

Figure B． 3 Frequency Response of CDMA BC0


Figure B． 4 Frequency Response of CDMA BC1


Figure B． 5 Frequency Response of CDMA BC10


Figure B． 6 Frequency Response of WCDMA B2

W1700／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 1.48 dB


Figure B． 7 Frequency Response of WCDMA B4

W850／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f）
Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 1.46 dB


Figure B． 8 Frequency Response of L WCDMA B5

GSM850／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-15,5,3.7 \mathrm{~mm}$ Diff： 0.84 dB


Figure B． 9 Frequency Response of GSM850（Google Duo）

DCS1900／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：－10，0， 3.7 mm Diff： 0.96 dB


Figure B． 10 Frequency Response of GSM1900（Google Duo）


Figure B． 11 Frequency Response of CDMA BCO（Google Duo）

CDMA $\mathrm{BC} 1 / \mathrm{z}$（axial）wideband at best $\mathrm{S} / \mathrm{N} / \mathrm{ABM}$ Freq Resp（ $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{f}$ ） Loc：$-5,5,3.7 \mathrm{~mm}$ Diff： 0.8 dB


Figure B． 12 Frequency Response of CDMA BC1（Google Duo）

CDMA BC10／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,5,3.7 \mathrm{~mm}$ Diff： 0.85 dB


Figure B． 13 Frequency Response of CDMA BC10（Google Duo）

W1900／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,5,3.7 \mathrm{~mm}$ Diff： 0.91 dB


Figure B． 14 Frequency Response of WCDMA B2（Google Duo）


Figure B． 15 Frequency Response of WCDMA B4（Google Duo）


Figure B． 16 Frequency Response of WCDMA B5（Google Duo）

LTE B2 QPSK 100RB0 6kbps／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 1.12 dB


Figure B． 17 Frequency Response of LTE B2（Google Duo）

LTE B4 QPSK 100RB0 6kbps／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,5,3.7 \mathrm{~mm}$ Diff： 1.83 dB


Figure B． 18 Frequency Response of LTE B4（Google Duo）

LTE B5 QPSK 10M 50RB0 6kbps／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 1.17 dB


Figure B． 19 Frequency Response of LTE B5（Google Duo）


Figure B． 20 Frequency Response of LTE B12（Google Duo）

LTE B13 QPSK 10M 50RB0 6kbps／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 1.17 dB


Figure B． 21 Frequency Response of W LTE B13（Google Duo）


Figure B． 22 Frequency Response of LTE B25（Google Duo）

LTE B26 QPSK 15M 75RB0 6kbps／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 1.59 dB


Figure B． 23 Frequency Response of LTE B26（Google Duo）

LTE B41 QPSK 20M 1RB0 UL－DL－0 75kbps／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 1.13 dB


Figure B． 24 Frequency Response of LTE B41（Google Duo）

LTE B66 QPSK 100RB0 6kbps／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 1.37 dB


Figure B． 25 Frequency Response of LTE B66（Google Duo）

LTE B71 QPSK 100RB0 6kbps／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 1.26 dB


Figure B． 26 Frequency Response of LTE B71（Google Duo）

WiFi 2．4／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,5,3.7 \mathrm{~mm}$ Diff： 0.81 dB


Figure B． 27 Frequency Response of WIFI 2．4G（Google Duo）


Figure B． 28 Frequency Response of LTE B2


Figure B． 29 Frequency Response of LTE B4


Figure B． 30 Frequency Response of LTE B5

LTE B12／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,5,3.7 \mathrm{~mm}$ Diff： 1.62 dB


Figure B． 31 Frequency Response of LTE B12


Figure B． 32 Frequency Response of W LTE B13

LTE B25／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 2 dB


Figure B． 33 Frequency Response of LTE B25


Figure B． 34 Frequency Response of LTE B26

LTE B66／z（axial）wideband at best S／N／ABM Freq Resp（x，y，z，f） Loc：$-5,0,3.7 \mathrm{~mm}$ Diff： 2 dB


Figure B． 35 Frequency Response of LTE B66


Figure B． 36 Frequency Response of LTE B71


Figure B． 37 Frequency Response of LTE B41

## ANNEX C Probe Calibration Certificate



深圳信息通信研究院
Shenzhen Academy of Information
and Communications Technology

## ［References

［1］ANSI－C63．19－2007
American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids．
［2］ANSI－C63．19－2011
American National Standard，Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids．
［3］DASY5 manual，Chapter：Hearing Aid Compatibility（HAC）T－Coil Extension

## Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz ．The pickup coil is compliant with the dimensional requirements of $[1+2]$ ．The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side．Power is supplied via the same connector（phantom power supply） and monitored via the LED near the connector．The 7 pin connector at the end of the probe does not carry any signals，but determines the angle of the sensor when mounted on the DAE．The probe supports mechanical detection of the surface．
The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by $120^{\circ}$ around its axis．It is aligned with the perpendicular component of the field，if the probe axis is tilted nominally $35.3^{\circ}$ above the measurement plane，using the connector rotation and sensor angle stated below．
The probe is fully RF shielded when operated with the matching signal cable（shielded）and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to $[1+2]$ without additional shielding．

## Handling of the item

The probe is manufactured from stainless steel．In order to maintain the performance and calibration of the probe，it must not be opened．The probe is designed for operation in air and shall not be exposed to humidity or liquids．For proper operation of the surface detection and emergency stop functions in a DASY system，the probe must be operated with the special probe cup provided（larger diameter）．

## Methods Applied and Interpretation of Parameters

－Coordinate System：The AM1D probe is mounted in the DASY system for operation with a HAC Test Arch phantom with AMCC Helmholtz calibration coil according to［3］，with the tip pointing to ＂southwest＂orientation．
－Functional Test：The functional test preceding calibration includes test of Noise level RF immunity（ 1 kHz AM modulated signal）．The shield of the probe cable must be well connected Frequency response verification from 100 Hz to 10 kHz ．
－Connector Rotation：The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only．The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal．Its angle is determined from the two minima at nominally $+120^{\circ}$ and－ $120^{\circ}$ rotation，so the sensor in the tip of the probe is aligned to the vertical plane in z－direction， corresponding to the field maximum in the AMCC Helmholtz calibration coil．
－Sensor Angle：The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally $+120^{\circ}$ and $-120^{\circ}$ ．DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane．
Sensitivity：With the probe sensor aligned to the z－field in the AMCC，the output of the probe is compared to the magnetic field in the AMCC at 1 kHz ．The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil，which is monitored on the precision shunt resistor of the coil．

AM1D probe identification and configuration data

| Item | AM1DV3 Audio Magnetic 1D Field Probe |
| :--- | :--- |
| Type No | SP AM1 001 BA |
| Serial No | 3086 |


| Overall length | 296 mm |
| :--- | :--- |
| Tip diameter | 6.0 mm （at the tip） |
| Sensor offset | 3.0 mm （centre of sensor from tip） |
| Internal Amplifier | 20 dB |


| Manufacturer／Origin | Schmid \＆Partner Engineering AG，Zurich，Switzerland |
| :--- | :--- |
| Manufacturing date | May 28，2010 |

## Calibration data

| Connector rotation angle | （in DASY system） | $\mathbf{2 0 4 . 7 ^ { \circ }}$ | $+/-3.6^{\circ}(\mathrm{k}=2)$ |
| :--- | :--- | :--- | :--- |
| Sensor angle | （in DASY system） | $\mathbf{0 . 9 5}$ |  |
| Sensitivity at 1 kHz | （in DASY system） | $\mathbf{0 . 0 0 7 4 3} \mathrm{V} /(\mathbf{A} / \mathrm{m})$ | $+/-2.2 \%(\mathrm{k}=2)$ |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$ ，which for a normal distribution corresponds to a coverage probability of approximately $95 \%$ ．

