

CFR 47 FCC PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

Tablet

MODEL NUMBER: CP3667AT

FCC ID: R38YLCP3667AT

REPORT NUMBER: 4789517523-1

ISSUE DATE: June 28, 2020

Prepared for

Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd Building B, Boton Science Park, Chaguang Road, Xili Town, Nanshan District, Shenzhen

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/28/2020	Initial Issue	

Summary of Test Results						
Clause	Test Items	FCC Rules	Test Results			
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2)	Pass			
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3)	Pass			
3	Power Spectral Density	FCC Part 15.247 (e)	Pass			
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass			
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass			
6	Conducted Emission Test for AC Power Port	FCC Part 15.207	Pass			
7	Antenna Requirement	FCC Part 15.203	Pass			
Note:						

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	AT٦	ESTATION OF TEST RESULTS	.6
2.	TES	ST METHODOLOGY	.7
3.	FAC	CILITIES AND ACCREDITATION	.7
4.	CAI	LIBRATION AND UNCERTAINTY	.8
4	4.1.	MEASURING INSTRUMENT CALIBRATION	.8
4	4.2.	MEASUREMENT UNCERTAINTY	.8
5.	EQI	JIPMENT UNDER TEST	.9
5	5.1.	DESCRIPTION OF EUT	.9
5	5.2.	CHANNEL LIST	.9
5	5.3.	MAXIMUM PEAK OUTPUT POWER	.9
5	5.4.	TEST CHANNEL CONFIGURATION	10
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5	5.7.	DESCRIPTION OF TEST SETUP	11
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED1	12
7.	AN	TENNA PORT TEST RESULTS1	4
7	7.1.	ON TIME AND DUTY CYCLE	14
7	7.2.	6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH	16
7	7.3.	CONDUCTED OUTPUT POWER	18
7	7.4.	POWER SPECTRAL DENSITY	20
7	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	22
8.	RAI	DIATED TEST RESULTS2	24
8	8 <i>.1.</i> 8.1.	RESTRICTED BANDEDGE	
8	8.2. 8.2.	SPURIOUS EMISSIONS (1GHz ~ 3GHz) 1. BLE MODE	
8	8. <i>3.</i> 8.3.	SPURIOUS EMISSIONS (3GHz ~ 18GHz) 1. BLE MODE	
8	8 <i>.4.</i> 8.4.	SPURIOUS EMISSIONS 18GHz ~ 26GHz	
8	8 <i>.5.</i> 8.5.	SPURIOUS EMISSIONS 30MHz ~ 1GHz	
8	8 <i>.6.</i> 8.6.	SPURIOUS EMISSIONS BELOW 30MHz	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9. AC POWER LINE CONDUCTED EMISSIONS	55
9.1. BLE MODE	56
10. ANTENNA REQUIREMENTS	58
Appendix A: DTS Bandwidth	59
Test Result	59
Test Graphs	60
Appendix B: Occupied Channel Bandwidth	
Test Result	
Test Graphs	
Appendix C: Maximum conducted output power	
Appendix D: Maximum power spectral density	
Test Result	
Test Graphs	
Appendix E: Band edge measurements	
Test Result	
Test Graphs	
Appendix F: Conducted Spurious Emission Test Result	
Test Graphs	
тезс отарно	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd
Address:	Building B, Boton Science Park, Chaguang Road, Xili Town, Nanshan District, Shenzhen
Manufacturer Information	
Company Name:	Yulong Computer Telecommunication Scientific (Shenzhen) Co.,
	Ltd
Address:	Building B, Boton Science Park, Chaguang Road, Xili Town, Nanshan District, Shenzhen
EUT Information	
EUT Name:	Tablet
LOT Marile.	

EUT Name:	Tablet
Model:	CP3667AT
Sample Received Date:	June 12, 2020
Sample Status:	Normal
Sample ID:	3120775
Date of Tested:	June 12, 2020 ~ June 29, 2020

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART C	PASS				
ISED RSS-247 Issue 2	PASS				
ISED RSS-GEN Issue 5	PASS				

Prepared By:

Kebo. zhung.

Kebo Zhang Project Engineer

Approved By:

ephentus

Stephen Guo Laboratory Manager Checked By:

Sherry les

Shawn Wen Laboratory Leader

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiated Emission (Included Fundamental Emission) (9kHz ~ 30MHz)	2.2dB		
Radiated Emission (Included Fundamental Emission) (30MHz ~ 1GHz)	4.00dB		
Radiated Emission	5.78dB (1GHz ~ 18GHz)		
(Included Fundamental Emission) (1GHz to 26GHz)	5.23dB (18GHz ~ 26GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Tablet				
Model	CP3667AT				
Technology	Bluetooth - Low Energy				
Transmit Frequency Range	2402 MHz ~ 2480 MHz				
Modulation	GFSK				
Data Rate	BLE 1Mbps				
		Input	AC100-240V, 50/60Hz, 0.5A Max		
Power Supply	Power Adapter	5Vdc===3A, 9Vdc===2A, 12Vdc===1.5A			
	Battery	3.82Vdc			

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460	/	/
8	2418	19	2440	30	2462	/	/
9	2420	20	2442	31	2464	/	/
10	2422	21	2444	32	2468	/	/

5.3. MAXIMUM PEAK OUTPUT POWER

Bluetooth Mode Frequency (MHz)		Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
BLE	2402 ~ 2480	0-39[40]	2.68	3.48

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
BLE	CH 0(Low Channel), CH 19(MID Channel), CH 39(High Channel)	2402MHz, 2440MHz, 2480MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The	e Worse Cas	se Power Setting Param	neter under 2402 ~ 2480	OMHz Band
Test Softwar	e Version		QRCT	
Modulation	Transmit	Te	est Software Setting Val	ue
Туре	Antenna Number	CH 0	CH 19	CH 39
BLE	1	default	default	default

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna No.	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)		
1	2402-2480	PIFA	0.8		

Test Mode	Transmit and Receive Mode	Description					
BLE	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.					

Note: 1. The value of the antenna gain was declared by customer.

2. The customer declared that BT&WLAN 2.4G, BT& WLAN 5G, WLAN 2.4G& WLAN 5G can't transmit simultaneously.

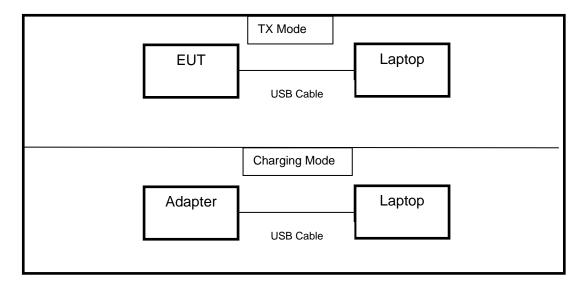
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	ThinkPad	E42-80	/

I/O CABLES

Item	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	Туре-С	NA	0.6	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	TRAVEL CHARGER	N/A	Q3W18-1U-A	Input: AC 100~240V, 50/60Hz, 0.5A Max Output: 5Vdc=== 3A, 9Vdc=== 2A, 12Vdc=== 1.5A,

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING INSTRUMENT AND SOFTWARE USED

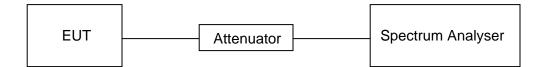
		Con	ducte	ed Emis	sions						
			Ins	trument							
Used	Equipment	Manufacturer	Мос	del No.	Seria	al No.	Last Cal.	Next Cal.			
\checkmark	EMI Test Receiver	R&S	Е	SR3	101	961	Dec.05,2019	Dec.05,2020			
	Two-Line V- Network	R&S	EN	ENV216		983	Dec.05,2019	Dec.05,2020			
			Sc	oftware							
Used	Desc	ription		Mai	nufactu	irer	Name	Version			
\checkmark	Test Software for Co	onducted distu	irband	ance Farad EZ-EMC Ver. UL-3							
		Ra	diate	d Emiss	sions	•					
			Ins	trument							
Used	Equipment	Manufacturer	Мос	del No.	Seria	al No.	Last Cal.	Next Cal.			
\checkmark	MXE EMI Receiver	KESIGHT	N9	038A	MY564	400036	Dec.06,2019	Dec.06,2020			
V	Hybrid Log Periodic Antenna	TDK	HLP	-3003C	130	960	Sep.17, 2018	Sep.17, 2021			
\checkmark	Preamplifier	HP	84	147D	2944 <i>F</i>	09099	Dec.05,2019	Dec.05,2020			
V	EMI Measurement Receiver	R&S	ES	SR26	101	377	Dec.05,2019	Dec.05,2020			
\checkmark	Horn Antenna	TDK	HR	N-0118	130	939	Sep.17, 2018	Sep.17, 2021			
	High Gain Horn Antenna	Schwarzbeck	BBH	A-9170	6	91	Aug.11, 2018	Aug.11, 2021			
	Preamplifier	TDK	PA-C	02-0118		-305- 066	Dec.05,2019	Dec.05,2020			
	Preamplifier	TDK	PA	-02-2		-307- 003	Dec.05,2019	Dec.05,2020			
\checkmark	Loop antenna	Schwarzbeck	15	519B	00	800	Jan.07, 2019	Jan.07, 2022			
	Preamplifier	TDK		02-001-		-302- 050	Dec.5, 2019	Dec.5, 2020			
V	Band Reject Filter	Wainwright	2350 24 25	CJV8-)-2400- 83.5- 33.5- 0SS		4	Dec.05,2019	Dec.05,2020			
	High Pass Filter	Wi	WH 2700	KX10-)-3000-)0-40SS	2	23	Dec.05,2019	Dec.05,2020			
			So	oftware							
Used	Descri			Manufacturer			Name	Version			
V	Test Software disturb			Fara	ad	E	Z-EMC	Ver. UL-3A1			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

		C	Other instrume	ents		
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.06,2019	Dec.06,2020
\checkmark	Spectrum Analyzer	Keysight	N9020A	MY49100060	Dec.06,2019	Dec.06,2020
\checkmark	Power Meter	Keysight	N1911A	MY55416024	Dec.06,2019	Dec.06,2020
\checkmark	Power Sensor	Keysight	U2021XA	MY5100022	Dec.06,2019	Dec.06,2020

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only.

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	61.2%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.82V

RESULTS

Test Result

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
BLE	0.3919	0.6251	0.6270	62.70	2.03	2.56	3

Note:

Duty Cycle Correction Factor= $10\log(1/x)$.

Where: x is Duty Cycle (Linear)

Where: T is On Time (transmit duration)

If that calculated VBW is not available on the analyzer then the next higher value should be used.

Test Graphs

						BLE	_Ar	nt1_24	440)					ľ
Contor From 2 44000000 GHz Trig Delay-200 0 us #Avg Type: BMS TR								TRA	PM Jun 15, 2020 CE 1 2 3 4 5 6 (PE W		Frequency				
10 d	B/div	Ref 0 Ref 1	M Mfset 9.79 20.00 d	9 dB	NO:Fast ↔ Gain:Low	#Atten: 3	.0 dB			4		ре <mark>РРРРР 625.1 µs -0.04 dB</mark>		Auto Tune	
Log 10.0 0.00			2∆1 (3∆	1 [ן ר		TRIGLYL	2.4	Center Freq 440000000 GHz	
-10.0 -20.0 -30.0 -40.0													2.4	Start Freq 44000000 GHz	
-50.0 -60.0 -70.0	<u> </u>		. th			26					Y		2.4	Stop Freq 44000000 GHz	
Res	4 ter 2.4 BW 8	MHz	0000 G	Hz	#VBW	/ 8.0 MHz Y		FUNCTION		eep 5.	.000 ms	Span 0 Hz (8000 pts)	Auto	CF Step 8.000000 MHz 2 Man	
1 2 3 4 5	Ν 1 Δ1 1	t t (, t (,	Δ) Δ)	39	8.2 μs 1.9 μs (Δ) 5.1 μs (Δ)	-8.53 d 6.12 -0.04	dB					в		Freq Offset 0 Hz	
6 7 8 9 10 11													Log	Scale Type Lin	
MSG									_	STATUS	s D	· ·			

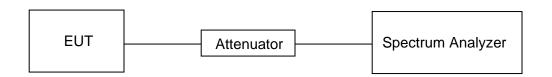
7.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(a)(2)	6dB Bandwidth	≥ 500kHz	2400-2483.5
ANSI C63.10 Section 6.9.3	99% Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.


Center Frequency	The center frequency of the channel under test
Frequency Span	Between 1.5 times and 5.0 times the OBW
Detector	Peak
	For 6 dB Bandwidth: 100kHz For 99% Occupied Bandwidth: 1% to 5% of the occupied bandwidth
IV BW	For 6dB Bandwidth: ≥3 × RBW For 99% Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Connect the EUT to the spectrum analyser and use the following settings:

a) Use the 99% power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	61.2%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.82V

RESULTS

Please refer to appendix A & B.

7.3. CONDUCTED OUTPUT POWER

LIMITS

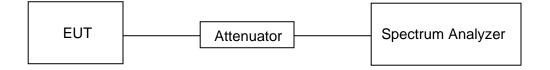
CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(b)(3)	Peak Conducted Output Power	1 watt or 30dBm	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.9.

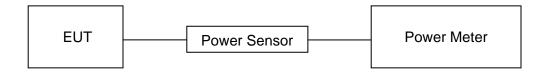
Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	≥3 × RBW
Detector	Peak
RBW	≥ DTS bandwidth
VBW	≥3 × RBW
Trace	Max hold
Sweep	Auto couple


Allow trace to fully stabilize and Use the marker-to-peak function to set the marker to the peak of the emission.

The indicated level is the peak output power, after any corrections for external attenuators and cables.

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).


Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	61.2%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.82V

RESULTS

Please refer to appendix C.

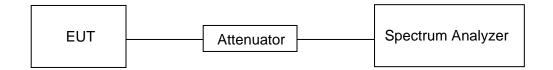
7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	61.2%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.82V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Please refer to appendix D.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C		
Section Test Item Limit		
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

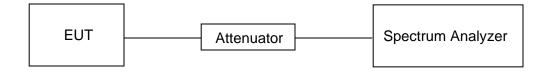
Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


15020	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	61.2%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.82V

RESULTS

Please refer to appendix E & F.

8. RADIATED TEST RESULTS

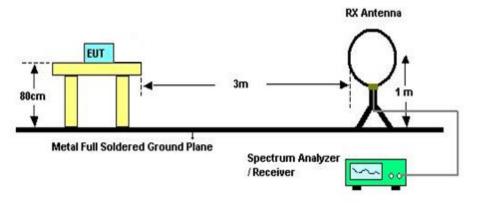
LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9kHz-1GHz)

Emissions radiated outside of the specified frequency bands above 30MHz						
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Stren (dBuV/m) Quasi-I	at 3 m			
30 - 88	100	40				
88 - 216	150	43.5				
216 - 960	200	46				
Above 960	500	54				
Above 1000	500	Peak	Average			
	550	74	54			

FCC Emissions radiated outside of the specified frequency bands below 30MHz							
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)							
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30.0	30	30					


FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

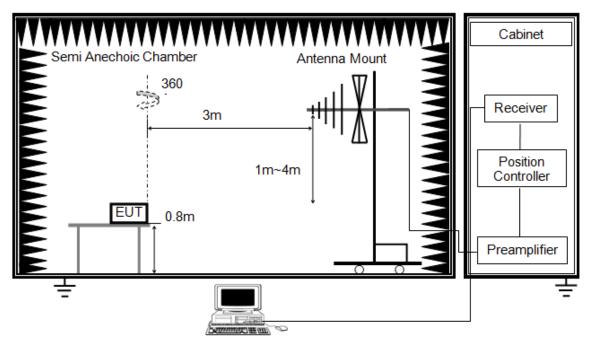
RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 11.11.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

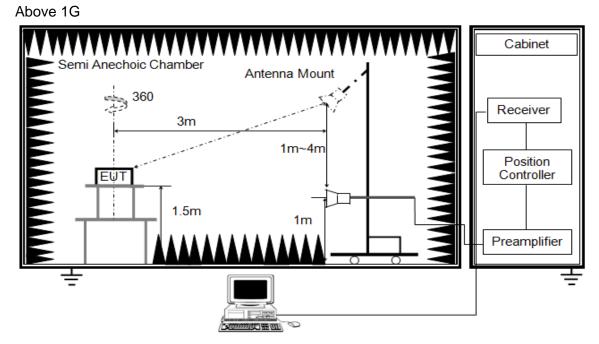
Below 1G and above 30MHz

The setting of the spectrum analyser

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 11.11.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

The setting of the spectrum analyser

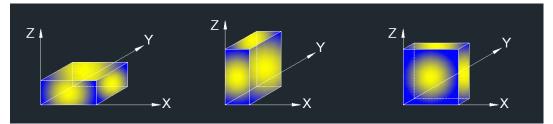
RBW	1MHz
IV BW	PEAK: 3MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 11.11 and 11.12.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

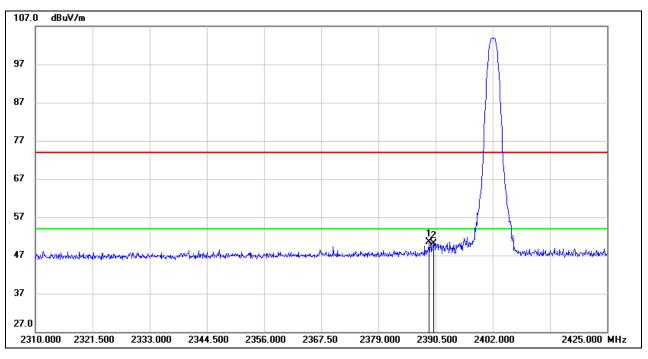
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT


Temperature	22.7°C Relative Humidity 6		61%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.82V

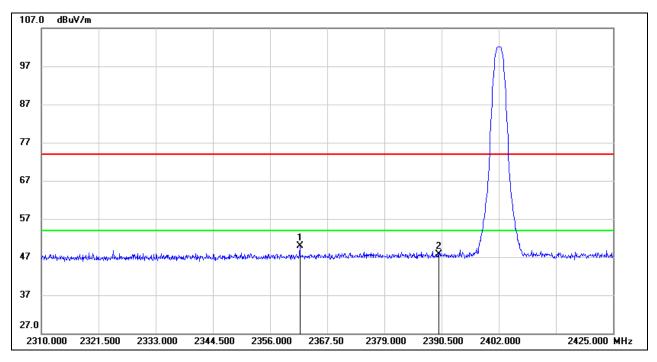
RESULTS

8.1. RESTRICTED BANDEDGE

8.1.1. BLE MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.235	17.53	32.94	50.47	74.00	-23.53	peak
2	2390.000	17.17	32.94	50.11	74.00	-23.89	peak


Note: 1. Measurement = Reading Level + Correct Factor.

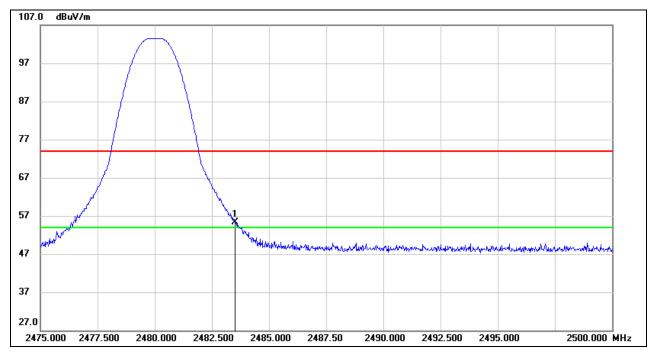
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2361.980	17.07	32.85	49.92	74.00	-24.08	peak
2	2390.000	14.76	32.94	47.70	74.00	-26.30	peak

Note: 1. Measurement = Reading Level + Correct Factor.

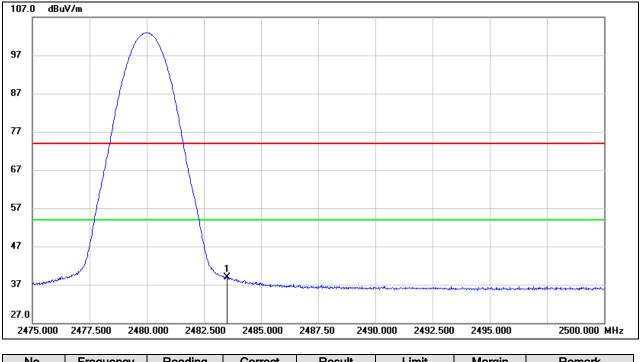

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	21.65	33.58	55.23	74.00	-18.77	peak

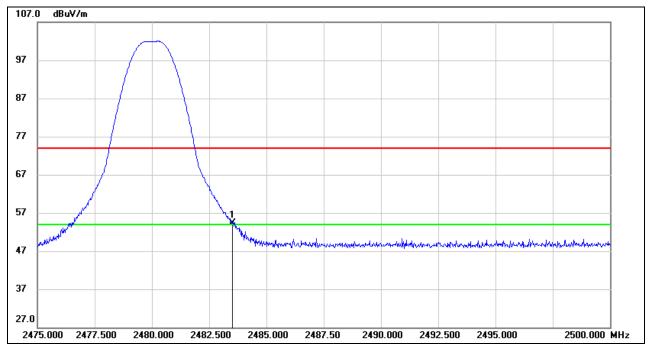

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	5.29	33.58	38.87	54.00	-15.13	AVG

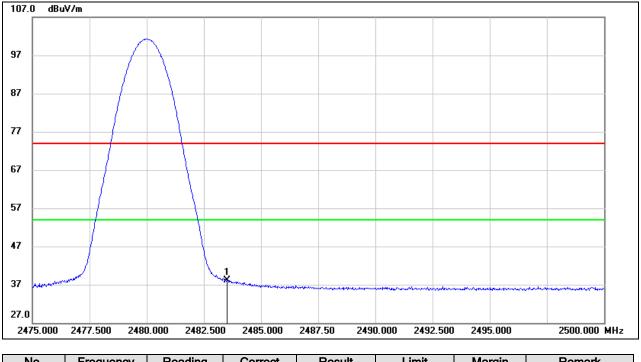

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.76	33.58	54.34	74.00	-19.66	peak


Note: 1. Measurement = Reading Level + Correct Factor.

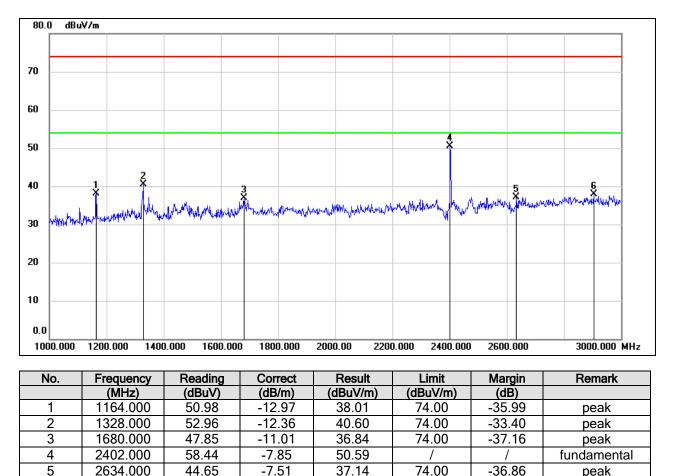
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	4.54	33.58	38.12	54.00	-15.88	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.

8.2. SPURIOUS EMISSIONS (1GHz ~ 3GHz)

8.2.1. BLE MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

-5.52

43.34

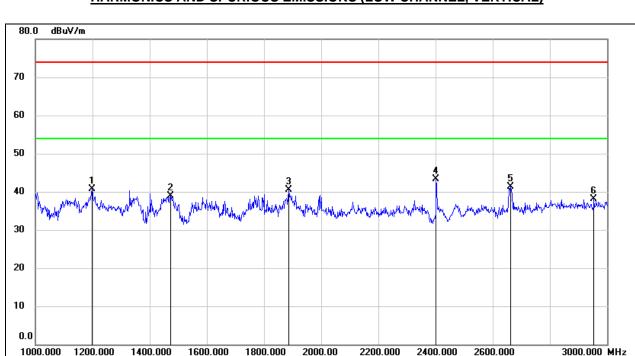
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

37.82

74.00

-36.18

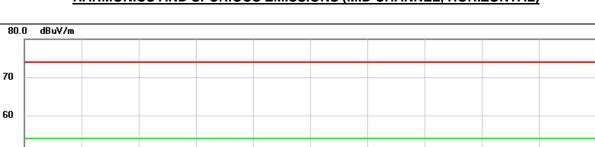
peak


3. Peak: Peak detector.

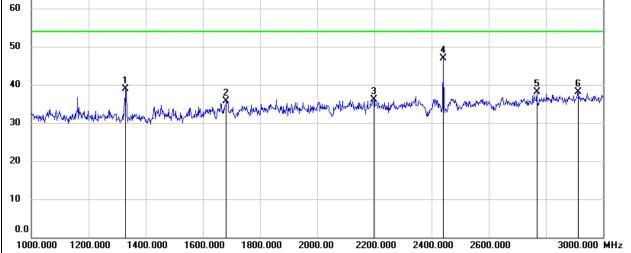
2904.000

6

- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1198.000	53.41	-12.69	40.72	74.00	-33.28	peak
2	1474.000	51.25	-12.26	38.99	74.00	-35.01	peak
3	1886.000	50.35	-9.94	40.41	74.00	-33.59	peak
4	2402.000	51.06	-7.85	43.21	/	/	fundamental
5	2662.000	48.69	-7.35	41.34	74.00	-32.66	peak
6	2954.000	43.49	-5.40	38.09	74.00	-35.91	peak

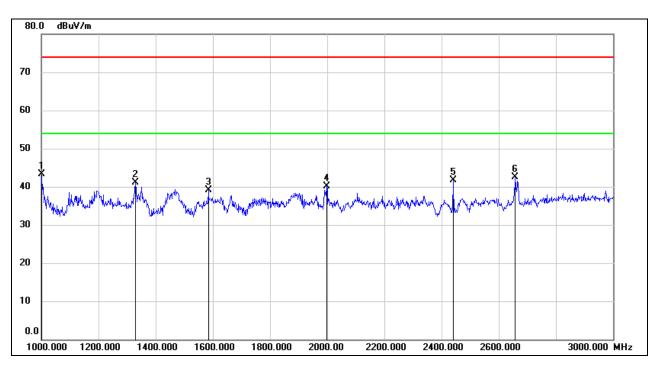

Note: 1. Peak Result = Reading Level + Correct Factor.

- If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1330.000	51.34	-12.36	38.98	74.00	-35.02	peak
2	1682.000	46.65	-10.99	35.66	74.00	-38.34	peak
3	2198.000	44.83	-8.68	36.15	74.00	-37.85	peak
4	2440.000	54.55	-7.59	46.96	/	/	fundamental
5	2768.000	44.50	-6.40	38.10	74.00	-35.90	peak
6	2912.000	43.70	-5.50	38.20	74.00	-35.80	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the

authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.0000	56.97	-13.59	43.38	74.00	-30.62	peak
2	1330.000	53.51	-12.36	41.15	74.00	-32.85	peak
3	1584.000	50.63	-11.53	39.10	74.00	-34.90	peak
4	1998.000	49.89	-9.83	40.06	74.00	-33.94	peak
5	2440.000	49.22	-7.59	41.63	/	/	fundamental
6	2658.000	49.85	-7.37	42.48	74.00	-31.52	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

IZEU Dahu was not confected for Dahu reject inter losses.

70

60

50

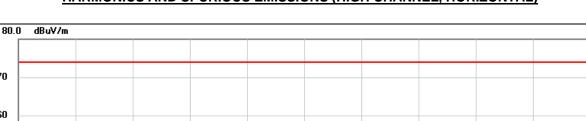
40

30

20

10

0.0 1000.000


1200.000

1400.000

5

2600.000

3000.000 MHz

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1326.000	55.10	-12.35	42.75	74.00	-31.25	peak
2	1554.000	51.94	-11.77	40.17	74.00	-33.83	peak
3	1994.000	49.20	-9.83	39.37	74.00	-34.63	peak
4	2480.000	58.82	-7.31	51.51	/	/	fundamental
5	2660.000	48.66	-7.35	41.31	74.00	-32.69	peak
6	2882.000	43.59	-5.61	37.98	74.00	-36.02	peak

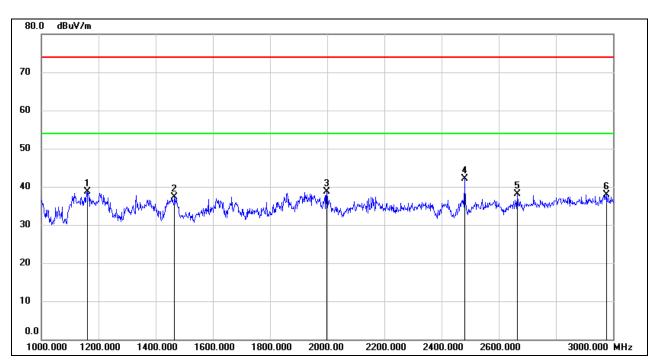
2000.00

2200.000

2400.000

Note: 1. Peak Result = Reading Level + Correct Factor.

1600.000


1800.000

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

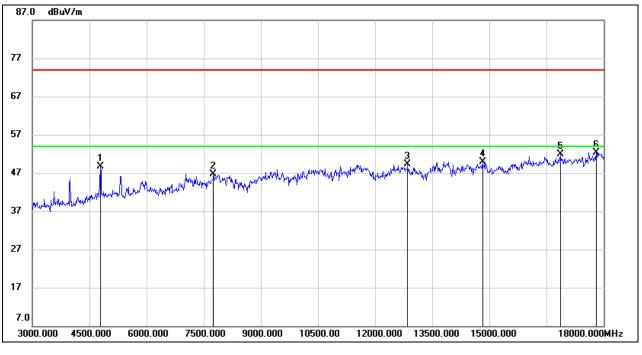
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1162.000	51.80	-13.00	38.80	74.00	-35.20	peak
2	1466.000	49.62	-12.26	37.36	74.00	-36.64	peak
3	1998.000	48.62	-9.83	38.79	74.00	-35.21	peak
4	2480.000	49.32	-7.31	42.01	/	/	fundamental
5	2666.000	45.42	-7.32	38.10	74.00	-35.90	peak
6	2976.000	43.34	-5.35	37.99	74.00	-36.01	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in then spurious frequency bands and the

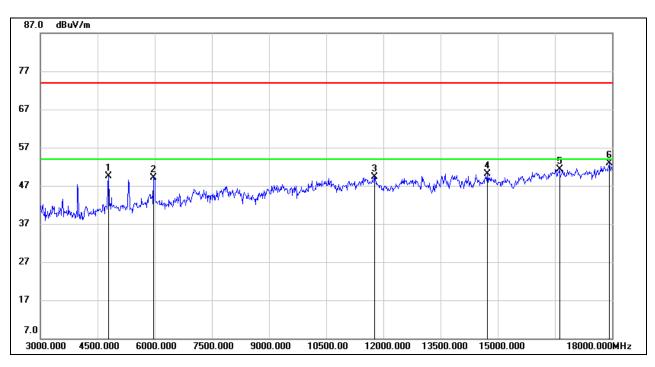
authorized band was not corrected for Band reject filter losses.

8.3. SPURIOUS EMISSIONS (3GHz ~ 18GHz)

8.3.1. BLE MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4785.000	48.37	0.42	48.79	74.00	-25.21	peak
2	7755.000	39.38	7.29	46.67	74.00	-27.33	peak
3	12855.000	34.01	15.23	49.24	74.00	-24.76	peak
4	14820.000	34.06	15.94	50.00	74.00	-24.00	peak
5	16860.000	31.91	19.95	51.86	74.00	-22.14	peak
6	17805.000	29.00	23.31	52.31	74.00	-21.69	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4785.000	49.16	0.42	49.58	74.00	-24.42	peak
2	5970.000	45.35	3.79	49.14	74.00	-24.86	peak
3	11760.000	36.30	13.09	49.39	74.00	-24.61	peak
4	14730.000	34.05	16.01	50.06	74.00	-23.94	peak
5	16620.000	31.84	19.56	51.40	74.00	-22.60	peak
6	17925.000	29.50	23.37	52.87	74.00	-21.13	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

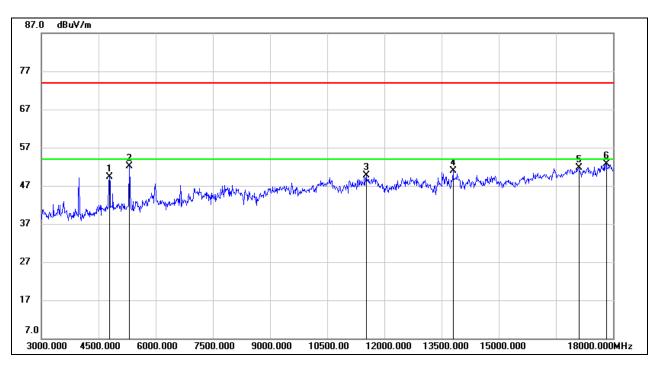
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

dBu¥/m 87.0 77 67 57 47 37 27 17 7.0 3000.000 4500.000 6000.000 7500.000 9000.000 10500.00 12000.000 13500.000 15000.000 18000.000MHz

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	47.02	0.76	47.78	74.00	-26.22	peak
2	7815.000	39.32	7.83	47.15	74.00	-26.85	peak
3	11520.000	36.15	13.38	49.53	74.00	-24.47	peak
4	13920.000	33.95	16.17	50.12	74.00	-23.88	peak
5	16755.000	31.98	19.94	51.92	74.00	-22.08	peak
6	17835.000	29.12	23.31	52.43	74.00	-21.57	peak

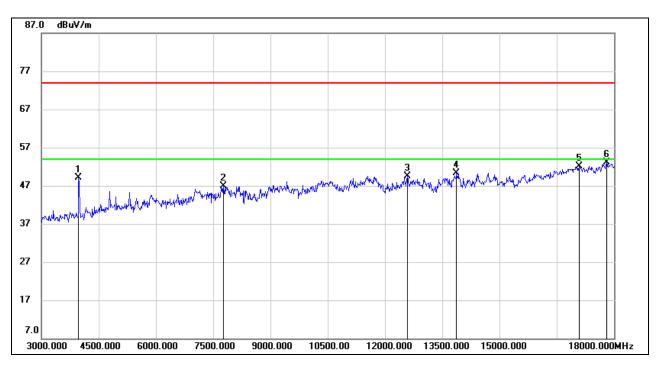

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (M	MID CHANNEL, VERTICAL)
-------------------------------------	------------------------

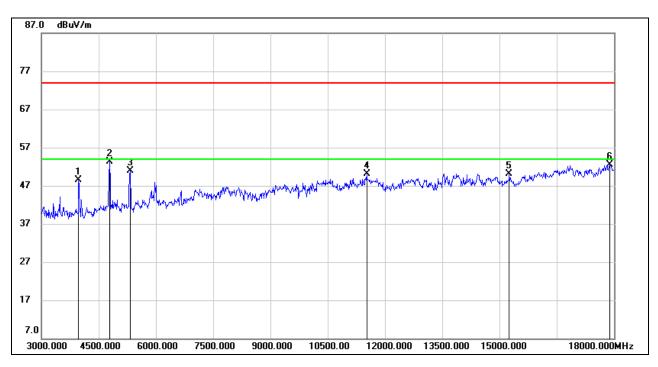

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4785.000	48.83	0.42	49.25	74.00	-24.75	peak
2	5310.000	50.07	2.02	52.09	74.00	-21.91	peak
3	11520.000	36.34	13.38	49.72	74.00	-24.28	peak
4	13800.000	33.74	17.10	50.84	74.00	-23.16	peak
5	17100.000	31.07	20.64	51.71	74.00	-22.29	peak
6	17820.000	29.45	23.30	52.75	74.00	-21.25	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	52.03	-2.90	49.13	74.00	-24.87	peak
2	7770.000	39.43	7.50	46.93	74.00	-27.07	peak
3	12585.000	35.36	14.08	49.44	74.00	-24.56	peak
4	13875.000	33.86	16.44	50.30	74.00	-23.70	peak
5	17085.000	31.58	20.60	52.18	74.00	-21.82	peak
6	17805.000	29.75	23.31	53.06	74.00	-20.94	peak

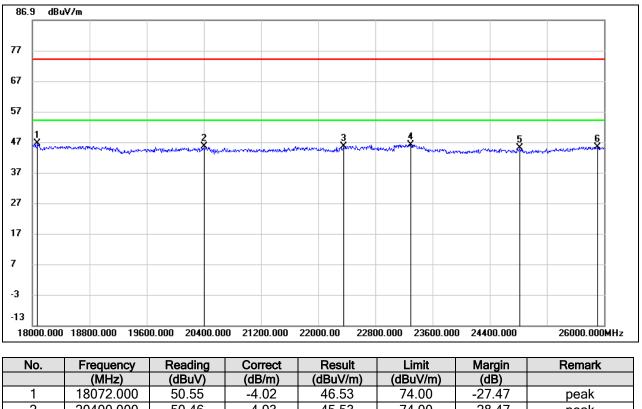
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	51.47	-2.90	48.57	74.00	-25.43	peak
2	4785.000	52.91	0.42	53.33	74.00	-20.67	peak
3	5325.000	48.85	1.99	50.84	74.00	-23.16	peak
4	11520.000	36.76	13.38	50.14	74.00	-23.86	peak
5	15255.000	33.99	16.20	50.19	74.00	-23.81	peak
6	17895.000	29.19	23.34	52.53	74.00	-21.47	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

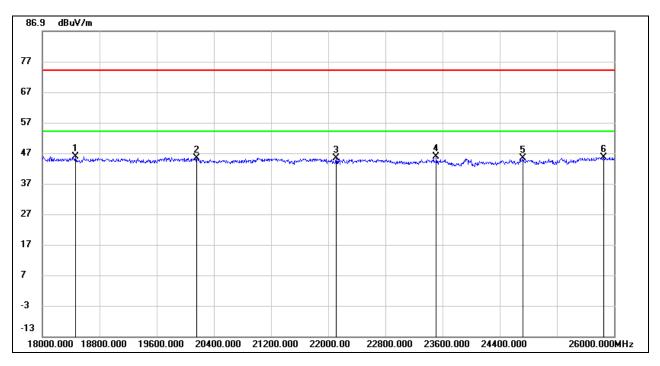

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.4.1. BLE MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18072.000	50.55	-4.02	46.53	74.00	-27.47	peak
2	20400.000	50.46	-4.93	45.53	74.00	-28.47	peak
3	22360.000	51.58	-5.95	45.63	74.00	-28.37	peak
4	23296.000	51.30	-5.16	46.14	74.00	-27.86	peak
5	24824.000	46.77	-1.69	45.08	74.00	-28.92	peak
6	25912.000	47.44	-2.06	45.38	74.00	-28.62	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

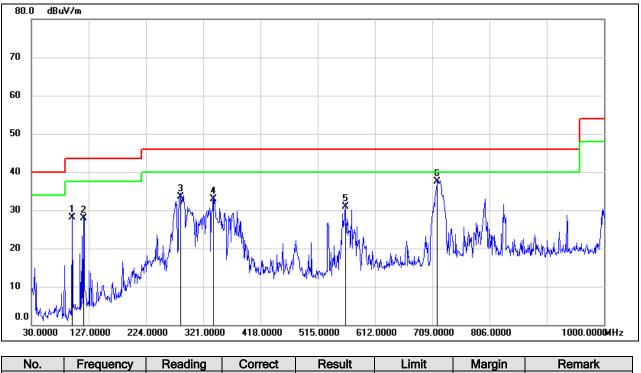
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18464.000	50.20	-4.39	45.81	74.00	-28.19	peak
2	20160.000	50.07	-4.70	45.37	74.00	-28.63	peak
3	22112.000	51.47	-6.17	45.30	74.00	-28.70	peak
4	23512.000	50.51	-4.76	45.75	74.00	-28.25	peak
5	24720.000	47.37	-2.02	45.35	74.00	-28.65	peak
6	25856.000	47.40	-1.81	45.59	74.00	-28.41	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

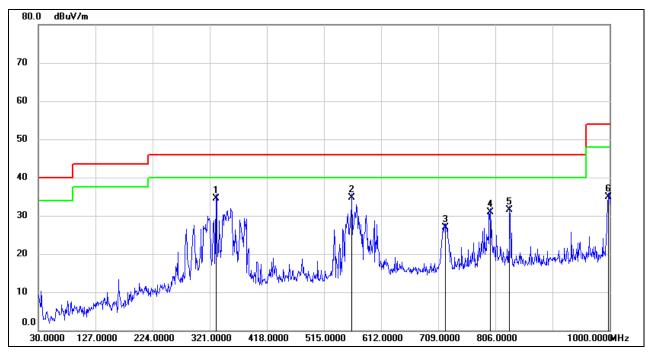

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

Note: All the modes have been tested, only the worst data was recorded in the report.

8.5. SPURIOUS EMISSIONS 30MHz ~ 1GHz

8.5.1. BLE MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	98.8700	49.35	-21.33	28.02	43.50	-15.48	QP
2	118.2700	48.08	-20.15	27.93	43.50	-15.57	QP
3	282.2000	50.55	-16.96	33.59	46.00	-12.41	QP
4	338.4600	47.67	-14.74	32.93	46.00	-13.07	QP
5	561.5600	41.53	-10.60	30.93	46.00	-15.07	QP
6	717.7300	45.98	-8.56	37.42	46.00	-8.58	QP

Note: 1. Result Level = Read Level + Correct Factor.

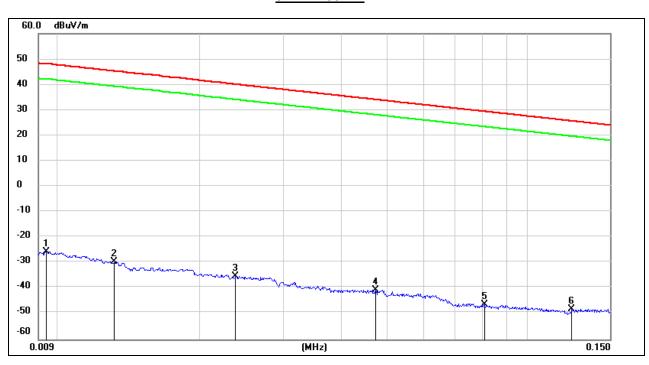
2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	331.6700	49.49	-14.89	34.60	46.00	-11.40	QP
2	562.5300	45.23	-10.58	34.65	46.00	-11.35	QP
3	721.6100	35.40	-8.52	26.88	46.00	-19.12	QP
4	797.2700	38.73	-7.79	30.94	46.00	-15.06	QP
5	830.2500	38.62	-7.17	31.45	46.00	-14.55	QP
6	998.0600	39.73	-4.76	34.97	54.00	-19.03	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.


Note: All the modes have been tested, only the worst data was recorded in the report.

8.6. SPURIOUS EMISSIONS BELOW 30MHz

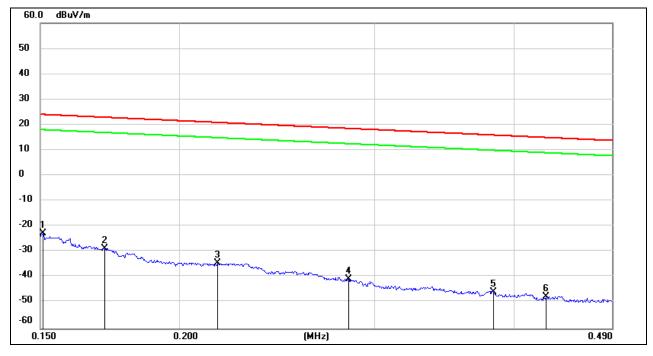
8.6.1. BLE MODE

SPURIOUS EMISSIONS (LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

9kHz~ 150kHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0094	75.66	-101.35	-25.69	48.05	-73.74	peak
2	0.0131	71.97	-101.38	-29.41	45.25	-74.66	peak
3	0.0238	66.06	-101.36	-35.30	40.07	-75.37	peak
4	0.0473	60.84	-101.47	-40.63	34.10	-74.73	peak
5	0.0806	55.18	-101.63	-46.45	29.47	-75.92	peak
6	0.1242	53.51	-101.72	-48.21	25.72	-73.93	peak

Note: 1. Measurement = Reading Level + Correct Factor.

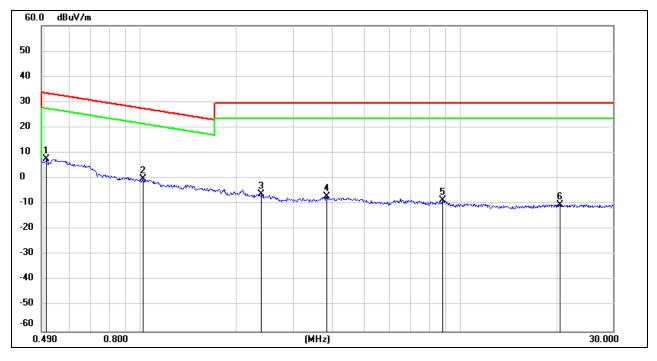

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

<u>150kHz ~ 490kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1508	79.11	-101.63	-22.52	24.03	-46.55	peak
2	0.1715	73.11	-101.67	-28.56	22.92	-51.48	peak
3	0.2164	67.27	-101.75	-34.48	20.90	-55.38	peak
4	0.2837	61.22	-101.83	-40.61	18.54	-59.15	peak
5	0.3834	56.19	-101.94	-45.75	15.93	-61.68	peak
6	0.4269	54.34	-101.99	-47.65	15.00	-62.65	peak


Note: 1. Measurement = Reading Level + Correct Factor

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5080	69.85	-62.07	7.78	33.49	-25.71	peak
2	1.0212	61.99	-62.25	-0.26	27.42	-27.68	peak
3	2.3887	55.65	-61.72	-6.07	29.54	-35.61	peak
4	3.8246	54.20	-61.38	-7.18	29.54	-36.72	peak
5	8.8116	52.30	-60.96	-8.66	29.54	-38.20	peak
6	20.4978	50.58	-60.79	-10.21	29.54	-39.75	peak

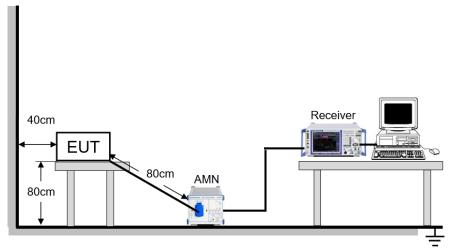
Note: 1. Measurement = Reading Level + Correct Factor

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes have been tested, only the worst data was recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a).

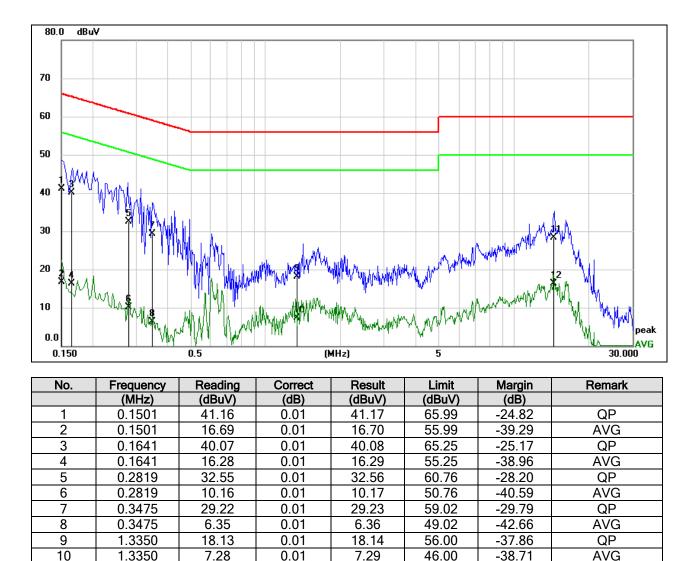
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	65.6%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V/ 60Hz

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9.1. BLE MODE

LINE L RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

Note: 1. Result = Reading +Correct Factor.

28.17

16.31

14.4818

14.4818

11

12

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

28.23

16.37

60.00

50.00

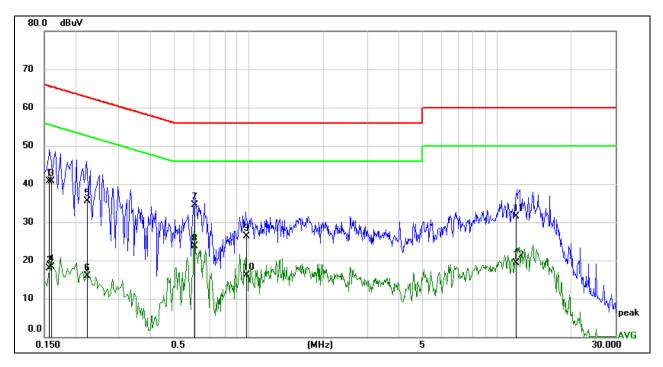
-31.77

-33.63

QP

AVG

3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).


0.06

0.06

4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

LINE N RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1573	40.61	0.01	40.62	65.61	-24.99	QP
2	0.1573	17.88	0.01	17.89	55.61	-37.72	AVG
3	0.1611	40.78	0.01	40.79	65.41	-24.62	QP
4	0.1611	18.22	0.01	18.23	55.41	-37.18	AVG
5	0.2239	35.57	0.01	35.58	62.67	-27.09	QP
6	0.2239	15.94	0.01	15.95	52.67	-36.72	AVG
7	0.6052	34.54	0.01	34.55	56.00	-21.45	QP
8	0.6052	23.77	0.01	23.78	46.00	-22.22	AVG
9	0.9840	26.34	0.01	26.35	56.00	-29.65	QP
10	0.9840	16.09	0.01	16.10	46.00	-29.90	AVG
11	11.9450	31.54	0.05	31.59	60.00	-28.41	QP
12	11.9450	19.34	0.05	19.39	50.00	-30.61	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

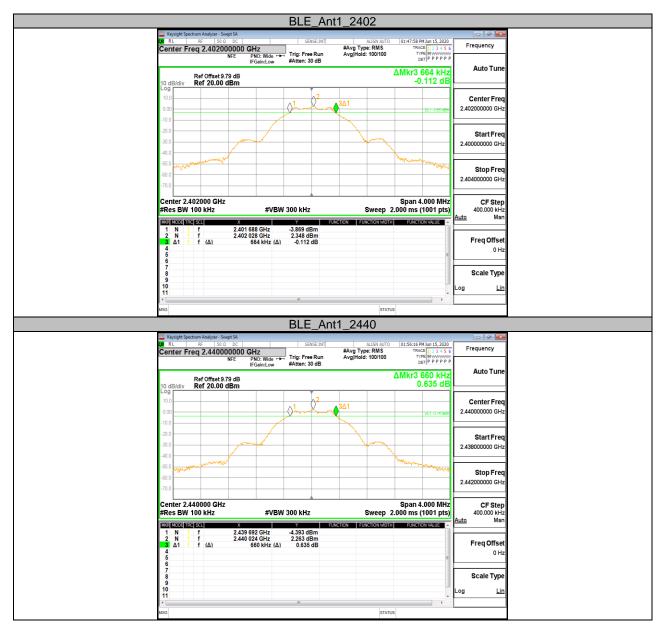
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies



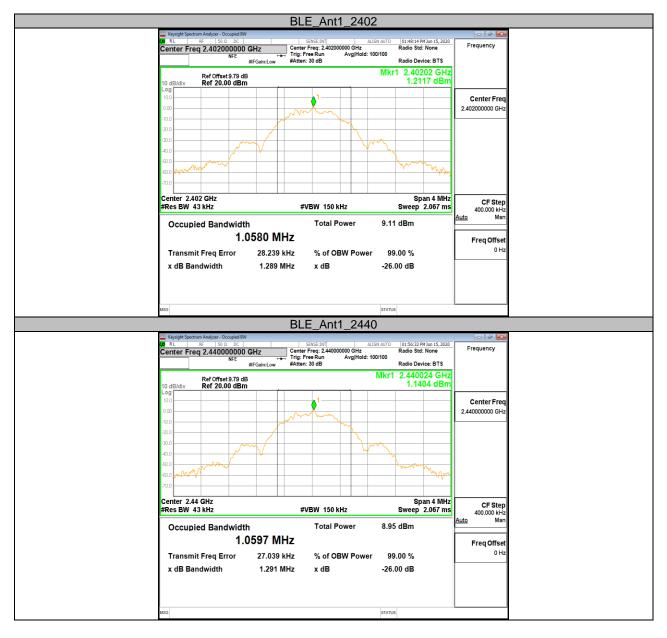
Appendix A: DTS Bandwidth Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.664	2401.688	2402.352	0.5	PASS
BLE	Ant1	2440	0.660	2439.692	2440.352	0.5	PASS
		2480	0.672	2479.680	2480.352	0.5	PASS

Test Graphs

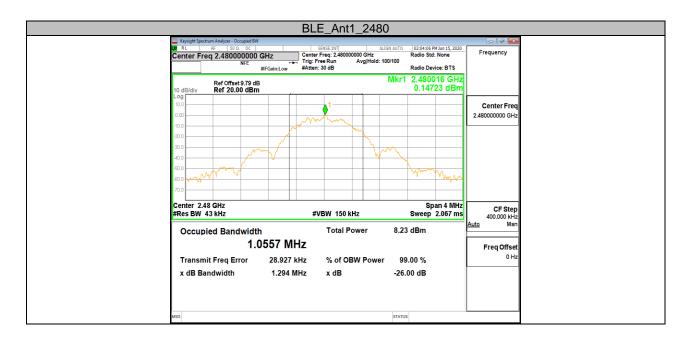
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

			BLE_Ar	t1_2480		
	Keysight Spectrum Analyzer - Swe					- 8 -
	RL RF 50 Ω enter Freg 2.48000		SENSE:INT	ALIGN AUTO #Avg Type: RMS	02:03:50 PM Jun 15, 2020 TRACE 1 2 3 4 5 6	Frequency
_		NFE PNO: Wide +++	Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100	TYPE MWWWW DET P P P P P	
					ΔMkr3 672 kHz	Auto Tune
10	Ref Offset 9.7 dB/div Ref 20.00 (0.179 dB	
Lo	pg					
	0.0		Om la	_3∆1		Center Freq
	00		y	V	DL1 -4.38 dBm	2.480000000 GHz
	0.0	~ de				Start Freq
	0.0	/				2.478000000 GHz
	margh	<i>r</i>			When and the start of the	
-60	NAMANA -				In Annual Contraction of the	Stop Freq
	0.0					2.482000000 GHz
	enter 2.480000 GHz	~~~			Span 4.000 MHz	
	Res BW 100 kHz	#VBW	300 kHz	•	2.000 ms (1001 pts)	400.000 kHz Auto Man
	R MODE TRC SCL	× 2.479 680 GHz	-4.597 dBm	UNCTION FUNCTION WDTH	FUNCTION VALUE	
	2 N 1 f 3 Δ1 1 f (Δ)	2.480 024 GHz 672 kHz (Δ)	1.616 dBm 0.179 dB			Freq Offset
	4	0/2 KH2 (Δ)	0.179 08			0 Hz
	5 6				E	
	7					Scale Type
1						
1						Log <u>Lin</u>
	-				•	
MSC	3			STATU	IS	



Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.0580	2401.499	2402.557		PASS
BLE	Ant1	2440	1.0597	2439.497	2440.557		PASS
		2480	1.0557	2479.501	2480.557		PASS

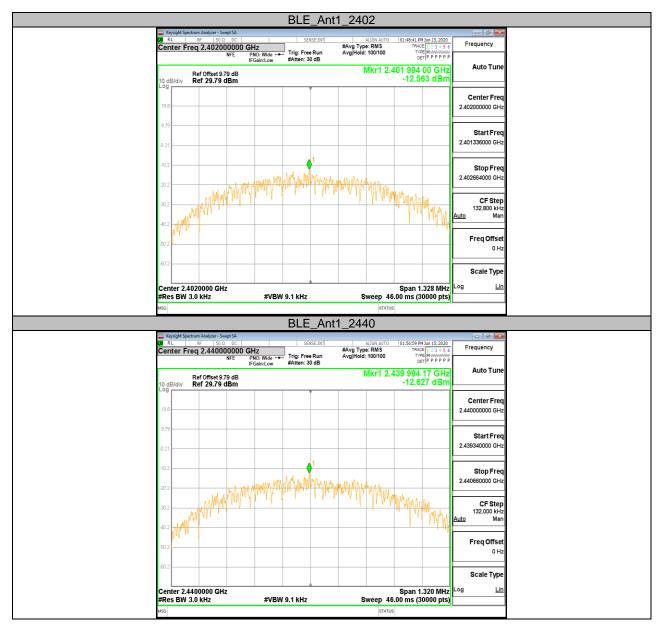


Test Graphs

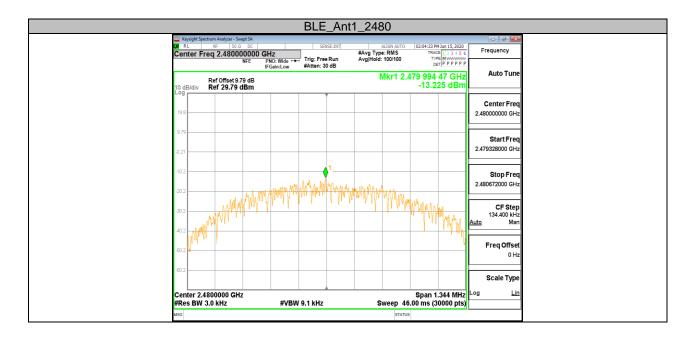
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Appendix C: Maximum conducted output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	2.68	<=30	PASS
BLE	Ant1	2440	2.57	<=30	PASS
		2480	1.92	<=30	PASS

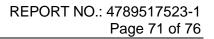


Appendix D: Maximum power spectral density Test Result


Test Mode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
		2402	-12.56	<=8	PASS
BLE	Ant1	2440	-12.63	<=8	PASS
		2480	-13.23	<=8	PASS

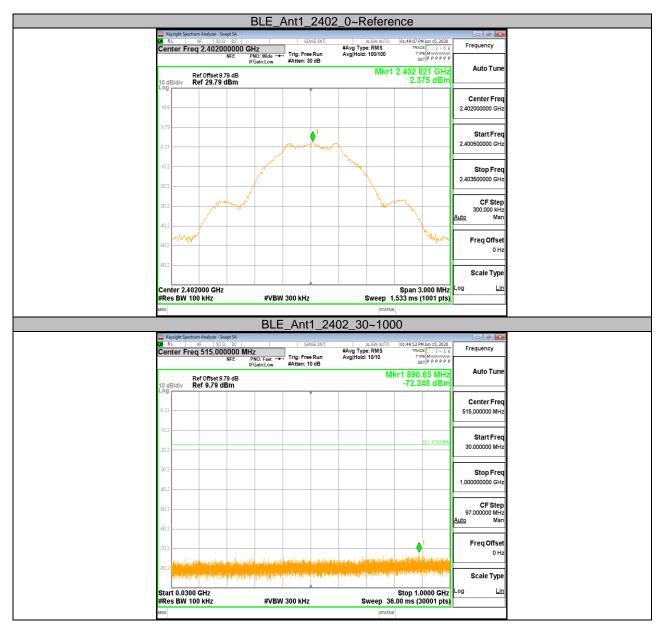
Test Graphs

Appendix E: Band edge measurements Test Result


Test Mode	Antenna	Channel	Channel	Verdict
BLE	Ant1	Low	2402	PASS
BLE	Anti	High	2480	PASS

Test Graphs

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



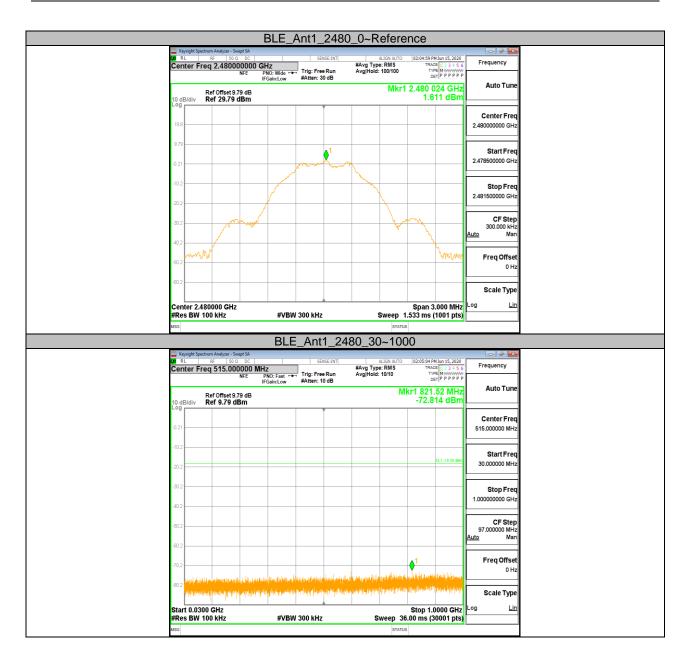
Appendix F: Conducted Spurious Emission Test Result

Test Mode	Antenna	Channel	Free-range [MHz]	Verdict
			Reference	PASS
		2402	30~1000	PASS
			1000~26500	PASS
			Reference	PASS
BLE	Ant1	2440	30~1000	PASS
			1000~26500	PASS
			Reference	PASS
		2480	30~1000	PASS
			1000~26500	PASS



Test Graphs

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



				BLF	E_Ant1	_244	0_30	1~100	10		
		Spectrum Analyzer -			_	_					- 3 💌
	enter	RF 50 Freq 515.0	00000 MH	PNO: East 😁	Trig: Free	Run	#Avg Type Avg Hold:	ALIGN AUTO e: RMS : 10/10	TRAC TYP	M Jun 15, 2020 2E 1 2 3 4 5 6 PE M WHITE P P P P P P P	Frequency
10	Ref Offset 9.79 dB 10 dB/div Ref 9.79 dBm			Gain:Low #Atten: 10 dB		dB	Mkr1 902.90 MHz -71.810 dBm		90 MHz	Auto Tune	
Lo	g	101 3.1 3	abiii		T T						
-0.	21										Center Freq
ч <i>и</i> .	21										515.000000 MHz
-10	1.2										
										DL1 -17.74 dBm	Start Freq 30.000000 MHz
-20	1.2										
-30	1.2										Stop Freq
											1.000000000 GHz
-40	1.2										
-51	12										CF Step
~											97.000000 MHz <u>Auto</u> Man
-80	1.2							-			
-71										1	Freq Offset
-70					nteria (Apartana) e	and the		1. Institutes	and but in	Includes and	0 Hz
-80		wanthanta									
	1944	(di) (h _a dalim) (aji Masayasi	l sul sea	addin and dated	a doub a d	Liber Maria	d Advisor.	a dia mandri di la dia mandri di la dia mandri di la dia dia dia dia dia dia dia dia dia di	يعايد والمراه	Scale Type
		0300 GHz							Stop 1.0	0000 GHz	Log <u>Lin</u>
		№ 100 kHz		#VBV	V 300 kHz		S	<u> </u>		0001 pts)	
MSG	3							STATUS			
				DLC_	Anti_	2440_	_100	0~26	500		
 ()()	Keysight: R L	Spectrum Analyzer - RF 50				2440_ se:int		ALIGN AUTO	01:57:38 PI	MJun 15, 2020	- 2 💌
(2	RL	Spectrum Analyzer - RF 50 Freq 13.75	Swept SA	211-	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS	01:57:38 PI	MJun 15, 2020 2E 1 2 3 4 5 6 2E M 444444	Frequency
()	RL	RF 50	Swept SA Ω Ω DC 00000000 (NFE	211-		se:INT		ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE	E 1 2 3 4 5 6 E M WWWWW T P P P P P P	Frequency
	enter	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	ET P P P P P P P P P P P P P P P P P P P	
	enter	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	E 1 2 3 4 5 6 E M WWWWW T P P P P P P	Frequency Auto Tune
0 C 10 L	dB/div	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	ET P P P P P P P P P P P P P P P P P P P	Frequency Auto Tune Center Freq
	dB/div	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	ET P P P P P P P P P P P P P P P P P P P	Frequency Auto Tune
0 C 10 10	dB/div	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	ET P P P P P P P P P P P P P P P P P P P	Frequency Auto Tune Center Freq 13.75000000 GHz
10 1.0 	dB/div g 21	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	ET P P P P P P P P P P P P P P P P P P P	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq
0 C 10 10	dB/div g 21	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	60 GHz 74 dBm	Frequency Auto Tune Center Freq 13.75000000 GHz
10 10 -0. -11	dB/div g	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	60 GHz 74 dBm	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 1.00000000 GHz
10 10 -0 -11 -23 -33	RL enter dB/div 21 .2 .2 .2	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	60 GHz 74 dBm	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq
10 10 10 10 10 10 10 10 10 10 10 10 10 1	RL enter dB/div 21 .2 .2 .2	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	60 GHz 74 dBm	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 1.00000000 GHz Stop Freq
10 10 -0 -11 -23 -33	RL anter dB/div 'g .2 .2 .2 .2	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	60 GHz 74 dBm	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 1.00000000 GHz 26.5000000 GHz CF Step
44 10 10 10 10 10 10 10 10 10 10 10 10 10	RL anter dB/div 'g .2 .2 .2 .2	RF 50	Swept SA 0 0 DC 00000000 (NFE II 9.79 dB	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	EI 2 2 4 5 6 MWWWW TP P P P P P 60 GHz 74 dBm	Frequency Auto Tune Center Freq 13.75000000 GHz 1.00000000 GHz 26.50000000 GHz
10 10 -0. -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	RL enter dB/div 21 12 12 12 12 12 12 12 12 12 12 12 12 12	RF 50	Swept SA 3 0 0 0000000 0 00 NFE 1 11 9.79 dB dBm	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	EI 2 2 4 5 6 MWWWW TP P P P P P 60 GHz 74 dBm	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 1.00000000 GHz Stop Freq 26.50000000 GHz 2.55000000 GHz
-10 -10 -10 -11 -11 -11 -11 -11 -11 -11	RL enter dB/div 21 12 12 12 12 12 12 12 12 12	Ref Offset	Swept SA 3 0 0 0000000 0 00 NFE 1 11 9.79 dB dBm	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	EI 2 2 4 5 6 MWWWW TP P P P P P 60 GHz 74 dBm	Start Freq 13.75000000 GHz Start Freq 1.000000000 GHz 25.50000000 GHz 25.50000000 GHz 2.50000000 GHz 2.50000000 GHz P 2.50000000 GHz Freq Offset
-0. -10 -11 -12 -24 -42 -42 -42 -42 -42 -42 -42 -42 -4	RL enter dB/div 21 12 12 12 12 12 12 12 12 12	RF 50	Swept SA 3 0 0 0000000 0 00 NFE 1 11 9.79 dB dBm	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	EI 2 2 4 5 6 MWWWW TP P P P P P 60 GHz 74 dBm	Start Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 1.0000000 GHz Stop Freq 26.50000000 GHz 2.55000000 GHz 2.55000000 GHz
4 10 10 11 10 10 10 10 10 10 10 10 10 10	RL enter dB/div g <td< td=""><td>Ref Offset</td><td>Swept SA 3 0 0 0000000 0 00 NFE 1 11 9.79 dB dBm</td><td>GHz NO: Fast ↔</td><td>SENS</td><td>se:INT</td><td>#Avg Type</td><td>ALIGN AUTO e: RMS : 10/10</td><td>01:57:38 PI TRAC TYP DE 1 7.320</td><td>EI 2 2 4 5 6 MWWWW TP P P P P P 60 GHz 74 dBm</td><td>Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 1.00000000 GHz Stop Freq 26.50000000 GHz 2.55000000 GHz Auto Freq Offset 0 Hz</td></td<>	Ref Offset	Swept SA 3 0 0 0000000 0 00 NFE 1 11 9.79 dB dBm	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	EI 2 2 4 5 6 MWWWW TP P P P P P 60 GHz 74 dBm	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 1.00000000 GHz Stop Freq 26.50000000 GHz 2.55000000 GHz Auto Freq Offset 0 Hz
4 10 10 10 10 10 10 10 10 10 10 10 10 10	RL enter dB/div g <td< td=""><td>Ref Offset</td><td>Swept SA 3 0 0 0000000 0 00 NFE 1 11 9.79 dB dBm</td><td>GHz NO: Fast ↔</td><td>SENS</td><td>se:INT</td><td>#Avg Type</td><td>ALIGN AUTO e: RMS : 10/10</td><td>01:57:38 PI TRAC TYP DE 1 7.320</td><td>EI 2 2 4 5 6 MWWWW TP P P P P P 60 GHz 74 dBm</td><td>Start Freq 13.75000000 GHz Start Freq 1.000000000 GHz 25.50000000 GHz 25.50000000 GHz 2.50000000 GHz 2.50000000 GHz P 2.50000000 GHz Freq Offset</td></td<>	Ref Offset	Swept SA 3 0 0 0000000 0 00 NFE 1 11 9.79 dB dBm	GHz NO: Fast ↔	SENS	se:INT	#Avg Type	ALIGN AUTO e: RMS : 10/10	01:57:38 PI TRAC TYP DE 1 7.320	EI 2 2 4 5 6 MWWWW TP P P P P P 60 GHz 74 dBm	Start Freq 13.75000000 GHz Start Freq 1.000000000 GHz 25.50000000 GHz 25.50000000 GHz 2.50000000 GHz 2.50000000 GHz P 2.50000000 GHz Freq Offset
2 10 10 10 10 10 10 10 10 10 10 10 10 10	gB/div gg 12	Ref Offset	Swept SA 3 0 0 0000000 0 00 NFE 1 11 9.79 dB dBm	GaintLow	SEN: Trig: Free #Atten: 10	se:INT	#Avg Type	ALIGN AUTO	01:57:38 PI	6.50 GHz	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 1.00000000 GHz Stop Freq 26.50000000 GHz 2.55000000 GHz Auto Freq Offset 0 Hz
2 10 10 10 10 10 10 10 10 10 10 10 10 10	RL RL dB/div g g	Ref Offset	Swept SA 3 0 0 0000000 0 00 NFE 1 11 9.79 dB dBm	GaintLow	SENS	se:INT	#Avg Type	ALIGN AUTO	1 7.320 -58.8	z; 1:23456 TPPPPPP TPPPPPP 60 GHz 74 dBm z:1-1774dm	Start Freq 13.75000000 GHz 1.00000000 GHz Start Freq 26.50000000 GHz 25.50000000 GHz 2.550000000 GHz 2.550000000 GHz Participant CF Step 2.550000000 GHz CF Step 2.550000000 GHz OHz Scale Type

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

R.L BF 50.0 DC SENSE.INT ALIGN AUTO 02:05:27 PUNNTS 2020 Center Freq 13.750000000 GHz Trig: FreeRun #Avg Type: RMS Trid: State 13:3:4:5 Frequer NFE PN0:Fast → IFGaint.cow Trig: FreeRun Avg/IHold: 10/10 02:05:27 PUNNT Trid: State Frequer Miler 1 40 GO 20.0 CHz Avg/IHold: 10/10 02:05:27 PUNNT Auto Avg/IHold: 10/10 02:05:27 PUNNT	uency
Mkr1 4 959 20 GU	
Ref Offset 9.79 dB	uto Tune
	nter Freq 00000 GHz
	Start Freq 00000 GHz
26.500000	Stop Freq 00000 GHz
40.2 50.2 50.2 4uto	CF Step 00000 GHz Man
80 2 70 2 70 2	eq Offset 0 Hz
	cale Type
Start 1.00 GHz Stop 26.50 GHz L ^{0g} #Res BW 100 kHz #VBW 300 kHz Sweep 938.0 ms (30001 pts)	Lin

END OF REPORT