  |
| 07  | E-field Probe         | SPEAG ES3DV3   | 3151          | July 31, 2013            | One year     |  |
| 08  | DAE                   | SPEAG DAE4     | 786           | November 25, 2013        | One year     |  |
| 9   | Dipole Validation Kit | SPEAG D1900V2  | 5d088         | October 17,2012          | Two year     |  |
| 10  | Dipole Validation Kit | SPEAG D2450V2  | 873           | October 18,2012          | Two year     |  |

\*\*\*END OF REPORT BODY\*\*\*




## ANNEX A GRAPH RESULTS

# GSM 1900 head

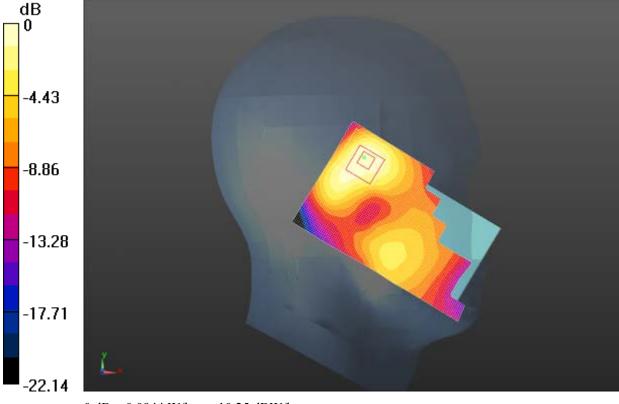
Date/Time: 2/22/2014 11:47:15 AM Electronics: DAE4 Sn786 Medium: Head 1900 Medium parameters used: f = 1880 MHz;  $\sigma = 1.409 \text{ S/m}$ ;  $\varepsilon_r = 39.59$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:21.0°C Liquid Temperature: 20.5°C Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013 Left Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 5.039 V/m; Power Drift = 0.15 dBMaximum value of SAR (interpolated) = 0.236 W/kgLeft Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.039 V/m; Power Drift = 0.15 dBPeak SAR (extrapolated) = 0.318 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.130 W/kg

Maximum value of SAR (measured) = 0.234 W/kg



0 dB = 0.234 W/kg = -6.31 dBW/kg


Fig. 1 1900 MHz CH661



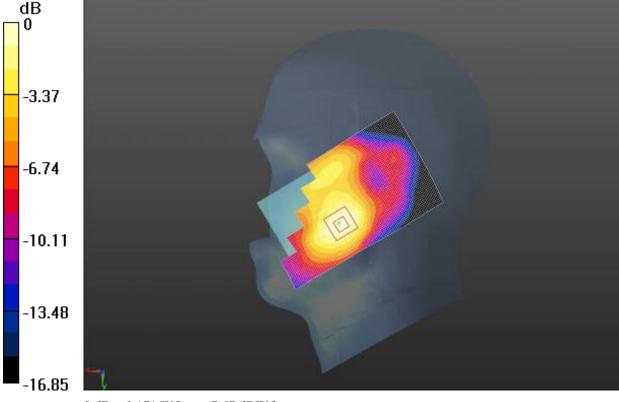
Date/Time: 2/22/2014 12:36:51 PM Electronics: DAE4 Sn786 Medium: Head 1900 Medium parameters used: f = 1880 MHz;  $\sigma = 1.409 \text{ S/m}$ ;  $\varepsilon_r = 39.59$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013 Left Tilt Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 6.893 V/m; Power Drift = 0.13 dB Maximum value of SAR (interpolated) = 0.105 W/kg Left Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.893 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.137 W/kg

SAR(1 g) = 0.088 W/kg; SAR(10 g) = 0.052 W/kg

Maximum value of SAR (measured) = 0.0944 W/kg



0 dB = 0.0944 W/kg = -10.25 dBW/kg


Fig. 2 1900 MHz CH661



Date/Time: 2/22/2014 11:15:00 AM Electronics: DAE4 Sn786 Medium: Head 1900 Medium parameters used: f = 1880 MHz;  $\sigma = 1.409 \text{ S/m}$ ;  $\varepsilon_r = 39.59$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:21.0°C Liquid Temperature: 20.5°C Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013 Right Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 4.859 V/m; Power Drift = 0.15 dBMaximum value of SAR (interpolated) = 0.176 W/kgRight Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.859 V/m; Power Drift = 0.15 dBPeak SAR (extrapolated) = 0.234 W/kg

SAR(1 g) = 0.158 W/kg; SAR(10 g) = 0.096 W/kg

Maximum value of SAR (measured) = 0.171 W/kg



0 dB = 0.171 W/kg = -7.67 dBW/kg

Fig. 3 1900 MHz CH661



Date/Time: 2/22/2014 11:29:59 AM

Electronics: DAE4 Sn786

Medium: Head 1900

Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.409 S/m;  $\epsilon_r$  = 39.59;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

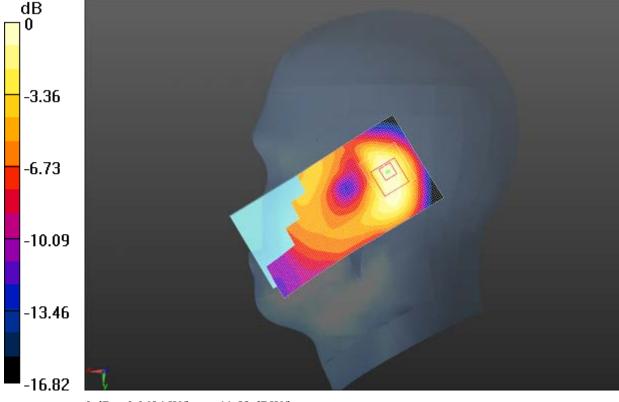
Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042

Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013

**Right Tilt Middle/Area Scan (51x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm

Reference Value = 6.905 V/m; Power Drift = 0.02 dB

Maximum value of SAR (interpolated) = 0.0701 W/kg


**Right Tilt Middle/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.905 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.102 W/kg

SAR(1 g) = 0.063 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.0694 W/kg



0 dB = 0.0694 W/kg = -11.58 dBW/kg

Fig. 4 1900 MHz CH661



Date/Time: 2/22/2014 12:03:18 PM Electronics: DAE4 Sn786 Medium: Head 1900 Medium parameters used: f = 1910 MHz;  $\sigma = 1.435$  S/m;  $\varepsilon_r = 39.507$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C Communication System: GSM Frequency: 1910 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013 Left Cheek High/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 4.999 V/m; Power Drift = 0.17 dB Maximum value of SAR (interpolated) = 0.230 W/kg Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.999 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.315 W/kg

SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.125 W/kg

Maximum value of SAR (measured) = 0.226 W/kg



0 dB = 0.226 W/kg = -6.46 dBW/kg



Date/Time: 2/22/2014 12:18:24 PM

Electronics: DAE4 Sn786

Medium: Head 1900

Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma$  = 1.382 S/m;  $\epsilon_r$  = 39.699;  $\rho$  = 1000 kg/m^3

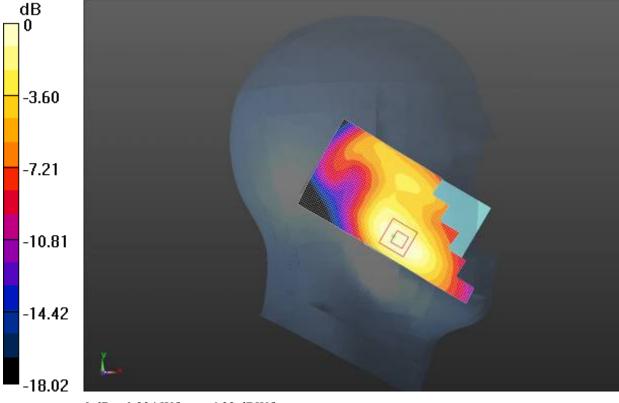
Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1850.2 MHz Duty Cycle: 1:8.30042

Probe: ES3DV3 - SN3151 ConvF(5.21, 5.21, 5.21); Calibrated: 7/31/2013

**Left Cheek Low/Area Scan (51x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 5.594 V/m; Power Drift = 0.20 dB

Maximum value of SAR (interpolated) = 0.238 W/kg


**Left Cheek Low/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.594 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.316 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.131 W/kg

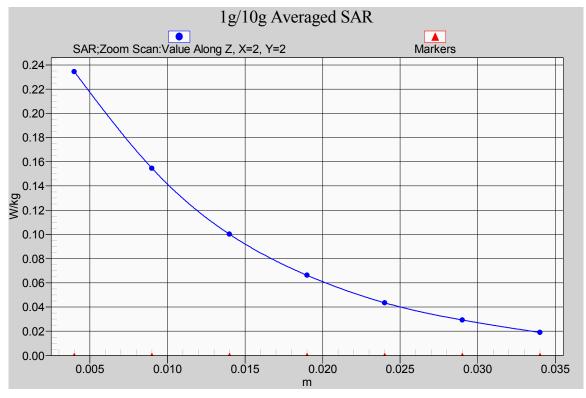
Maximum value of SAR (measured) = 0.234 W/kg

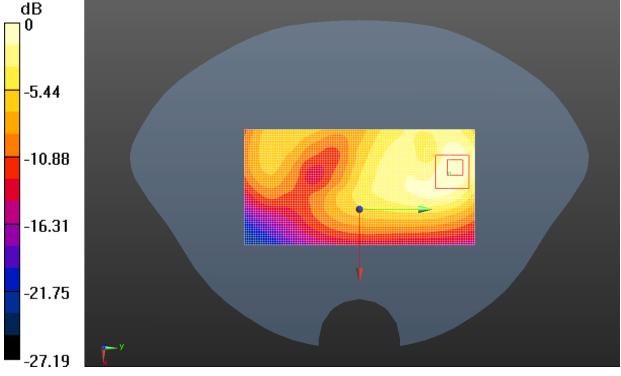


0 dB = 0.234 W/kg = -6.32 dBW/kg

Fig. 6 1900 MHz CH512







Fig. 6-1 Z-Scan at power reference point (1900MHz CH512)



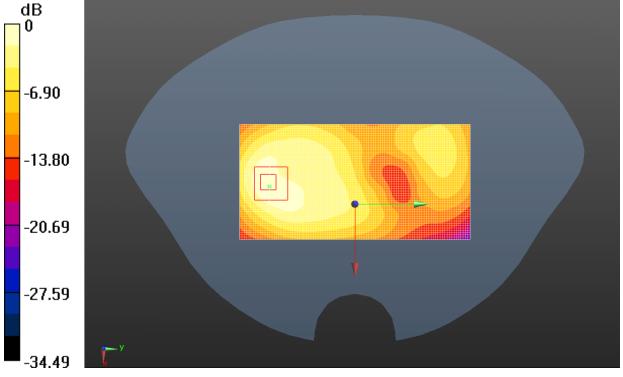
Date/Time: 2/26/2014 7:52:19 PM Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.536 \text{ S/m}$ ;  $\varepsilon_r = 51.467$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:23.7°C Liquid Temperature: 23.2°C Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2.08018 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013 Front side Middle/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 9.928 V/m; Power Drift = -0.10 dBMaximum value of SAR (interpolated) = 0.467 W/kgFront side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.928 V/m; Power Drift = -0.10 dBPeak SAR (extrapolated) = 0.758 W/kg

SAR(1 g) = 0.434 W/kg; SAR(10 g) = 0.238 W/kg

Maximum value of SAR (measured) = 0.451 W/kg



0 dB = 0.451 W/kg = -3.46 dBW/kg


Fig. 7 1900 MHz CH661



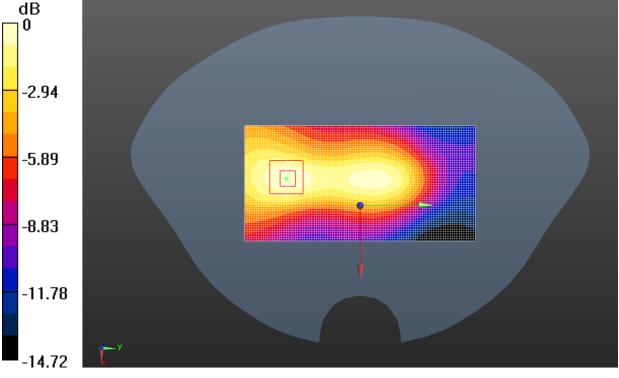
Date/Time: 2/27/2014 8:00:16 PM Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.536 \text{ S/m}$ ;  $\varepsilon_r = 51.467$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:23.7°C Liquid Temperature: 23.2°C Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2.08018 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013 Rear side Middle/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 9.842 V/m; Power Drift = -0.04 dBMaximum value of SAR (interpolated) = 0.605 W/kgRear side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.842 V/m; Power Drift = -0.04 dBPeak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.551 W/kg; SAR(10 g) = 0.314 W/kg

Maximum value of SAR (measured) = 0.617 W/kg



0 dB = 0.617 W/kg = -2.10 dBW/kg


Fig. 8 1900 MHz CH661



Date/Time: 2/27/2014 8:49:40 AM Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.536$  S/m;  $\varepsilon_r = 51.467$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature:23.7°C Liquid Temperature: 23.2°C Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2.08018 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013 Left side Middle/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 8.988 V/m; Power Drift = -0.01 dB Maximum value of SAR (interpolated) = 0.122 W/kg Left side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.988 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.179 W/kg

SAR(1 g) = 0.116 W/kg; SAR(10 g) = 0.070 W/kg

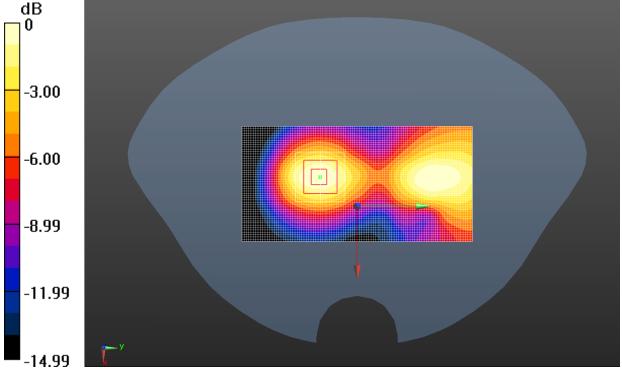
Maximum value of SAR (measured) = 0.127 W/kg



0 dB = 0.127 W/kg = -8.96 dBW/kg

Fig. 9 1900 MHz CH661




Date/Time: 2/27/2014 9:04:45 AM Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.536$  S/m;  $\varepsilon_r = 51.467$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.7°C Liquid Temperature: 23.2°C Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2.08018 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013 **Right side Middle/Area Scan (51x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 6.600 V/m; Power Drift = 0.01 dB Maximum value of SAR (interpolated) = 0.146 W/kg **Right side Middle/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.600 V/m; Power Drift = 0.01 dB

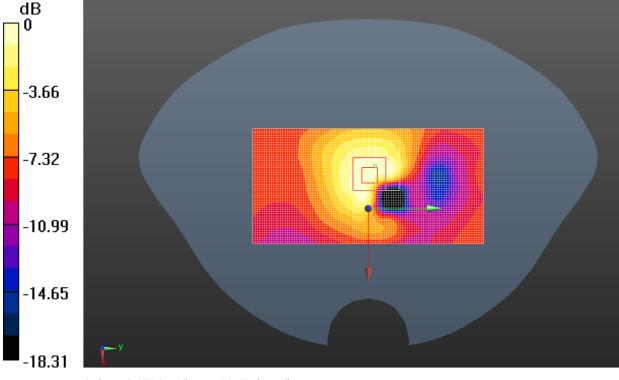
Peak SAR (extrapolated) = 0.203 W/kg

SAR(1 g) = 0.128 W/kg; SAR(10 g) = 0.075 W/kg

Maximum value of SAR (measured) = 0.141 W/kg



0 dB = 0.141 W/kg = -8.51 dBW/kg


Fig. 10 1900 MHz CH661



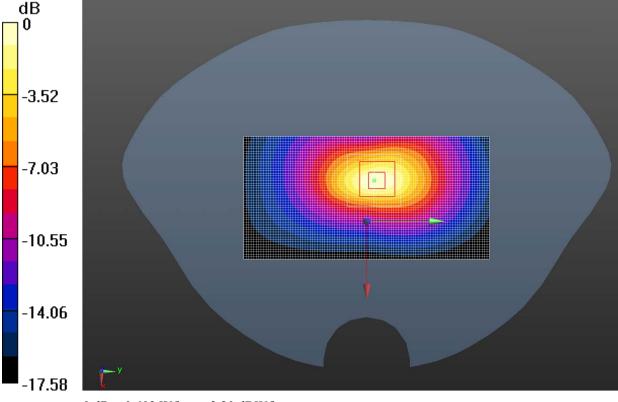
Date/Time: 2/27/2014 9:20:22 AM Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.536$  S/m;  $\varepsilon_r = 51.467$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature:23.7°C Liquid Temperature: 23.2°C Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2.08018 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013 **Top side Middle/Area Scan (51x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 4.842 V/m; Power Drift = 0.15 dB Maximum value of SAR (interpolated) = 0.0386 W/kg **Top side Middle/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.842 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.0500 W/kg

SAR(1 g) = 0.032 W/kg; SAR(10 g) = 0.020 W/kg

Maximum value of SAR (measured) = 0.0340 W/kg



0 dB = 0.0340 W/kg = -14.69 dBW/kg


Fig. 11 1900 MHz CH661



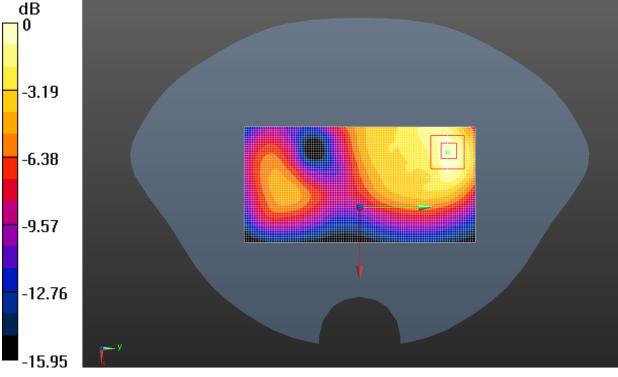
Date/Time: 2/27/2014 9:36:11 AM Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.536 \text{ S/m}$ ;  $\varepsilon_r = 51.467$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:23.7°C Liquid Temperature: 23.2°C Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2.08018 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013 Bottom side Middle/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 15.793 V/m; Power Drift = 0.13 dBMaximum value of SAR (interpolated) = 0.595 W/kgBottom side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.793 V/m; Power Drift = 0.13 dBPeak SAR (extrapolated) = 0.889 W/kg

SAR(1 g) = 0.525 W/kg; SAR(10 g) = 0.278 W/kg

Maximum value of SAR (measured) = 0.603 W/kg



0 dB = 0.603 W/kg = -2.20 dBW/kg


Fig. 12 1900 MHz CH661



Date/Time: 2/27/2014 8:24:09 PM Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.557$  S/m;  $\varepsilon_r = 51.434$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature:23.7°C Liquid Temperature: 23.2°C Communication System: 4 slot GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2.08018 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013 **Rear side High/Area Scan (51x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 8.067 V/m; Power Drift = 0.07 dB Maximum value of SAR (interpolated) = 0.459 W/kg **Rear side High/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.067 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.654 W/kg

SAR(1 g) = 0.394 W/kg; SAR(10 g) = 0.228 W/kg

Maximum value of SAR (measured) = 0.438 W/kg



0 dB = 0.438 W/kg = -3.59 dBW/kg

Fig. 13 1900 MHz CH810



Date/Time: 2/27/2014 8:38:59 PM

Electronics: DAE4 Sn786

Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma$  = 1.499 S/m;  $\epsilon_r$  = 51.5;  $\rho$  = 1000 kg/m^3

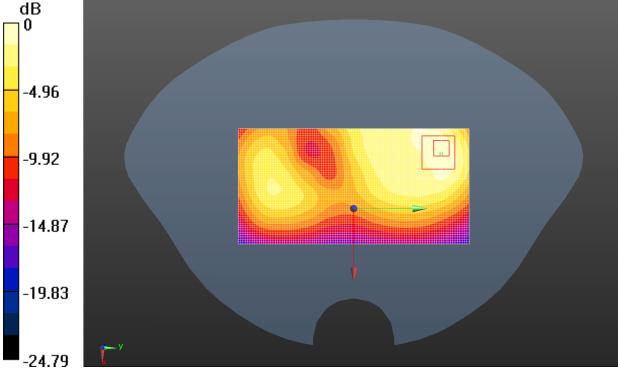
Ambient Temperature: 23.7°C Liquid Temperature: 23.2°C

Communication System: 4 slot GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2.08018 Probe: ES3DV3 - SN3151 ConvF(4.96, 4.96, 4.96); Calibrated: 7/31/2013

Rear side Low/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Reference Value = 9.273 V/m; Power Drift = 0.13 dB

Maximum value of SAR (interpolated) = 0.591 W/kg


Rear side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.273 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 2.27 W/kg

SAR(1 g) = 0.555 W/kg; SAR(10 g) = 0.309 W/kg

Maximum value of SAR (measured) = 0.562 W/kg



0 dB = 0.562 W/kg = -2.50 dBW/kg

Fig. 14 1900 MHz CH512



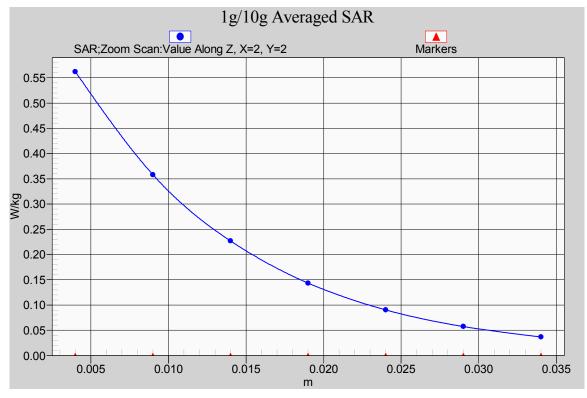
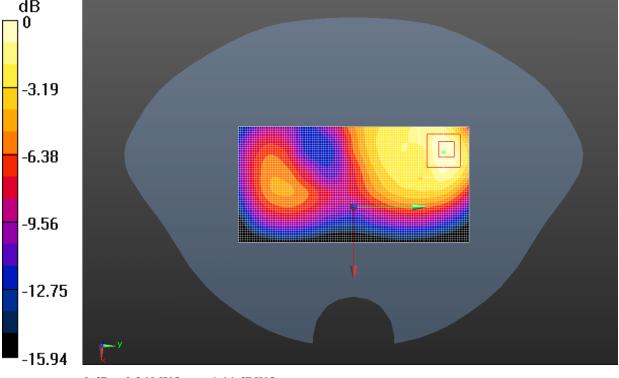



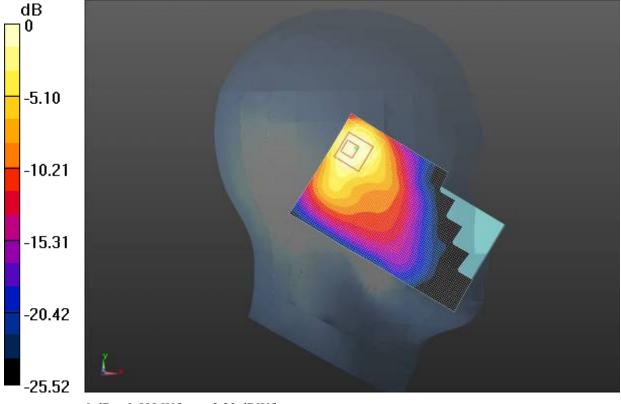

Fig. 14-1 Z-Scan at power reference point (1900 MHz CH512)



Date/Time: 2/27/2014 9:10:59 PM Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.499$  S/m;  $\varepsilon_r = 51.5$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature:23.7°C Liquid Temperature: 23.2°C Communication System: GSM Frequency: 1850.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.96, 4.96, 4.96); Calibrated: 7/31/2013 Rear side Low SPEECH /Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 6.500 V/m; Power Drift = 0.11 dBMaximum value of SAR (interpolated) = 0.388 W/kgRear side Low SPEECH /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.500 V/m; Power Drift = 0.11 dBPeak SAR (extrapolated) = 0.535 W/kgSAR(1 g) = 0.331 W/kg; SAR(10 g) = 0.190 W/kgMaximum value of SAR (measured) = 0.360 W/kgdB



0 dB = 0.360 W/kg = -4.44 dBW/kg


Fig. 15 1900 MHz CH512



Date/Time: 2/20/2014 10:48:45 AM Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 1.847$  S/m;  $\varepsilon_r = 40.128$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature:20.3°C Liquid Temperature: 19.8°C Communication System: WiFi 802.11 b Frequency: 2437 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013 left/Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 12.879 V/m; Power Drift = 0.11 dBMaximum value of SAR (interpolated) = 0.680 W/kgleft/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.879 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.601 W/kg; SAR(10 g) = 0.280 W/kg

Maximum value of SAR (measured) = 0.598 W/kg



0 dB = 0.598 W/kg = -2.23 dBW/kg

Fig. 16 2450 MHz CH6



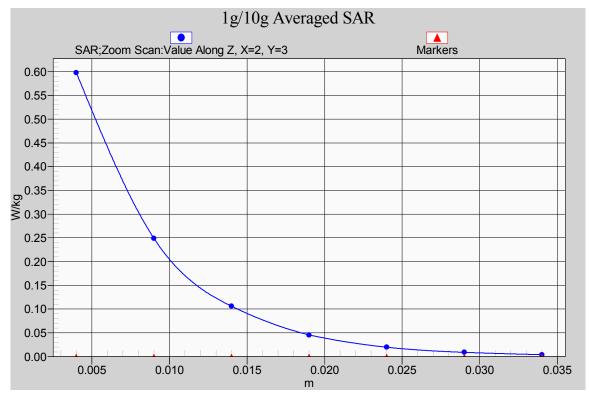



Fig. 16-1 Z-Scan at power reference point (2450 MHz CH6)



Date/Time: 2/20/2014 11:04:15 AM

Electronics: DAE4 Sn786

Medium: Head 2450

Medium parameters used (interpolated): f = 2437 MHz;  $\sigma$  = 1.847 S/m;  $\epsilon_r$  = 40.128;  $\rho$  = 1000 kg/m^3

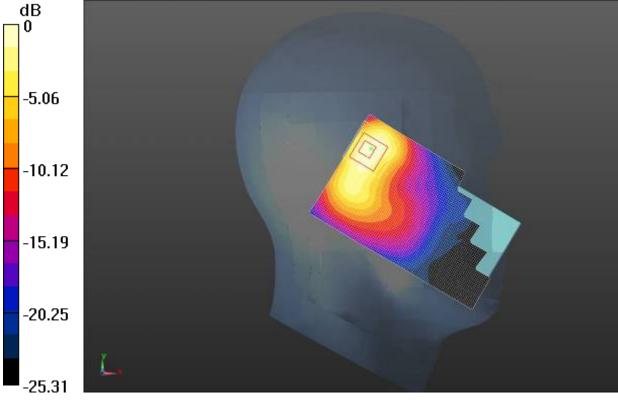
Ambient Temperature: 20.3°C Liquid Temperature: 19.8°C

Communication System: WiFi 802.11 b Frequency: 2437 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013

**left/Tilt Middle/Area Scan (61x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 13.497 V/m; Power Drift = 0.06 dB

Maximum value of SAR (interpolated) = 0.514 W/kg

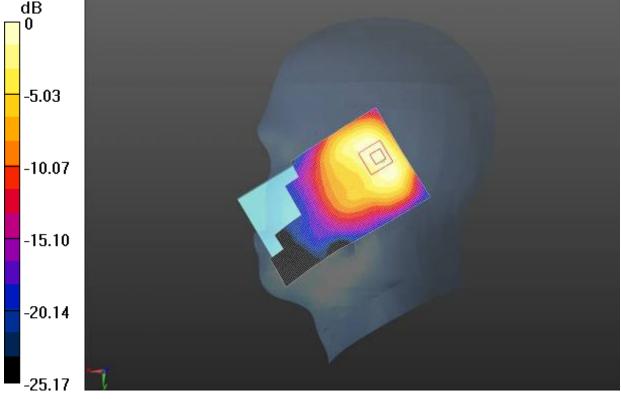

**left/Tilt Middle/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.497 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.476 W/kg; SAR(10 g) = 0.211 W/kg

Maximum value of SAR (measured) = 0.484 W/kg




0 dB = 0.484 W/kg = -3.15 dBW/kg

Fig. 17 2450 MHz CH6



Date/Time: 2/20/2014 5:27:34 PM Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 1.847$  S/m;  $\varepsilon_r = 40.128$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature:20.3°C Liquid Temperature: 19.8°C Communication System: WiFi 802.11 b Frequency: 2437 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013 right/Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 14.783 V/m; Power Drift = -0.14 dB Maximum value of SAR (interpolated) = 0.438 W/kgright/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.783 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.674 W/kgSAR(1 g) = 0.371 W/kg; SAR(10 g) = 0.199 W/kgMaximum value of SAR (measured) = 0.410 W/kgdB



0 dB = 0.410 W/kg = -3.87 dBW/kg

Fig. 18 2450 MHz CH6



Date/Time: 2/20/2014 8:54:42 PM

Electronics: DAE4 Sn786

Medium: Head 2450

Medium parameters used (interpolated): f = 2437 MHz;  $\sigma$  = 1.847 S/m;  $\epsilon_r$  = 40.128;  $\rho$  = 1000 kg/m^3

Ambient Temperature: 20.3°C Liquid Temperature: 19.8°C

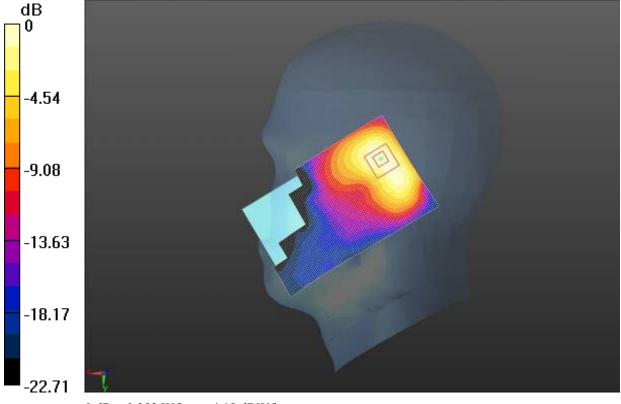
Communication System: WiFi 802.11 b Frequency: 2437 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013

right/Tilt Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Reference Value = 13.978 V/m; Power Drift = -0.20 dB

Maximum value of SAR (interpolated) = 0.410 W/kg


**right/Tilt Middle/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.978 V/m; Power Drift = -0.20 dB

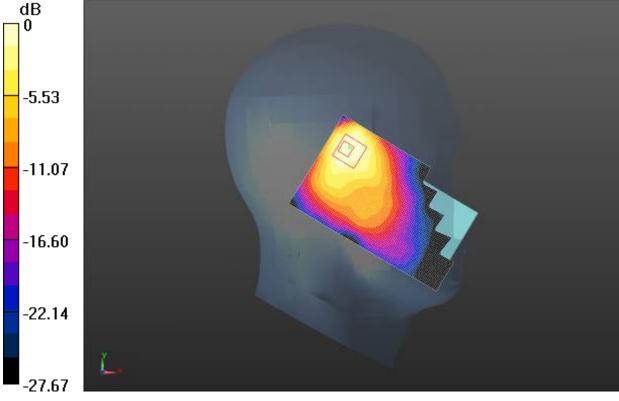
Peak SAR (extrapolated) = 0.628 W/kg

SAR(1 g) = 0.339 W/kg; SAR(10 g) = 0.176 W/kg

Maximum value of SAR (measured) = 0.382 W/kg



0 dB = 0.382 W/kg = -4.18 dBW/kg


Fig. 19 2450 MHz CH6



Date/Time: 2/20/2014 11:41:21 AM Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used: f = 2462 MHz;  $\sigma = 1.88$  S/m;  $\epsilon_r = 40.052$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 20.3°C Liquid Temperature: 19.8°C Communication System: WiFi 802.11 b Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013 **left/Cheek High/Area Scan (61x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 12.476 V/m; Power Drift = 0.07 dB Maximum value of SAR (interpolated) = 0.854 W/kg **left/Cheek High/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.476 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.595 W/kg; SAR(10 g) = 0.294 W/kg

Maximum value of SAR (measured) = 0.581 W/kg



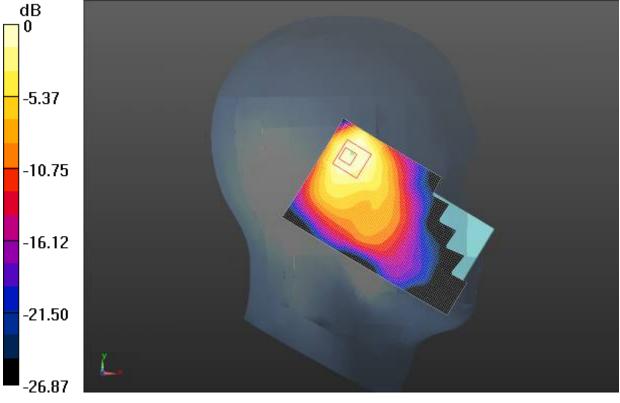
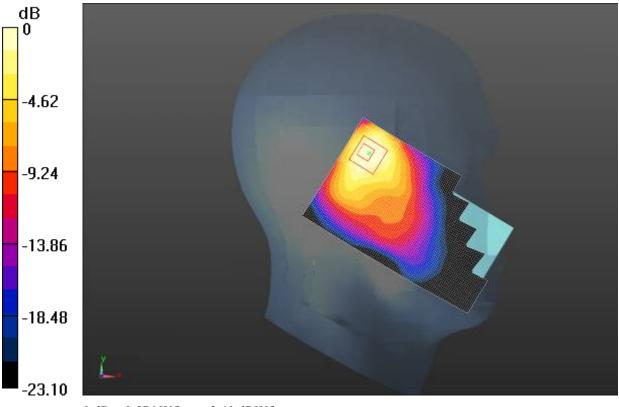

0 dB = 0.581 W/kg = -2.36 dBW/kg

Fig. 20 2450 MHz CH11



Date/Time: 2/20/2014 1:42:50 PM Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used: f = 2412 MHz;  $\sigma = 1.815$  S/m;  $\varepsilon_r = 40.212$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 20.3°C Liquid Temperature: 19.8°C Communication System: WiFi 802.11 b Frequency: 2412 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013 left/Cheek Low/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 9.218 V/m; Power Drift = 0.05 dBMaximum value of SAR (interpolated) = 0.455 W/kgleft/Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.218 V/m; Power Drift = 0.05 dBPeak SAR (extrapolated) = 0.676 W/kgSAR(1 g) = 0.305 W/kg; SAR(10 g) = 0.158 W/kg

Maximum value of SAR (measured) = 0.319 W/kg




0 dB = 0.319 W/kg = -4.96 dBW/kg

Fig. 21 2450 MHz CH1



Date/Time: 2/20/2014 2:03:23 PM Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used: f = 2462 MHz;  $\sigma = 1.88 \text{ S/m}$ ;  $\varepsilon_r = 40.052$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:20.3°C Liquid Temperature: 19.8°C Communication System: WiFi 802.11 b Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013 left/Cheek High 11b/11M/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 12.637 V/m; Power Drift = 0.11 dBMaximum value of SAR (interpolated) = 0.719 W/kgleft/Cheek High 11b/11M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.637 V/m; Power Drift = 0.11 dBPeak SAR (extrapolated) = 1.30 W/kgSAR(1 g) = 0.573 W/kg; SAR(10 g) = 0.284 W/kgMaximum value of SAR (measured) = 0.576 W/kg



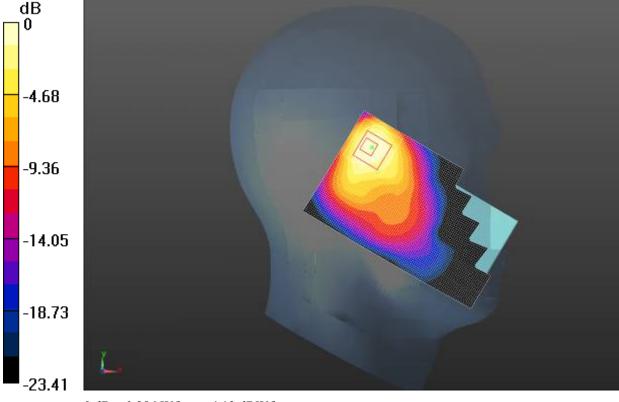
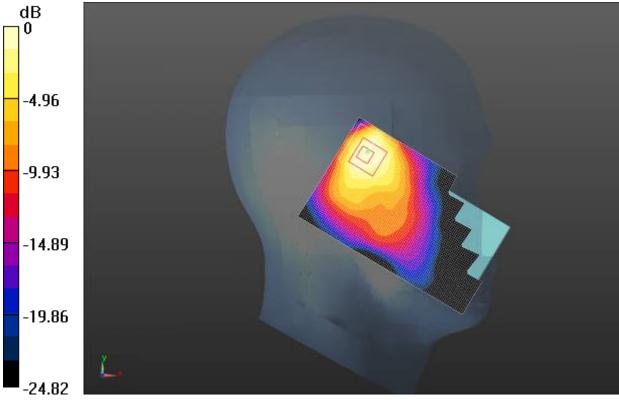

0 dB = 0.576 W/kg = -2.40 dBW/kg

Fig. 22 2450 MHz CH11



Date/Time: 2/20/2014 11:22:07 AM Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used: f = 2462 MHz;  $\sigma = 1.88 \text{ S/m}$ ;  $\varepsilon_r = 40.052$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:20.3°C Liquid Temperature: 19.8°C Communication System: WiFi 802.11 g Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013 left/Cheek High 11g/6M/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 9.759 V/m; Power Drift = 0.19 dBMaximum value of SAR (interpolated) = 0.512 W/kgleft/Cheek High 11g/6M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.759 V/m; Power Drift = 0.19 dBPeak SAR (extrapolated) = 0.919 W/kg SAR(1 g) = 0.388 W/kg; SAR(10 g) = 0.192 W/kg

Maximum value of SAR (measured) = 0.386 W/kg

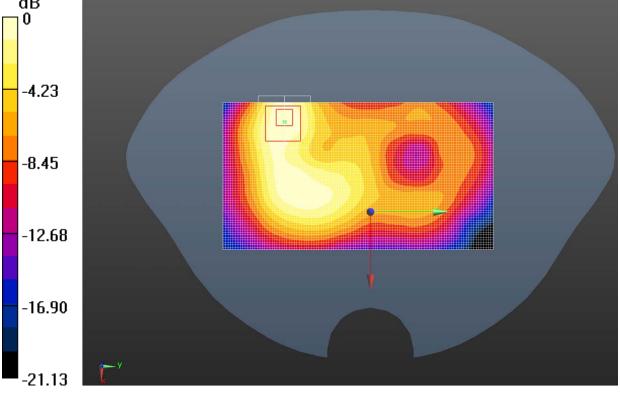



0 dB = 0.386 W/kg = -4.13 dBW/kg

Fig. 23 2450 MHz CH11



Date/Time:2/20/2014 2:24:56 PM Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used: f = 2462 MHz;  $\sigma = 1.88 \text{ S/m}$ ;  $\varepsilon_r = 40.052$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:20.3°C Liquid Temperature: 19.8°C Communication System: WiFi 802.11 b Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013 left/Cheek High 11n/MCS0/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 9.625 V/m; Power Drift = 0.08 dBMaximum value of SAR (interpolated) = 0.606 W/kgleft/Cheek High 11n/MCS0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.625 V/m; Power Drift = 0.08 dBPeak SAR (extrapolated) = 0.908 W/kg SAR(1 g) = 0.394 W/kg; SAR(10 g) = 0.197 W/kgMaximum value of SAR (measured) = 0.409 W/kg

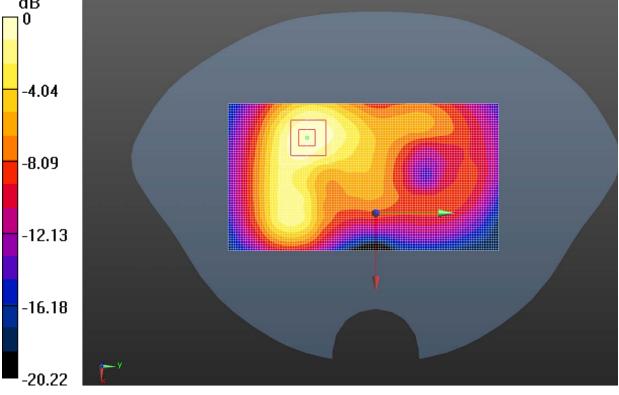



0 dB = 0.409 W/kg = -3.88 dBW/kg

Fig. 24 2450 MHz CH11



Date/Time: 2/21/2014 4:49:16 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 1.923$  S/m;  $\varepsilon_r = 52.269$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature:20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 b Frequency: 2437 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Front side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 4.589 V/m; Power Drift = -0.13 dBMaximum value of SAR (interpolated) = 0.109 W/kgBODY/Front side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.589 V/m; Power Drift = -0.13 dBPeak SAR (extrapolated) = 0.209 W/kgSAR(1 g) = 0.104 W/kg; SAR(10 g) = 0.054 W/kgMaximum value of SAR (measured) = 0.111 W/kgdB




0 dB = 0.111 W/kg = -9.55 dBW/kg

Fig. 25 2450 MHz CH6



Date/Time: 2/21/2014 5:06:38 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 1.923$  S/m;  $\varepsilon_r = 52.269$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature:20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 b Frequency: 2437 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Rear side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 3.879 V/m; Power Drift = 0.12 dBMaximum value of SAR (interpolated) = 0.122 W/kgBODY/Rear side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.879 V/m; Power Drift = 0.12 dBPeak SAR (extrapolated) = 0.180 W/kgSAR(1 g) = 0.106 W/kg; SAR(10 g) = 0.060 W/kgMaximum value of SAR (measured) = 0.116 W/kgdB Û



0 dB = 0.116 W/kg = -9.36 dBW/kg

Fig. 26 2450 MHz CH6



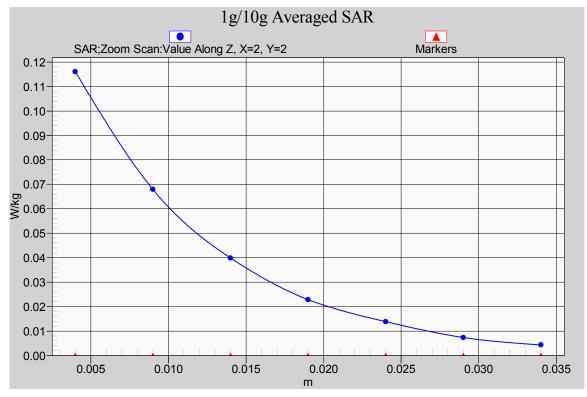
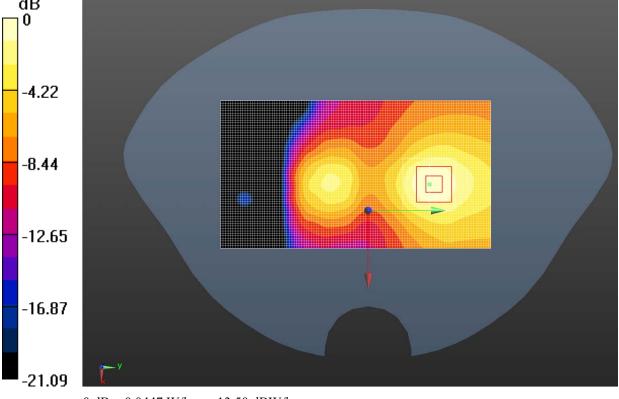
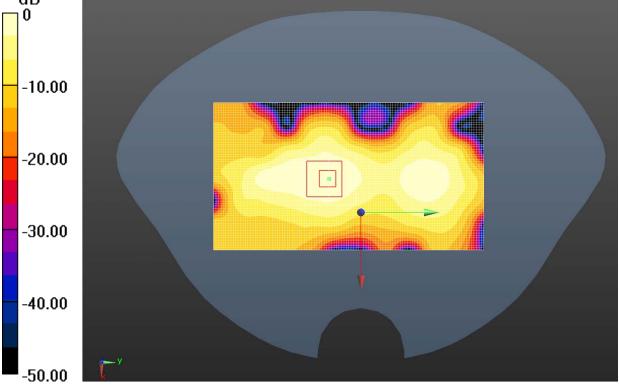




Fig. 26-1 Z-Scan at power reference point (2450 MHz CH6)



Date/Time: 2/21/2014 5:43:21 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 1.923$  S/m;  $\varepsilon_r = 52.269$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature:20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 b Frequency: 2437 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Left side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 2.611 V/m; Power Drift = 0.10 dBMaximum value of SAR (interpolated) = 0.0435 W/kg BODY/Left side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.611 V/m; Power Drift = 0.10 dBPeak SAR (extrapolated) = 0.0700 W/kgSAR(1 g) = 0.041 W/kg; SAR(10 g) = 0.023 W/kgMaximum value of SAR (measured) = 0.0447 W/kgdB

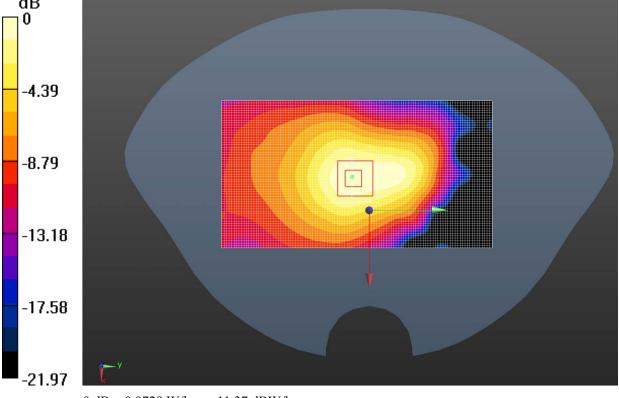



0 dB = 0.0447 W/kg = -13.50 dBW/kg

Fig. 27 2450 MHz CH6



Date/Time: 2/21/2014 5:25:23 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 1.923$  S/m;  $\varepsilon_r = 52.269$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature:20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 b Frequency: 2437 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Right side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 3.200 V/m; Power Drift = 0.12 dBMaximum value of SAR (interpolated) = 0.0402 W/kgBODY/Right side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.200 V/m; Power Drift = 0.12 dBPeak SAR (extrapolated) = 0.0620 W/kgSAR(1 g) = 0.036 W/kg; SAR(10 g) = 0.020 W/kgMaximum value of SAR (measured) = 0.0398 W/kgdB Û




0 dB = 0.0398 W/kg = -14.00 dBW/kg

Fig. 28 2450 MHz CH6



Date/Time: 2/21/2014 6:02:48 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 1.923$  S/m;  $\varepsilon_r = 52.269$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature:20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 b Frequency: 2437 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Top side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 6.047 V/m; Power Drift = 0.10 dBMaximum value of SAR (interpolated) = 0.0733 W/kg BODY/Top side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.047 V/m; Power Drift = 0.10 dBPeak SAR (extrapolated) = 0.110 W/kgSAR(1 g) = 0.066 W/kg; SAR(10 g) = 0.038 W/kgMaximum value of SAR (measured) = 0.0729 W/kgdB



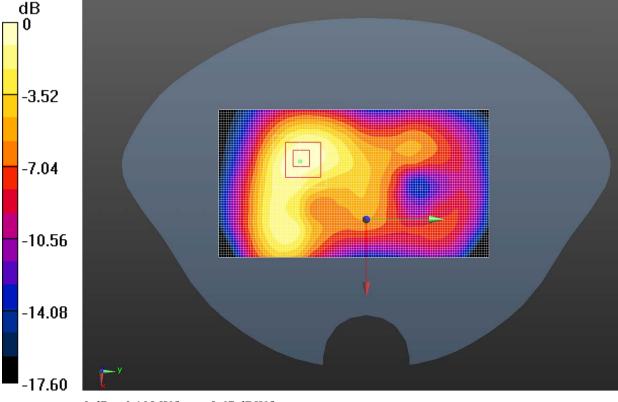

0 dB = 0.0729 W/kg = -11.37 dBW/kg

Fig. 29 2450 MHz CH6



Date/Time: 2/21/2014 7:40:00 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used: f = 2462 MHz;  $\sigma = 1.948 \text{ S/m}$ ;  $\varepsilon_r = 52.202$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 b Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Rear side High/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 4.701 V/m; Power Drift = -0.06 dBMaximum value of SAR (interpolated) = 0.109 W/kgBODY/Rear side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.701 V/m; Power Drift = -0.06 dBPeak SAR (extrapolated) = 0.165 W/kgSAR(1 g) = 0.099 W/kg; SAR(10 g) = 0.057 W/kg

Maximum value of SAR (measured) = 0.108 W/kg



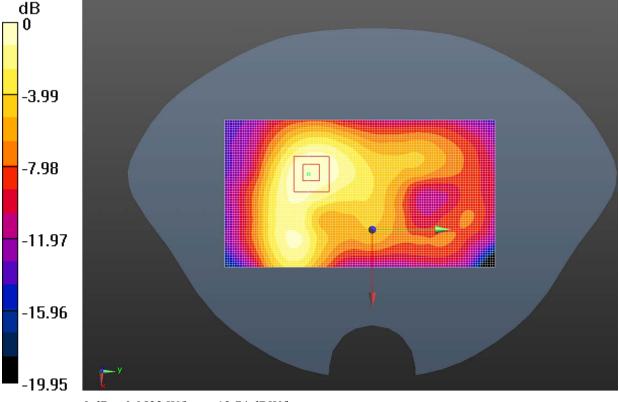
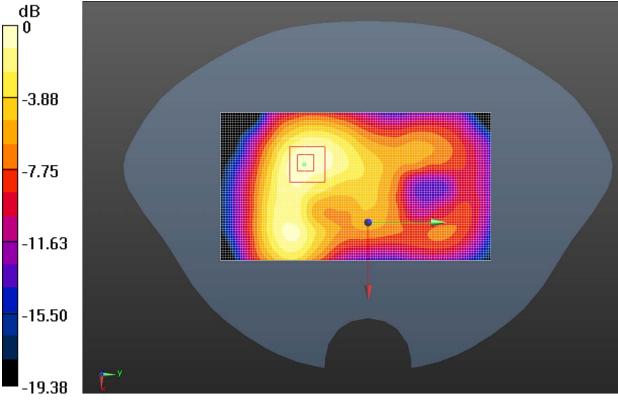

0 dB = 0.108 W/kg = -9.67 dBW/kg

Fig. 30 2450 MHz CH11



Date/Time: 2/21/2014 8:01:32 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used: f = 2412 MHz;  $\sigma = 1.893$  S/m;  $\varepsilon_r = 52.318$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 b Frequency: 2412 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Rear side Low/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 3.311 V/m; Power Drift = 0.15 dBMaximum value of SAR (interpolated) = 0.0578 W/kgBODY/Rear side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.311 V/m; Power Drift = 0.15 dBPeak SAR (extrapolated) = 0.0790 W/kg SAR(1 g) = 0.049 W/kg; SAR(10 g) = 0.029 W/kg

Maximum value of SAR (measured) = 0.0532 W/kg

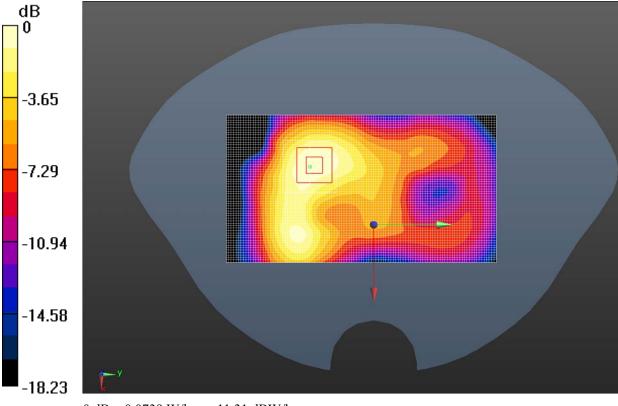



0 dB = 0.0532 W/kg = -12.74 dBW/kg

Fig. 31 2450 MHz CH1



Date/Time: 2/21/2014 8:25:20 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used: f = 2462 MHz;  $\sigma = 1.948 \text{ S/m}$ ;  $\varepsilon_r = 52.202$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 b Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Rear side High 11b/11M/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 4.671 V/m; Power Drift = 0.16 dBMaximum value of SAR (interpolated) = 0.115 W/kgBODY/Rear side High 11b/11M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.671 V/m; Power Drift = 0.16 dBPeak SAR (extrapolated) = 0.171 W/kgSAR(1 g) = 0.103 W/kg; SAR(10 g) = 0.060W/kgMaximum value of SAR (measured) = 0.113 W/kg

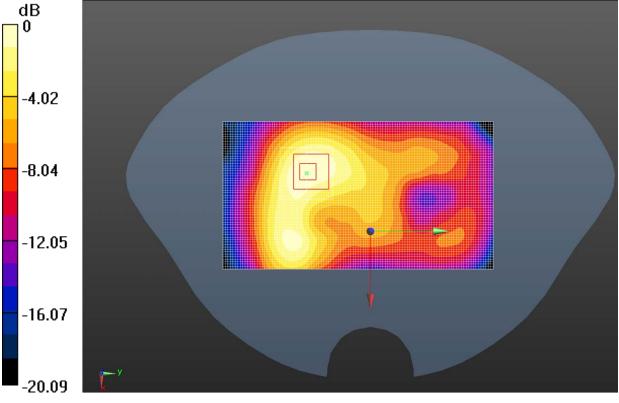



0 dB = 0.113 W/kg = -9.47 dBW/kg

Fig. 32 2450 MHz CH11



Date/Time: 2/21/2014 8:46:18 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used: f = 2462 MHz;  $\sigma = 1.948 \text{ S/m}$ ;  $\varepsilon_r = 52.202$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 g Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Rear side High 11g/6M/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 3.797 V/m; Power Drift = 0.02 dBMaximum value of SAR (interpolated) = 0.0756 W/kgBODY/Rear side High 11g/6M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.797 V/m; Power Drift = 0.02 dBPeak SAR (extrapolated) = 0.112 W/kgSAR(1 g) = 0.068 W/kg; SAR(10 g) = 0.039 W/kgMaximum value of SAR (measured) = 0.0739 W/kg




0 dB = 0.0739 W/kg = -11.31 dBW/kg

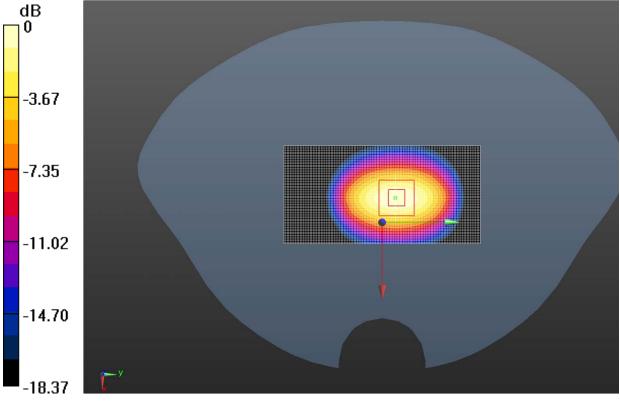
Fig. 33 2450 MHz CH11



Date/Time: 2/21/2014 9:06:32 PM Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used: f = 2462 MHz;  $\sigma = 1.948 \text{ S/m}$ ;  $\varepsilon_r = 52.202$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C Communication System: WiFi 802.11 nHT20 Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 BODY/Rear side High 11n/MCS0/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 3.779 V/m; Power Drift = 0.02 dBMaximum value of SAR (interpolated) = 0.0778 W/kgBODY/Rear side High 11n/MCS0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.779 V/m; Power Drift = 0.02 dBPeak SAR (extrapolated) = 0.114 W/kgSAR(1 g) = 0.068 W/kg; SAR(10 g) = 0.039 W/kgMaximum value of SAR (measured) = 0.0741 W/kg



0 dB = 0.0741 W/kg = -11.30 dBW/kg


Fig. 34 2450 MHz CH11



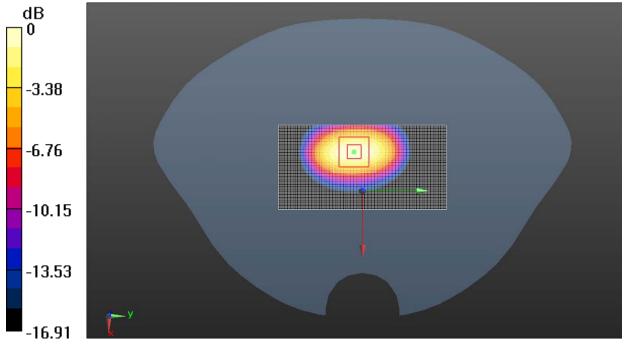
#### ANNEX B System Verification Results

#### 1900MHz

Date: 2/22/2014 Electronics: DAE4 Sn786 Medium: Head 1900 Medium parameters used: f = 1900 MHz;  $\sigma = 1.426 \text{ S/m}$ ;  $\varepsilon_r = 39.542$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:21.0°C Liquid Temperature: 20.5°C Communication System: CW TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013 System Validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 85.798 V/m; Power Drift = -0.11 dB Maximum value of SAR (interpolated) = 11.3 W/kgSystem Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.798 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 18.2 W/kgSAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.11 W/kgMaximum value of SAR (measured) = 11.4 W/kg



0 dB = 11.4 W/kg = 10.57 dBW/kg


Fig.B.1 validation 1900MHz 250mW



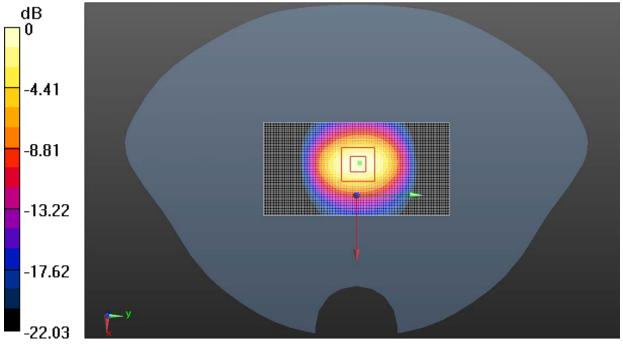
#### 1900MHz

Date: 2/27/2014 Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1900 MHz;  $\sigma = 1.552 \text{ S/m}$ ;  $\varepsilon_r = 51.443$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.7°C Liquid Temperature: 23.2°C Communication System: CW TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013 System validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 60.339 V/m; Power Drift = 0.08 dBMaximum value of SAR (interpolated) = 12.4 W/kgSystem validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.339 V/m; Power Drift = 0.08 dBPeak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.48 W/kg

Maximum value of SAR (measured) = 12.4 W/kg



0 dB = 12.4 W/kg = 10.93 dBW/kg


Fig.B.2validation 1900MHz 250Mw



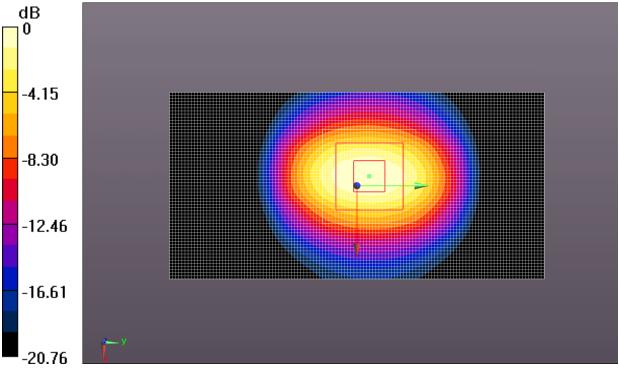
#### 2450MHz

Date: 2/20/2014 Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used: f = 2450 MHz;  $\sigma = 1.864 \text{ S/m}$ ;  $\varepsilon_r = 40.091$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 20.3°C Liquid Temperature: 19.8°C Communication System: CW TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 7/31/2013 System validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 91.463 V/m; Power Drift = -0.03 dB Maximum value of SAR (interpolated) = 16.5 W/kgSystem validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.463 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 29.7 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.29 W/kg

Maximum value of SAR (measured) = 16.0 W/kg



0 dB = 16.0 W/kg = 12.03 dBW/kg


Fig.B.3 validation 2450MHz 250mW



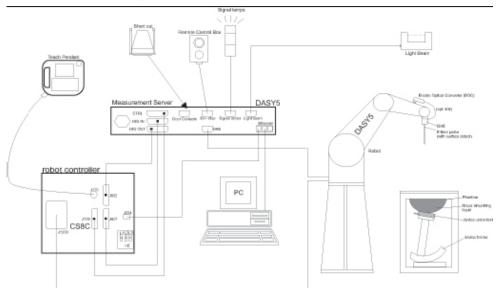
#### 2450MHz

Date: 2/21/2014 Electronics: DAE4 Sn786 Medium: Body 2450 Medium parameters used: f = 2450 MHz;  $\sigma = 1.942 \text{ S/m}$ ;  $\varepsilon_r = 52.236$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C Communication System: CW TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.15, 4.15, 4.15); Calibrated: 7/31/2013 System validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 16.1 W/kgSystem validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.042 V/m; Power Drift = 0.10 dBPeak SAR (extrapolated) = 29.2 W/kgSAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (measured) = 15.6 W/kg



0 dB = 15.6 W/kg = 11.93 dBW/kg


Fig.B.4 validation 2450MHz 250mW



## ANNEX C SAR Measurement Setup

## C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:



Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.



#### C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2<sup>nd</sup> ord curve fitting. The approach is sbottomped at reaching the maximum.

#### **Probe Specifications:**

| i i one opeemet |                                       |
|-----------------|---------------------------------------|
| Model:          | ES3DV3, EX3DV4                        |
| Frequency       | 10MHz — 6.0GHz(EX3DV4)                |
| Range:          | 10MHz — 4GHz(ES3DV3)                  |
| Calibration:    | In head and body simulating tissue at |
|                 | Frequencies from 835 up to 5800MHz    |
| Linearity:      | ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4  |
|                 | ± 0.2 dB(30 MHz to 4 GHz) for ES3DV3  |
| Dynamic Range:  | 10 mW/kg — 100W/kg                    |
| Probe Length:   | 330 mm                                |
| Probe Tip       |                                       |
| Length:         | 20 mm                                 |
| Body Diameter:  | 12 mm                                 |
| Tip Diameter:   | 2.5 mm (3.9 mm for ES3DV3)            |
| Tip-Center:     | 1 mm (2.0mm for ES3DV3)               |
| Application:    | SAR Dosimetry Testing                 |
|                 | Compliance tests of mobile phones     |
|                 | Dosimetry in strong gradient fields   |
|                 |                                       |



Picture C.2 Near-field Probe



**Picture C.3 E-field Probe** 

## C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm<sup>2</sup>) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed



in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to  $1 \text{ mW/ cm}^2$ .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

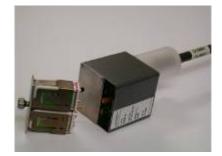
Where:

 $\Delta t$  = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle),  $\Delta T$  = Temperature increase due to RF exposure.

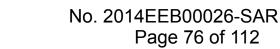
$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:  $\sigma$  = Simulated tissue conductivity,

 $\rho$  = Tissue density (kg/m<sup>3</sup>).


## C.4 Other Test Equipment

## C.4.1 Data Acquisition Electronics(DAE)


The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



PictureC.4: DAE





## C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)



PictureC.5: DASY5 Robot

## C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.



## No. 2014EEB00026-SAR Page 77 of 112





Picture C.6 Server for DASY 4

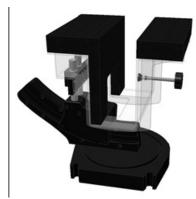
Picture C.7 Server for DASY 5

#### C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of  $\pm 0.5$ mm would produce a SAR uncertainty of  $\pm 20\%$ . Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss


POM material having the following dielectric

parameters: relative permittivity  $\varepsilon$  =3 and loss tangent  $\delta$  =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Lapbottom Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.





Picture C.8-2: Lapbottom Extension

Picture C.8-1: Device Holder Kit

## C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to



Represent the 90<sup>th</sup> percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special



#### Picture C.9: SAM Twin Phantom

The ELI4 phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest standard IEC 62209-2 and all known tissue simulating liquids. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0. I mm

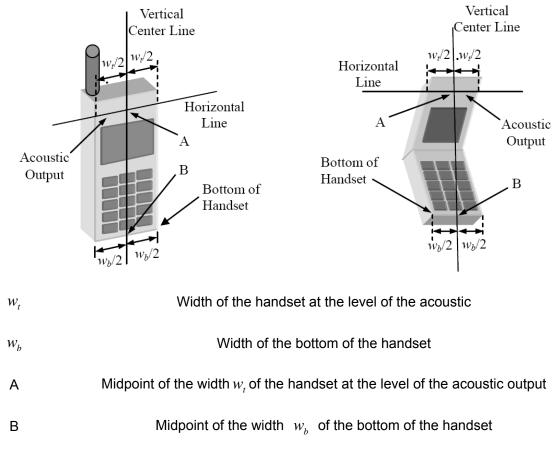
Filling Volume Dimensions

Approx. 20 liters 810 x 1000 x 500 mm (H x L x W)

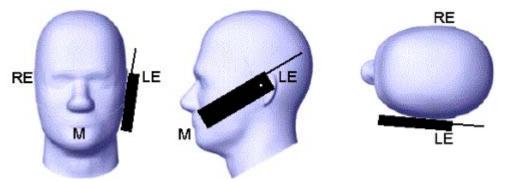
Available S

Special



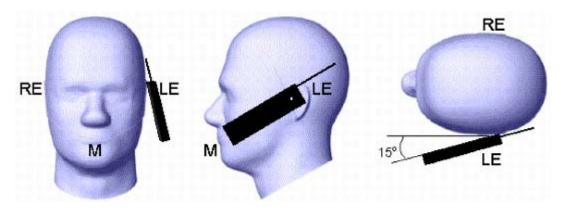

Picture C.10: SAM Twin Phantom




## ANNEX D Position of the wireless device in relation to the phantom

## **D.1 General Considerations**

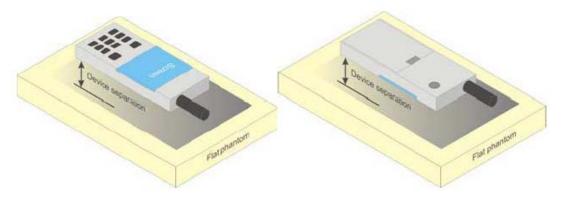
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.




Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset



Picture D.2 Cheek position of the wireless device on the left side of SAM



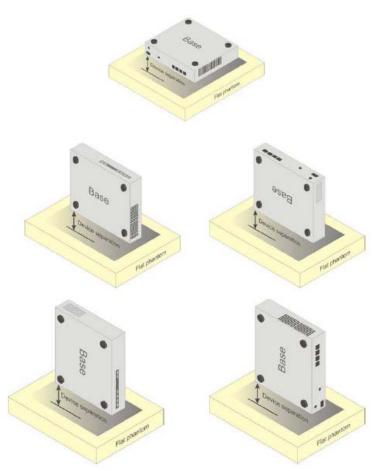



Picture D.3 Tilt position of the wireless device on the left side of SAM

## D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.




Picture D.4 Test positions for body-worn devices

#### D.3 Deskbottom device

A typical example of a deskbottom device is a wireless enabled deskbottom computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for deskbottom device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.





Picture D.5 Test positions for deskbottom devices



## **D.4 DUT Setup Photos**

Picture D.6



## **ANNEX E Equivalent Media Recipes**

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

| Frequency (MHz)                          | 835 Head         | 835 Body         | 1900 Head        | 1900 Body        | 2450 Head        | 2450 Body        |  |
|------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|
| Ingredients (% by v                      | weight)          |                  |                  |                  |                  |                  |  |
| Water                                    | 41.45            | 52.5             | 55.242           | 69.91            | 58.79            | 72.60            |  |
| Sugar                                    | 56.0             | 45.0             | ١                | /                | ١                | ١                |  |
| Salt                                     | 1.45             | 1.4              | 0.306            | 0.13             | 0.06             | 0.18             |  |
| Preventol                                | 0.1              | 0.1              | ١                | /                | ١                | ١                |  |
| Cellulose                                | 1.0              | 1.0              | ١                | /                | ١                | ١                |  |
| Glycol Monobutyl                         | ١                | ١                | 44.452           | 29.96            | 41.15            | 27.22            |  |
| Dielectric<br>Parameters<br>Target Value | ε=41.5<br>σ=0.90 | ε=55.2<br>σ=0.97 | ε=40.0<br>σ=1.40 | ε=53.3<br>σ=1.52 | ε=39.2<br>σ=1.80 | ε=52.7<br>σ=1.95 |  |

#### Table E.1: Composition of the Tissue Equivalent Matter



## **ANNEX F System Validation**

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

| Probe SN. | Liquid name  | Validation date  | Frequency point | Status (OK or Not)                    |
|-----------|--------------|------------------|-----------------|---------------------------------------|
|           | •            |                  | . ,             | · · · · · · · · · · · · · · · · · · · |
| 3151      | Head 850MHz  | August. 06, 2013 | 850 MHz         | OK                                    |
| 3151      | Head 850MHz  | August. 06, 2013 | 900 MHz         | OK                                    |
| 3151      | Head 1800MHz | August. 07, 2013 | 1800 MHz        | OK                                    |
| 3151      | Head 1900MHz | August. 07, 2013 | 1900 MHz        | OK                                    |
| 3151      | Head 2000MHz | August. 08, 2013 | 2000 MHz        | OK                                    |
| 3151      | Head 2100MHz | August. 08, 2013 | 2100 MHz        | OK                                    |
| 3151      | Head 2450MHz | August. 11, 2013 | 2450 MHz        | OK                                    |
| 3151      | Body 850MHz  | August. 12, 2013 | 850 MHz         | OK                                    |
| 3151      | Body 850MHz  | August. 12, 2013 | 900 MHz         | OK                                    |
| 3151      | Body 1800MHz | August. 13, 2013 | 1800 MHz        | OK                                    |
| 3151      | Body 1900MHz | August. 13, 2013 | 1900 MHz        | OK                                    |
| 3151      | Body 2000MHz | August. 14, 2013 | 2000 MHz        | OK                                    |
| 3151      | Body 2100MHz | August. 14, 2013 | 2100 MHz        | OK                                    |
| 3151      | Body 2450MHz | August. 15, 2013 | 2450 MHz        | OK                                    |

#### Table F.1: System Validation



## **ANNEX G Probe Calibration Certificate**

Certificate No: J13-2-2313

Page 1 of 11



#### No. 2014EEB00026-SAR Page 85 of 112



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

#### Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point crest factor (1/duty\_cycle) of the RF signal CF modulation dependent linearization parameters A.B.C.D Polarization Φ Φ rotation around probe axis Polarization 0 8 rotation around an axis that is in the plane normal to probe axis (at measurement center), i 0=0 is normal to probe axis

e

a

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z\* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: J13-2-2313

Page 2 of 11



## No. 2014EEB00026-SAR Page 86 of 112



E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

# Probe ES3DV3

# SN: 3151

Calibrated: July 31, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: J13-2-2313

Page 3 of 11





E-mail: Info@emcite.com Http://www.emcite.com

## DASY – Parameters of Probe: ES3DV3 - SN: 3151

#### **Basic Calibration Parameters**

|                  | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|------------------|----------|----------|----------|-----------|
| Norm(µV/(V/m)2)A | 1.15     | 1.24     | 1.18     | ±10.8%    |
| DCP(mV)8         | 105.4    | 101.7    | 102.3    |           |

#### **Modulation Calibration Parameters**

| UID | Communication<br>System Name |   | A<br>dB | B<br>dBõV | c   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------|
| 0   | CW                           | x | 0.0     | 0.0       | 1.0 | 0.00    | 237.8    | ±3.0%                     |
|     |                              | Y | 0.0     | 0.0       | 1.0 |         | 246.6    |                           |
|     |                              | Z | 0.0     | 0.0       | 1.0 |         | 237.9    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of Norm X, Y, Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 5 and Page 6). <sup>8</sup> Numerical linearization parameter: uncertainty not required.

E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: J13-2-2313

Page 4 of 11





E-mail: Info@emcite.com Http://www.emcite.com

## DASY – Parameters of Probe: ES3DV3 - SN: 3151

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------|
| 850                  | 41.5                                  | 0.92                               | 6.13    | 6.13    | 6.13    | 0.20  | 2.00          | ±12%           |
| 900                  | 41.5                                  | 0.97                               | 6.00    | 6.00    | 6.00    | 0.20  | 2.18          | ±12%           |
| 1810                 | 40.0                                  | 1.40                               | 5.21    | 5.21    | 5.21    | 0.26  | 2.76          | ±12%           |
| 1900                 | 40.0                                  | 1.40                               | 4.99    | 4.99    | 4.99    | 0.28  | 2.76          | ±12%           |
| 2000                 | 40.0                                  | 1.40                               | 4.91    | 4.91    | 4.91    | 0.28  | 2.75          | ±12%           |
| 2100                 | 39.8                                  | 1.49                               | 5.21    | 5.21    | 5.21    | 0.24  | 3.23          | ±12%           |
| 2450                 | 39.2                                  | 1.80                               | 4.55    | 4.55    | 4.55    | 0.40  | 1.93          | ±12%           |
| 2550                 | 39.1                                  | 1.91                               | 4.37    | 4.37    | 4.37    | 0.40  | 1.89          | ±12%           |
| 2600                 | 39.0                                  | 1.96                               | 4.37    | 4.37    | 4.37    | 0.42  | 1.84          | ±12%           |

<sup>C</sup> Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2313

Page 5 of 11

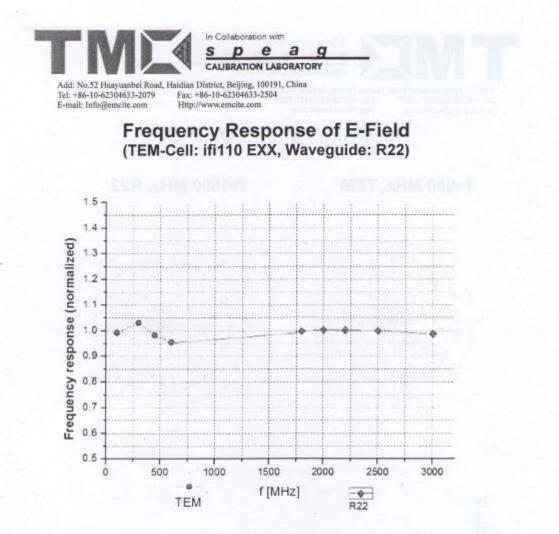




## DASY – Parameters of Probe: ES3DV3 - SN: 3151

| f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------|
| 850                  | 55.2                                  | 0.99                               | 6.10    | 6.10    | 6.10    | 0.25  | 2.07          | ±12%           |
| 900                  | 55.0                                  | 1.05                               | 5.96    | 5.96    | 5.96    | 0.27  | 1.94          | ±12%           |
| 1810                 | 53.3                                  | 1.52                               | 4.96    | 4.96    | 4.96    | 0.33  | 2.35          | ±12%           |
| 1900                 | 53.3                                  | 1.52                               | 4.83    | 4.83    | 4.83    | 0.36  | 2.15          | ±12%           |
| 2000                 | 53.3                                  | 1.52                               | 4.79    | 4.79    | 4.79    | 0.31  | 2.67          | ±12%           |
| 2100                 | 53.2                                  | 1.62                               | 4.58    | 4.58    | 4.58    | 0.33  | 2.57          | ±12%           |
| 2450                 | 52.7                                  | 1.95                               | 4.15    | 4.15    | 4.15    | 0.48  | 1.92          | ±12%           |
| 2550                 | 52.6                                  | 2.09                               | 4.03    | 4.03    | 4.03    | 0.51  | 1.83          | ±12%           |
| 2600                 | 52.5                                  | 2.16                               | 3.87    | 3.87    | 3.87    | 0.51  | 1.85          | ±12%           |

Calibration Parameter Determined in Body Tissue Simulating Media

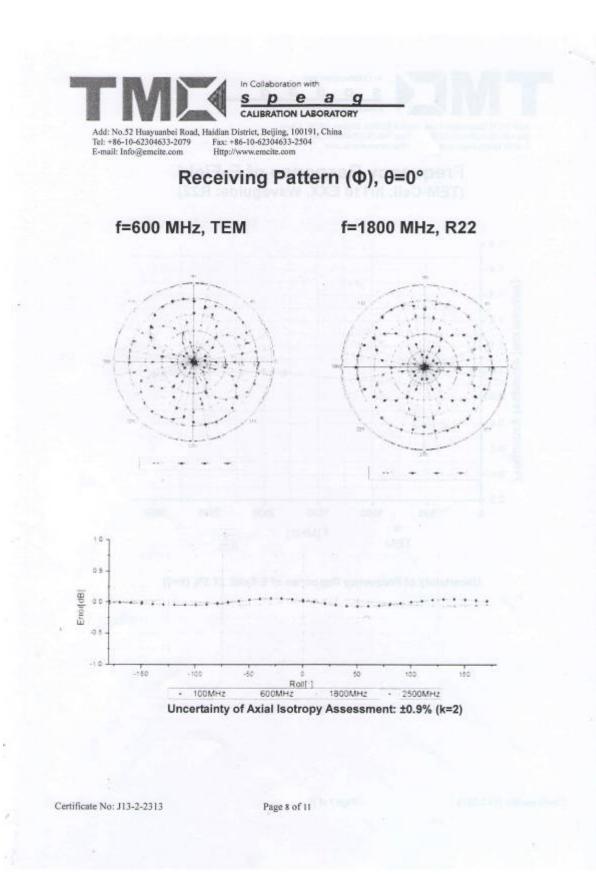

<sup>C</sup> Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. <sup>7</sup> At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2313

Page 6 of 11

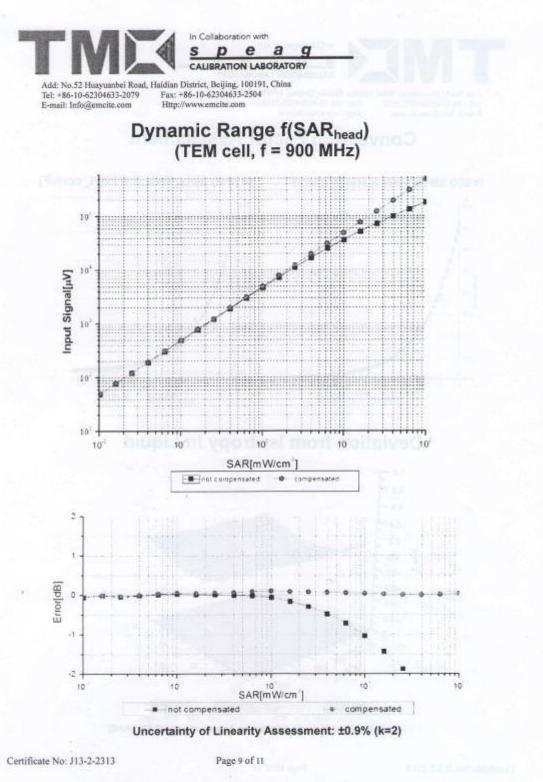


## No. 2014EEB00026-SAR Page 90 of 112

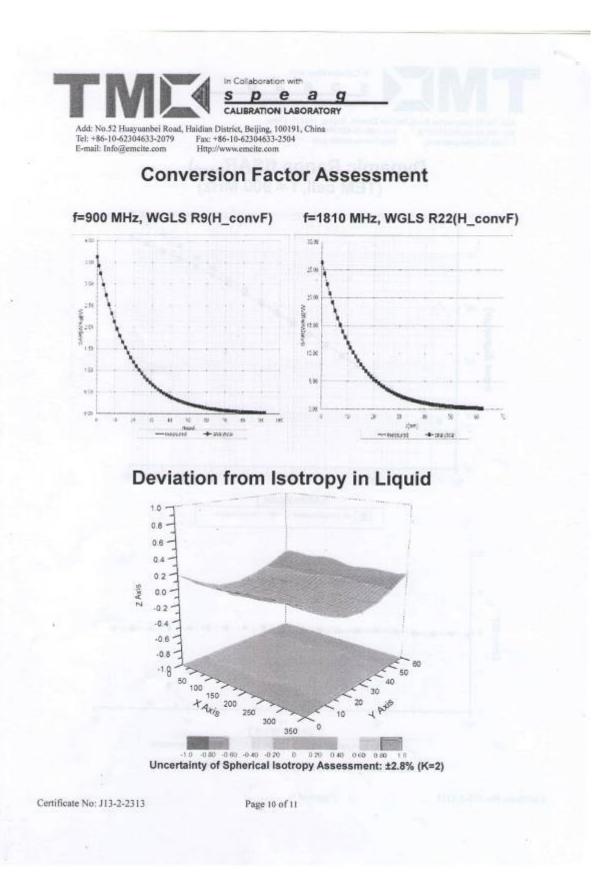



Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: J13-2-2313


Page 7 of 11








## No. 2014EEB00026-SAR Page 92 of 112









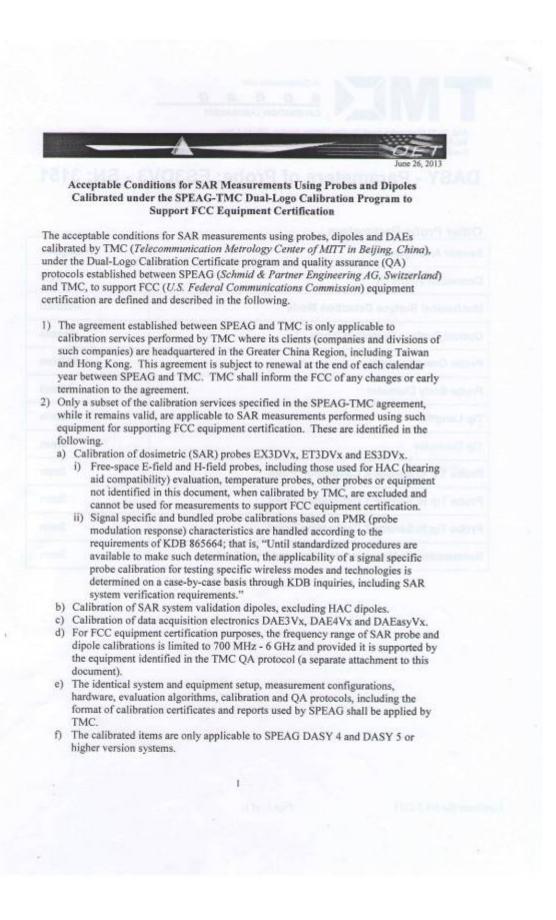
## No. 2014EEB00026-SAR Page 94 of 112



Add: No.52 Hunyuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

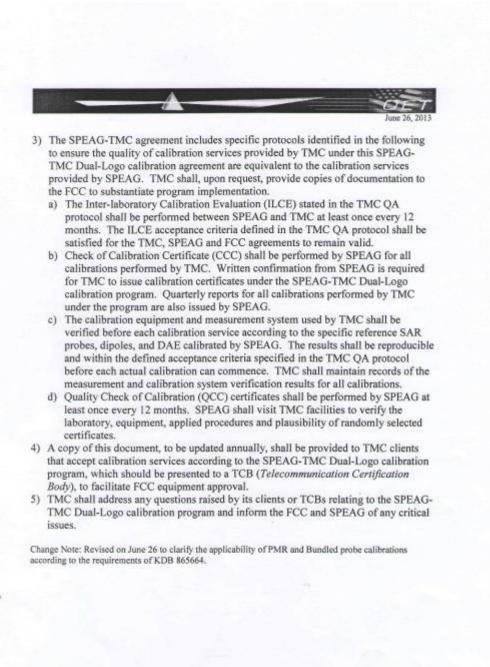
## DASY - Parameters of Probe: ES3DV3 - SN: 3151

#### **Other Probe Parameters**


| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 84.7       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disable    |
| Probe Overall Length                          | 337mm      |
| Probe Body Diameter                           | 10mm       |
| Tip Length                                    | 10mm       |
| Tip Diameter                                  | 4mm        |
| Probe Tip to Sensor X Calibration Point       | 2mm        |
| Probe Tip to Sensor Y Calibration Point       | 2mm        |
| Probe Tip to Sensor Z Calibration Point       | 2mm        |
| Recommended Measurement Distance from Surface | 3mm        |

Certificate No: J13-2-2313

Page 11 of 11


#### No. 2014EEB00026-SAR Page 95 of 112





#### No. 2014EEB00026-SAR Page 96 of 112





2



## **ANNEX H Dipole Calibration Certificate**

## 1900 MHz Dipole Calibration Certificate

| Calibration Laborato<br>Schmid & Partner<br>Engineering AG<br>Zeughausstrasse 43, 8004 Zuri                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                          | Hac-MRA (SHISS)<br>CRUBERTTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S Schweizerische<br>Service suisse<br>Servizio svizze<br>S Swiss Calibrati                                                                                               | d'étalonnag<br>ro di taratur                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Accredited by the Swiss Accredit<br>The Swiss Accreditation Servic<br>Multilateral Agreement for the                                                                                                                                                                                                                                                                                                                   | ce is one of the signatori                                                                                                                                                                                                                                                                                               | es to the EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion No.: SCS 108                                                                                                                                                        | B                                                                                                    |
| CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                            | Contraction of Second 192                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No: D1900V2-5                                                                                                                                                            | d088_0                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                      |
| Object                                                                                                                                                                                                                                                                                                                                                                                                                 | D1900V2 - SN:                                                                                                                                                                                                                                                                                                            | while the second s | 2.88 文                                                                                                                                                                   | 件。                                                                                                   |
| Calibration procedure(s)                                                                                                                                                                                                                                                                                                                                                                                               | QA CAL-05.v8<br>Calibration proce                                                                                                                                                                                                                                                                                        | edure for dipole validation kits a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2 - 0 3<br>above 700 MHz                                                                                                                                               | 752 0                                                                                                |
| Calibration date:                                                                                                                                                                                                                                                                                                                                                                                                      | October 17, 201                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                      |
| This calibration certificate docum<br>The measurements and the unc                                                                                                                                                                                                                                                                                                                                                     | nents the traceability to nat<br>ertainlies with confidence p                                                                                                                                                                                                                                                            | Construction of the second standards, which realize the physical probability are given on the following pages any facility: environment temperature (22 ± 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and are part of the ce                                                                                                                                                   | ertificate.                                                                                          |
| This calibration certificate docum<br>The measurements and the unc                                                                                                                                                                                                                                                                                                                                                     | nents the traceability to nat<br>entainlies with confidence p<br>incled in the closed laborato                                                                                                                                                                                                                           | ional standards, which realize the physical<br>probability are given on the following pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and are part of the ce                                                                                                                                                   | ertificate.                                                                                          |
| This calibration certificate docum<br>The measurements and the unc<br>All calibrations have been condu                                                                                                                                                                                                                                                                                                                 | nents the traceability to nat<br>entainlies with confidence p<br>incled in the closed laborato                                                                                                                                                                                                                           | ional standards, which realize the physical<br>probability are given on the following pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and are part of the ce                                                                                                                                                   | ertificate.<br>0%.                                                                                   |
| This calibration certificate docum<br>The measurements and the unco<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A                                                                                                                                                                                                                                 | nents the traceability to nat<br>ertainlies with confidence p<br>inded in the closed laborato<br>ITE critical for calibration)                                                                                                                                                                                           | ional standards, which realize the physical<br>probability are given on the following pages<br>ny facility: environment temperature (22 ±<br>Cal Date (Certificate No.)<br>05-Oct-11 (No. 217-01451)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and are part of the ce<br>3)°C and humidity < 70<br>Scheduled<br>Oct-12                                                                                                  | ertificate.<br>0%.                                                                                   |
| This calibration certificate docum<br>The measurements and the unco<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A                                                                                                                                                                                                        | nents the traceability to nat<br>ertainlies with confidence p<br>ucted in the closed laborato<br>TE critical for calibration)<br>ID #<br>GB37480704<br>US37292783                                                                                                                                                        | ional standards, which realize the physical<br>probability are given on the following pages<br>my facility: environment temperature (22 ± :<br><u>Cal Date (Certificate No.)</u><br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and are part of the ce<br>3)°C and humidity < 70<br>Scheduled<br>Oct-12<br>Oct-12                                                                                        | ertificate.<br>0%.                                                                                   |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator                                                                                                                                                                          | nents the traceability to nat<br>entainties with confidence p<br>ucted in the closed laborato<br>TE critical for calibration)<br>ID #<br>GB37480704<br>US37292783<br>SN: 5058 (20k)                                                                                                                                      | ional standards, which realize the physical<br>probability are given on the following pages<br>my facility: environment temperature (22 ± :<br><u>Cal Date (Certificate No.)</u><br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>27-Mar-12 (No. 217-01530)                                                                                                                                                                                                                                                                                                                                                                                                                              | and are part of the ce<br>3)°C and humidity < 70<br>Scheduled<br>Oct-12<br>Oct-12<br>Apr-13                                                                              | ertificate.<br>0%.                                                                                   |
| This calibration certificate docum<br>The measurements and the unco<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A                                                                                                                                                                                                        | nents the traceability to nat<br>ertainlies with confidence p<br>ucted in the closed laborato<br>TE critical for calibration)<br>ID #<br>GB37480704<br>US37292783                                                                                                                                                        | ional standards, which realize the physical<br>probability are given on the following pages<br>my facility: environment temperature (22 ± :<br><u>Cal Date (Certificate No.)</u><br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and are part of the ce<br>3)°C and humidity < 70<br>Scheduled<br>Oct-12<br>Oct-12                                                                                        | ertificate.<br>0%.                                                                                   |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination                                                                                                                                           | nents the traceability to nat<br>entainties with confidence p<br>ucted in the closed laborato<br>TE critical for calibration)<br>ID #<br>GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327                                                                                                                | Cal Date (Certificate No.)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-12 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and are part of the ce<br>3)°C and humidity < 70<br>Scheduled<br>Oct-12<br>Oct-12<br>Apr-13<br>Apr-13                                                                    | ertificate.<br>0%.                                                                                   |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4                                                                                                         | ID #<br>GB37480704<br>US37292783<br>SN: 5047.2 / 06327<br>SN: 3205<br>SN: 601                                                                                                                                                                                                                                            | Cal Date (Certificate No.)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>27-Mar-12 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>27-Jun-12 (No. DAE4-601_Jun12)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and are part of the ce<br>3)°C and humidity < 70<br>Scheduled<br>Oct-12<br>Oct-12<br>Apr-13<br>Apr-13<br>Dec-12<br>Jun-13                                                | stilicate.<br>0%.<br><u>Calibration</u>                                                              |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3                                                                                                                 | nents the traceability to nat<br>entainties with confidence p<br>ucted in the closed laborato<br>TE critical for calibration)<br>ID #<br>GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3205                                                                                                    | Cal Date (Certificate No.)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)<br>30-Dec-11 (No. ES3-3205_Dec11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and are part of the ce<br>3)°C and humidity < 70<br>Scheduled<br>Oct-12<br>Oct-12<br>Oct-12<br>Apr-13<br>Dec-12<br>Jun-13<br>Scheduled (                                 | stilicate.<br>0%.<br><u>Calibration</u>                                                              |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                              | Another the traceability to nate<br>entainties with confidence p<br>acted in the closed laborato<br>TE critical for calibration)<br>1D #<br>GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3205<br>SN: 3205<br>SN: 601<br>ID #<br>MY41092317<br>100005                                          | Cal Date (Certificate No.)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>27-Jun-12 (No. DAE4-801_Jun12)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)<br>04-Aug-99 (in house check Oct-11)                                                                                                                                                                                                                                                                                                                                                   | and are part of the ce<br>3)°C and humidity < 70<br>Oct-12<br>Oct-12<br>Oct-12<br>Apr-13<br>Apr-13<br>Dec-12<br>Jun-13<br>Scheduled (<br>In house ch                     | stilicate.<br>0%.<br><u>Calibration</u><br>Check                                                     |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A                                                         | Another the traceability to nate<br>entainties with confidence p<br>acted in the closed laborato<br>TE critical for calibration)<br>ID #<br>GB37480704<br>US37292783<br>SN: 5047.2 / 06327<br>SN: 5047.2 / 06327<br>SN: 5047.2 / 06327<br>SN: 5047.2 / 06327<br>SN: 501                                                  | Cal Date (Certificate No.)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>27-Jun-12 (No. DAE4-601_Jun12)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)                                                                                                                                                                                                                                                                                                                                                                                        | s and are part of the ce<br>3)°C and humidity < 70<br>Oct-12<br>Oct-12<br>Oct-12<br>Apr-13<br>Apr-13<br>Dec-12<br>Jun-13<br>Scheduled (<br>In house ch<br>In house ch    | otilicate.<br>0%.<br><u>Calibration</u><br>Check<br>eck: Oct-13                                      |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer HP 8753E | Another the traceability to nate<br>entainties with confidence p<br>acted in the closed laborato<br>TE critical for calibration)<br>1D #<br>GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3205<br>SN: 3205<br>SN: 601<br>ID #<br>MY41092317<br>100005                                          | Cal Date (Certificate No.)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>27-Jun-12 (No. DAE4-801_Jun12)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)<br>04-Aug-99 (in house check Oct-11)                                                                                                                                                                                                                                                                                                                                                   | s and are part of the ce<br>3)°C and humidity < 70<br>Oct-12<br>Oct-12<br>Oct-12<br>Apr-13<br>Apr-13<br>Dec-12<br>Jun-13<br>Scheduled (<br>In house ch<br>In house ch    | Calbration<br>Calbration<br>Check<br>eck: Oct-13<br>eck: Oct-13                                      |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                              | Another the traceability to nate<br>entainlies with confidence p<br>incled in the closed laborato<br>TE critical for calibration)<br>ID #<br>GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3205<br>SN: 3205<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4206                     | ional standards, which realize the physical<br>probability are given on the following pages<br>ny facility: environment temperature (22 ± 1<br>Cal Date (Certificate No.)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>27-Jun-12 (No. DAE4-601_Jun12)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)<br>04-Aug-99 (in house check Oct-11)<br>18-Oct-01 (in house check Oct-12)                                                                                                                                                                                            | and are part of the ce<br>3)*C and humidity < 70<br>Oct-12<br>Oct-12<br>Oct-12<br>Apr-13<br>Dec-12<br>Jun-13<br>Scheduled (<br>In house ch<br>In house ch<br>In house ch | Calibration<br>Calibration<br>Check<br>eck: Oct-13<br>eck: Oct-13<br>eck: Oct-13                     |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer HP 8753E | Another the traceability to nate<br>entainties with confidence p<br>incled in the closed laborato<br>TE critical for calibration)<br>ID #<br>GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3205<br>SN: 3205<br>SN: 3205<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4206<br>Name | ional standards, which realize the physical<br>probability are given on the following pages<br>ny facility: environment temperature (22 ± 1<br>Cal Date (Certificate No.)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>27-Jun-12 (No. DAE4-601_Jun12)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)<br>04-Aug-99 (in house check Oct-12)<br>Function                                                                                                                                                                                                                     | and are part of the ce<br>3)*C and humidity < 70<br>Oct-12<br>Oct-12<br>Oct-12<br>Apr-13<br>Apr-13<br>Dec-12<br>Jun-13<br>Scheduled (<br>In house ch<br>In house ch      | etilicate.<br>0%.<br><u>Calibration</u><br><u>Check</u><br>eck: Oct-13<br>eck: Oct-13<br>eck: Oct-13 |



#### Calibration Laboratory of WISS Schweizerlacher Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage Engineering AG С Servizio svizzero di taratura Zeughausstrasse 43, 8004 Zurich, Switzerland S BRI Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: 0

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), c) "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d088\_Oct12

Page 2 of 8



#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.3              |
|------------------------------|------------------------|----------------------|
| Extrapolation                | Advanced Extrapolation |                      |
| Phantom                      | Modular Flat Phantom   |                      |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer          |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      | AND DO NOT THE OWNER |
| Frequency                    | 1900 MHz ± 1 MHz       | State of the second  |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.0 ± 6 %   | 1.37 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              | 1.1.4            |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          | NO PROPERTY AND A PRO |
|---------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAR measured                                            | 250 mW input power | 9.86 W/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 40.0 W/kg ± 17.0 % (k=2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAR measured                                            | 250 mW input power | 5.19 W/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Body TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.2 ± 6 %   | 1.54 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 10.2 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 40.3 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>250 mW input power | 5.40 W/kg                |



| ntenna Parameters with Head TSL                  | Processing and a second state of the second |
|--------------------------------------------------|---------------------------------------------|
| Impedance, transformed to feed point             | 5000-540                                    |
| Return Loss                                      | 52.0 Ω + 5.9 jΩ<br>- 24.3 dB                |
|                                                  |                                             |
| Imperiance Imperiance Imperiance                 |                                             |
| Impedance, transformed to feed point Return Loss | 48.9 Ω + 6.2 jΩ                             |

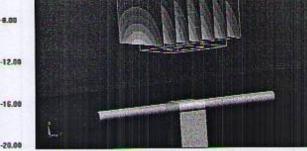
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still No exceeding to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | June 28, 2006 |

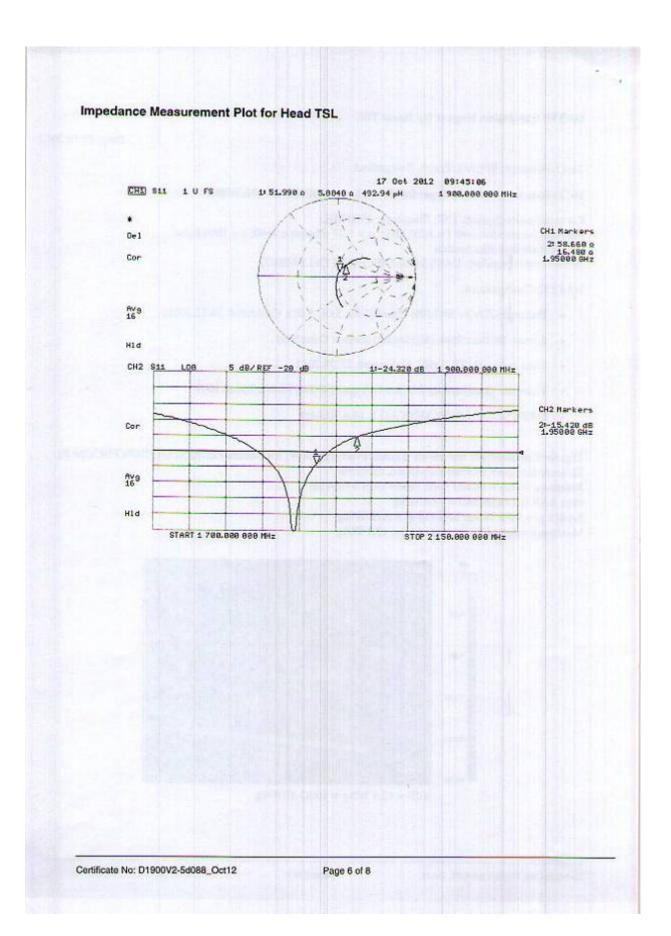

Certificate No: D1900V2-5d088\_Oct12

Page 4 of 8



### No. 2014EEB00026-SAR Page 101 of 112

## **DASY5 Validation Report for Head TSL** Date: 17.10.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$ ; $\varepsilon_r = 40$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) . Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.805 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.86 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (measured) = 12.1 W/kg 4.00




0 dB = 12.1 W/kg = 10.83 dBW/kg

Certificate No: D1900V2-5d088\_Oct12

Page 5 of 8





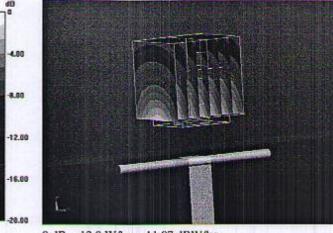


#### No. 2014EEB00026-SAR Page 103 of 112

#### **DASY5 Validation Report for Body TSL**

Date: 17.10.2012

Test Laboratory: SPEAG, Zurich, Switzerland

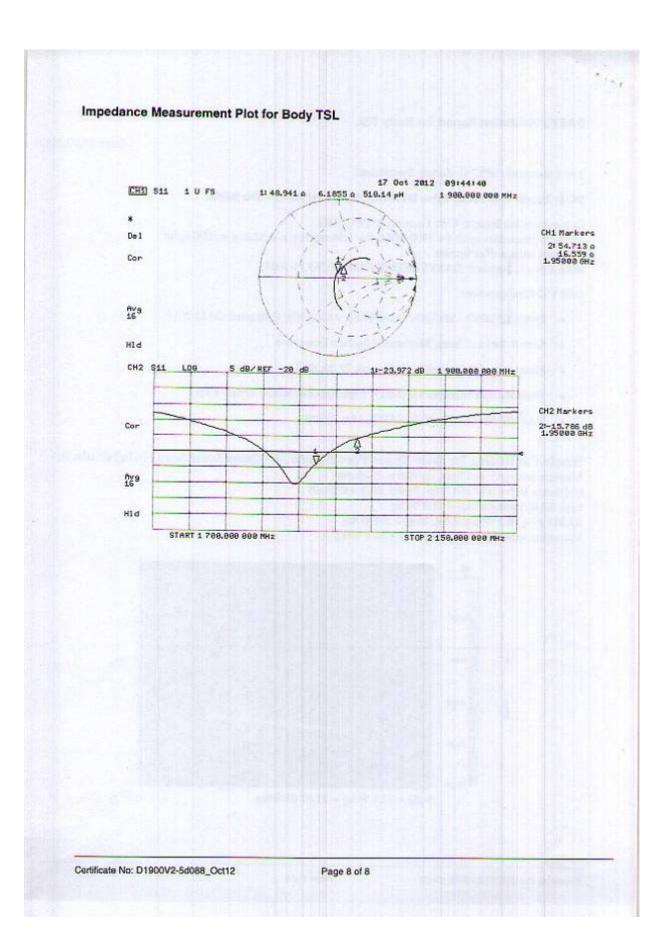

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma = 1.54$  mho/m;  $\varepsilon_r = 52.2$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.805 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.4 W/kg Maximum value of SAR (measured) = 12.8 W/kg




0 dB = 12.8 W/kg = 11.07 dBW/kg

Certificate No: D1900V2-5d088\_Oct12

Page 7 of 8







#### 2450 MHz Dipole Calibration Certificate

| Coughausstrasse 43, 6004 Zurich<br>Accredited by the Swiss Accreditat<br>The Swiss Accreditation Service<br>Multilateral Agreement for the re<br>Ctient TMC-SZ (Auder<br>CALIBRATION C<br>Object | ion Service (SAS)<br>is one of the algustories<br>cognition of calibration (<br>1) | Accreditat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S Swiss Callbration Service<br>ion No.: SCS 108<br>No: D2450V2-873_Oct1                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| The Swiss Accreditation Service<br>Multilatoral Agreement for the re<br>Client TMC-SZ (Auder<br>CALIBRATION C                                                                                    | is one of the algnatories<br>cognition of calibration (<br>))                      | a to the EA<br>certificates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |
| CALIBRATION C                                                                                                                                                                                    | Specific University of a month                                                     | Certificate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No. D2450V2.972 Oct1                                                                                            |
|                                                                                                                                                                                                  | ERTIFICATE                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No: 02400V2-015_0011                                                                                            |
| Object                                                                                                                                                                                           |                                                                                    | en service datas de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|                                                                                                                                                                                                  | D2450V2 - SN: 8                                                                    | 73 00 00 00 00 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · 拉文件                                                                                                           |
|                                                                                                                                                                                                  |                                                                                    | and the second se | A Standard Inc. in Standard Standard                                                                            |
| Calibration procedure(s)                                                                                                                                                                         | QA CAL-05.v8                                                                       | of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>-12-268-52(</u>                                                                                              |
|                                                                                                                                                                                                  | Calibration proce                                                                  | dure for dipole validation kits a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bove 700 MHz                                                                                                    |
|                                                                                                                                                                                                  | Service and a                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 現代目的目的に                                                                                                         |
| Calibration date:                                                                                                                                                                                | October 18, 2012                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to man hundred and a                                                                                            |
| Calibration date:                                                                                                                                                                                | OCIODEI 10, 2012                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sector Cale details for the part of the                                                                         |
| Calibration Equipment used (M&T                                                                                                                                                                  | E critical for calibration)                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |
| Primary Standards                                                                                                                                                                                | ID #                                                                               | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scheduled Calibration                                                                                           |
| Power meter EPM-442A                                                                                                                                                                             | GB37480704                                                                         | 05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oct-12<br>Oct-12                                                                                                |
| Power sensor HP 8481A<br>Reference 20 dB Attenuator                                                                                                                                              | US37292783<br>SN: 5058 (20k)                                                       | 27-Mar-12 (No. 217-01530)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apr-13                                                                                                          |
| Type-N mismatch combination                                                                                                                                                                      | SN: 5047.2 / 06327                                                                 | 27-Mar-12 (No. 217-01533)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apr-13                                                                                                          |
| Reference Probe ES3DV3                                                                                                                                                                           | SN: 3205                                                                           | 30-Dec-11 (No. ES3-3205_Dec11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dec-12                                                                                                          |
| DAE4                                                                                                                                                                                             | SN: 601                                                                            | 27-Jun-12 (No. DAE4-601_Jun12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun-13                                                                                                          |
| Secondary Standards                                                                                                                                                                              | 10 #                                                                               | Check Date (in house)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Scheduled Check                                                                                                 |
| Power sensor HP 8481A                                                                                                                                                                            | MY41092317                                                                         | 18-Oct-02 (in house check Oct-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In house check: Oct-13                                                                                          |
| RF generator R&S SMT-06                                                                                                                                                                          | 100005                                                                             | 04-Aug-99 (in house check Oct-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In house check: Oct-13<br>In house check: Oct-13                                                                |
| Network Analyzer HP 8753E                                                                                                                                                                        | US37390585 S4206                                                                   | 18-Oct-01 (in house check Oct-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in notice charte out to                                                                                         |
|                                                                                                                                                                                                  | Name                                                                               | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Signature                                                                                                       |
| Calibrated by:                                                                                                                                                                                   | Israe El-Naoug                                                                     | Laboratory Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Line of the second s |
| a sub-                                                                                                                                                                                           | The state of the                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Detraa Cr.Do                                                                                                    |
| Approved by:                                                                                                                                                                                     | Katja Pokovic                                                                      | Technical Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 41                                                                                                           |
|                                                                                                                                                                                                  | diam's Party                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pro de                                                                                                          |
|                                                                                                                                                                                                  |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Issued: October 18, 20                                                                                          |
| we have a second and a second frame of a first of                                                                                                                                                | ot be reproduced except in                                                         | full without written approval of the labora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dory.                                                                                                           |



## No. 2014EEB00026-SAR Page 106 of 112

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

С

S

Schweizerlscher Kalibrierdienst Service sulsse d'étalonnage Servizio sylzzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the algostories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-873\_Oct12

Page 2 of 8



#### Measurement Conditions

| DASY Version                 | DASY5                  | V52.8.3          |
|------------------------------|------------------------|------------------|
| Extrapolation                | Advanced Extrapolation | 1412 S. S. S. S. |
| Phantom                      | Modular Flat Phantom   | CONSISTENCY.     |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer      |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      | and show the     |
| Frequency                    | 2450 MHz ± 1 MHz       |                  |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.4 ± 6 %   | 1.85 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Condition          |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250 mW input power | 13.2 W/kg                |
| SAR for nominal Head TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | normalized to 1W   | 51.9 W/kg ± 17.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | condition          |                          |
| SAR measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250 mW input power | 6.14 W/kg                |
| A REAL PROPERTY OF THE REAL PROPERTY AND A REA | normalized to 1W   | 24.3 W/kg ± 16.5 % (k=2) |

Body TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.0 ± 6 %   | 2.02 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 13.0 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 50.8 W/kg ± 17.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|                                                         |                    |                          |
| SAR measured                                            | 250 mW input power | 6.01 W/kg                |

Certificate No: D2450V2-873\_Oct12

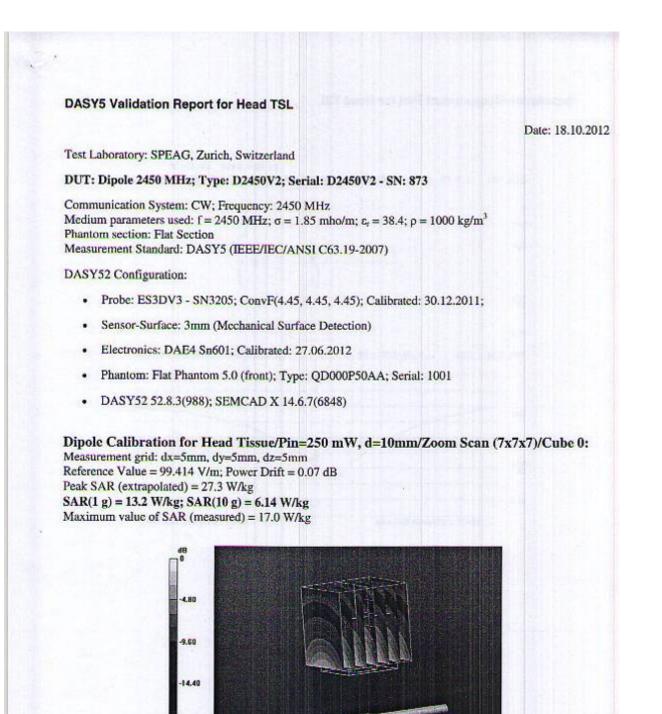


| bendix                               |                              |
|--------------------------------------|------------------------------|
| enna Parameters with Head TSL        |                              |
| Impedance, transformed to feed point | 53.2 Ω + 1.5 jΩ              |
| Return Loss                          | - 29.3 dB                    |
|                                      | 1000.050                     |
| Impedance, transformed to feed point | 49.9 Ω + 3.5 jΩ              |
|                                      | 49.9 Ω + 3.5 jΩ<br>- 29.1 dB |
|                                      |                              |

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**


| Manufactured by | SPEAG           |
|-----------------|-----------------|
| Manufactured on | August 18, 2010 |

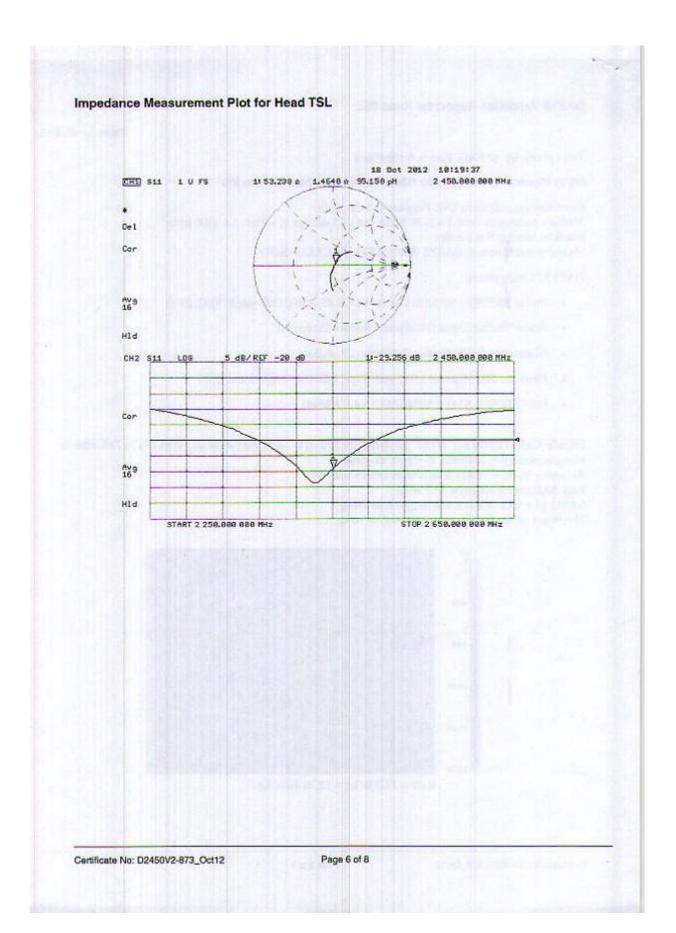
Certificate No: D2450V2-873\_Oct12

Page 4 of 8



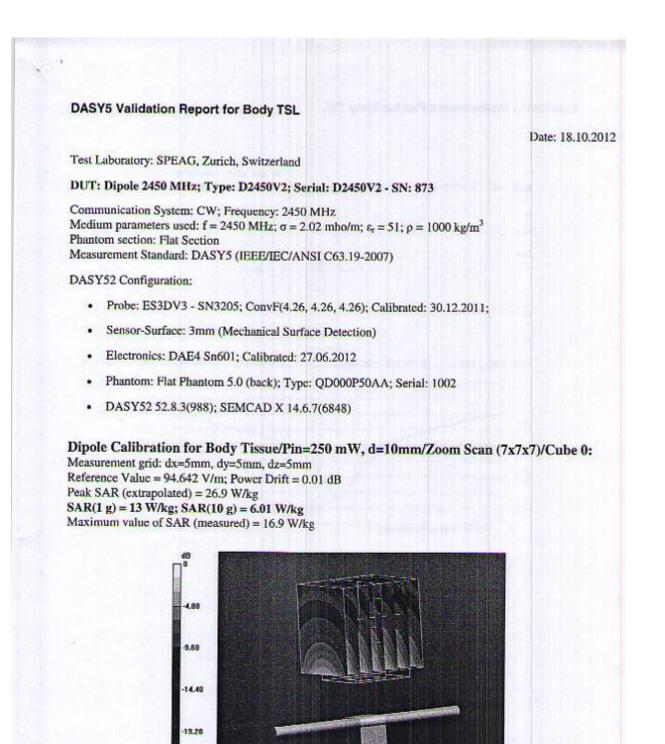
#### No. 2014EEB00026-SAR Page 109 of 112




0 dB = 17.0 W/kg = 12.30 dBW/kg

Certificate No: D2450V2-873\_Oct12

19.20

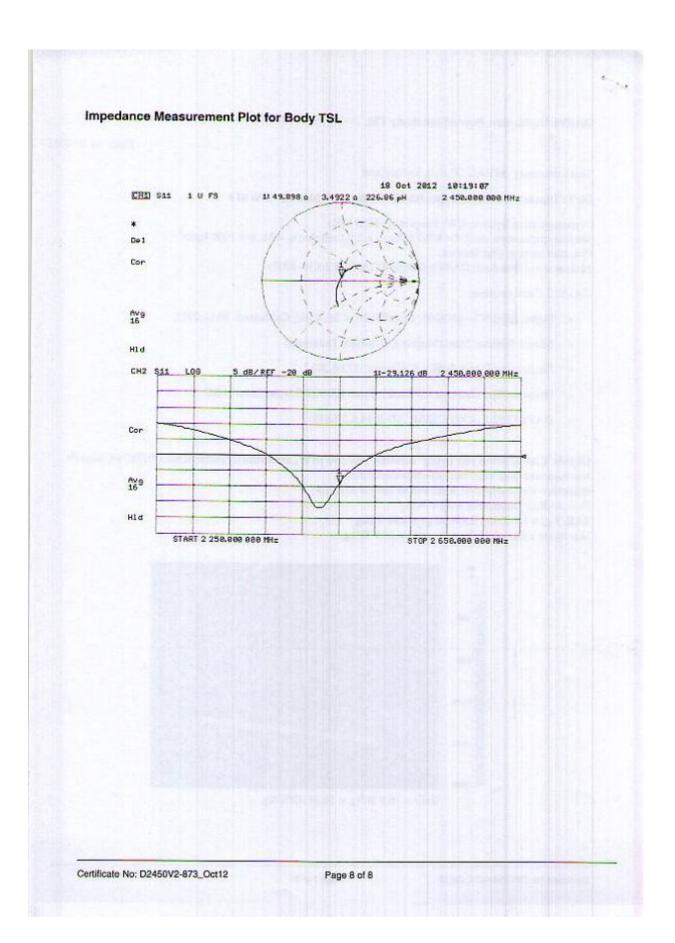

Page 5 of 8







### No. 2014EEB00026-SAR Page 111 of 112




0 dB = 16.9 W/kg = 12.28 dBW/kg

Certificate No: D2450V2-873\_Oct12

Page 7 of 8



