

LTE Band 41 Head

Date: 2019-6-7 Electronics: DAE4 Sn786 Medium: Head 2550MHz Medium parameters used: f = 2506 MHz; σ = 1.899 S/m; ϵ_r = 38.524; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_TDD (0) Frequency: 2506 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 – SN3633 ConvF (7.33, 7.33, 7.33);

Left Cheek Middle 1RB_Mid/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.147 W/kg

Left Cheek Middle 1RB_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.470 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.252 W/kg SAR(1 g) = 0.148 W/kg; SAR(10 g) = 0.077 W/kg Maximum value of SAR (measured) = 0.195 W/kg

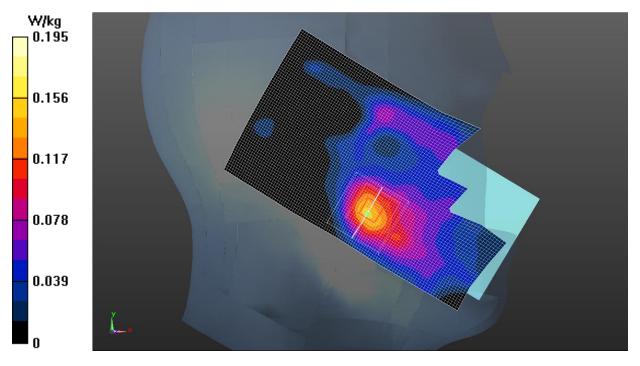


Fig.31 LTE Band 41

LTE Band 41 Body

Date: 2019-6-7 Electronics: DAE4 Sn786 Medium: Head 2550MHz Medium parameters used: f = 2506 MHz; σ = 1.899 S/m; ϵ_r = 38.524; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_TDD (0) Frequency: 2506 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 – SN3633 ConvF (7.33, 7.33, 7.33);

Rear Side Low 1RB_Mid/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.574 W/kg

Rear Side Low 1RB_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.473 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.625 W/kg SAR(1 g) = 0.268 W/kg; SAR(10 g) = 0.184 W/kg

Maximum value of SAR (measured) = 0.589 W/kg

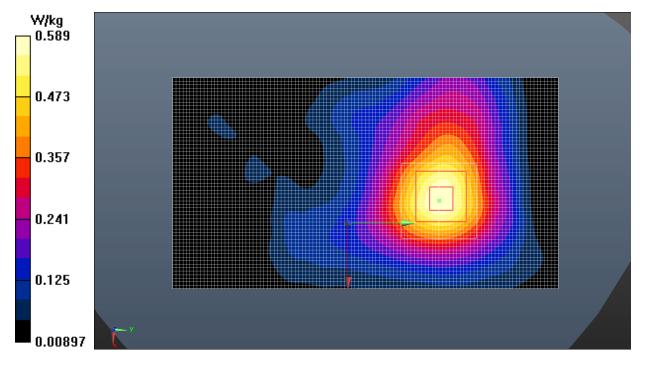


Fig.32 LTE Band 41

LTE Band 66 Head

Date: 2019-6-4 Electronics: DAE4 Sn786 Medium: Head 1750MHz Medium parameters used: f = 1770 MHz; σ = 1.379 S/m; ϵ_r = 40.273; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_FDD (0) Frequency: 1770 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (8.07, 8.07, 8.07);

Right Cheek High 1RB_Mid/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.088 W/kg

Right Cheek High 1RB_Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.520 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.121 W/kg SAR(1 g) = 0.081 W/kg; SAR(10 g) = 0.051 W/kg Maximum value of SAR (measured) = 0.094 W/kg

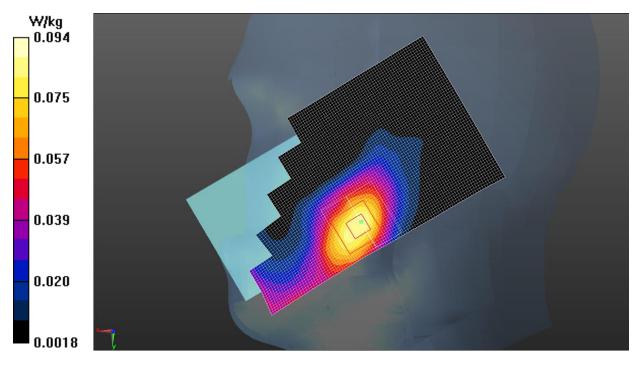


Fig.33 LTE Band 66

LTE Band 66 Body

Date: 2019-6-4 Electronics: DAE4 Sn786 Medium: Head 1750MHz Medium parameters used: f = 1770 MHz; σ = 1.379 S/m; ϵ_r = 40.273; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_FDD (0) Frequency: 1770 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (8.07, 8.07, 8.07);

Bottom Side High 1RB_Mid/Area Scan (51x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.851 W/kg

Bottom Side High 1RB_Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.45 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.618 W/kg; SAR(10 g) = 0.307 W/kg Maximum value of SAR (measured) = 0.700 W/kg

Maximum value of SAR (measured) = 0.790 W/kg

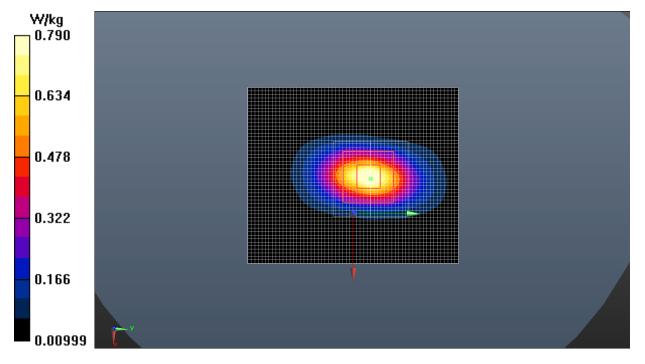


Fig.34 LTE Band 66

LTE Band 71 Head

Date: 2019-6-2 Electronics: DAE4 Sn786 Medium: Head 750MHz Medium parameters used (extrapolated): f = 673 MHz; σ = 0.888 S/m; ϵ_r = 41.443; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE FDD (0) Frequency: 673 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3633 ConvF (9.51, 9.51, 9.51);

Left Cheek Low 1RB_Mid/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.034 W/kg

Left Cheek Low 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.749 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.045 W/kg SAR(1 g) = 0.032 W/kg; SAR(10 g) = 0.023 W/kg Maximum value of SAR (measured) = 0.036 W/kg

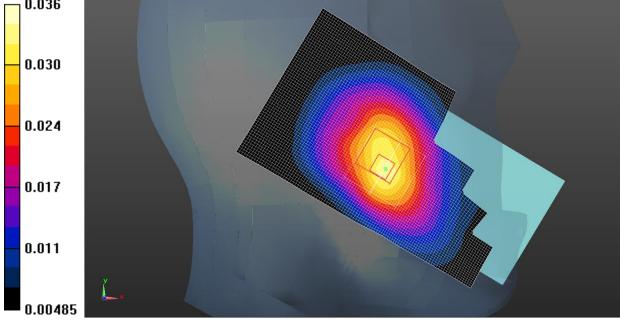


Fig.35 LTE Band 71

LTE Band 71 Body

Date: 2019-6-2 Electronics: DAE4 Sn786 Medium: Head 750MHz Medium parameters used (extrapolated): f = 673 MHz; σ = 0.888 S/m; ϵ_r = 41.443; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_FDD (0) Frequency: 673 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (9.51, 9.51, 9.51);

Front Side Low 1RB_Mid/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0396 W/kg

Front Side Low 1RB_Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.104 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.0800 W/kg SAR(1 g) = 0.045 W/kg; SAR(10 g) = 0.029 W/kg

Maximum value of SAR (measured) = 0.0527 W/kg

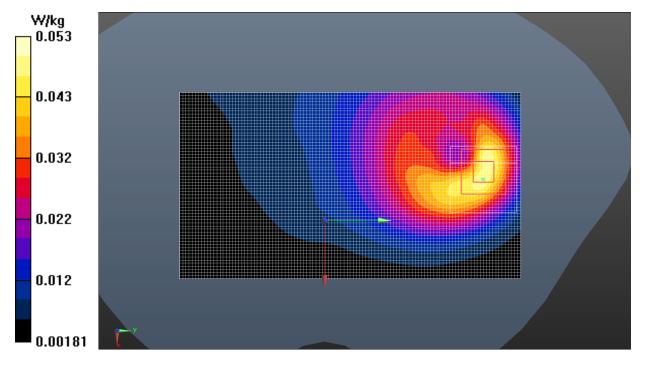


Fig.36 LTE Band 71

No.I19N00846-SAR Page 206 of 292

Wi-Fi 2.4G Head

Date: 2019-6-17 Electronics: DAE4 Sn786 Medium: Head 2450MHz Medium parameters used (interpolated): f = 2437 MHz; σ = 1.808 S/m; ϵ_r = 38.185; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, WiFi (0) Frequency: 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.33, 7.33, 7.33);

Left Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.08 W/kg

Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.49 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.03 W/kg SAR(1 g) = 0.879 W/kg; SAR(10 g) = 0.380 W/kg Maximum value of SAR (measured) = 1.41 W/kg

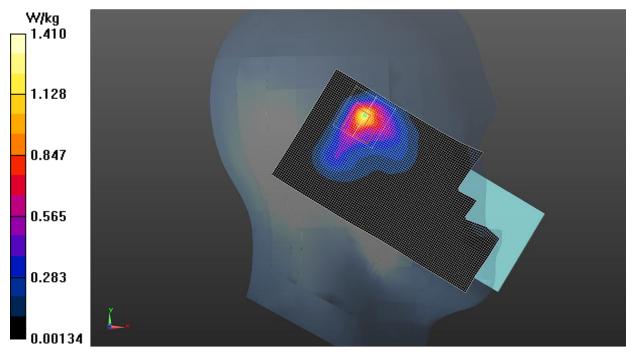


Fig.37 Wi-Fi 2.4G

No.I19N00846-SAR Page 207 of 292

Wi-Fi 2.4G Body

Date: 2019-6-17 Electronics: DAE4 Sn786 Medium: Head 2450MHz Medium parameters used: f = 2462 MHz; σ = 1.838 S/m; ϵ_r = 38.093; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, WiFi (0) Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.33, 7.33, 7.33);

Top Side High/Area Scan (41x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.285 W/kg

Top Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.276 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.391 W/kg SAR(1 g) = 0.205 W/kg; SAR(10 g) = 0.106 W/kg Maximum value of SAR (measured) = 0.297 W/kg

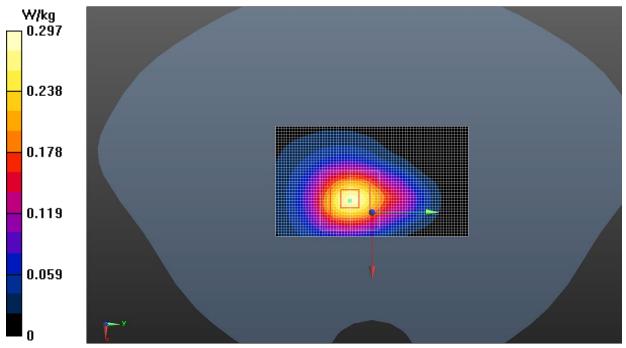
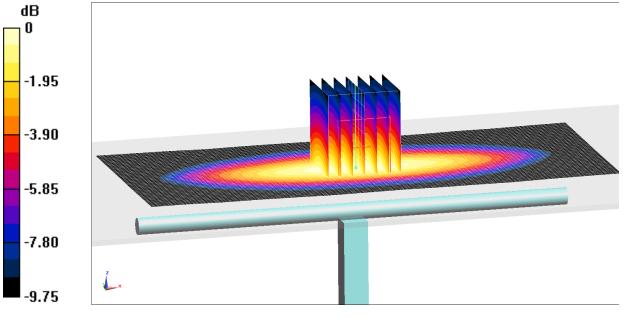
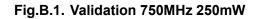


Fig.38 Wi-Fi 2.4G

No.I19N00846-SAR Page 208 of 292


ANNEX B SystemVerification Results

750MHz

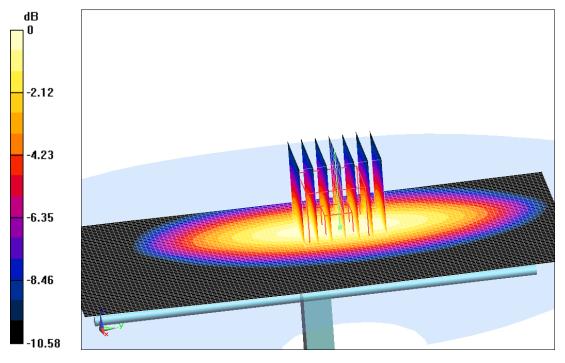

Date: 2019-6-2 Electronics: DAE4 Sn786 Medium: Head 750MHz Medium parameters used: f = 750 MHz; σ = 0.916 S/m; ϵ r = 41.162.; ρ = 1000 kg/m3 Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (9.51, 9.51, 9.51);

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 58.616 V/m; Power Drift = 0.02 dB SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (interpolated) = 2.28 W/kg

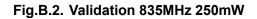
System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.616 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.77 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.40 W/kg Maximum value of SAR (measured) = 2.31 W/kg

0 dB = 2.31 W/kg = 3.64 dB W/kg

No.I19N00846-SAR Page 209 of 292


835MHz

Date: 2019-5-30 Electronics: DAE4 Sn786 Medium: Head 835MHz Medium parameters used: f = 835 MHz; σ =0.915 S/m; ϵ r = 40.441; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (9.51, 9.51, 9.51);

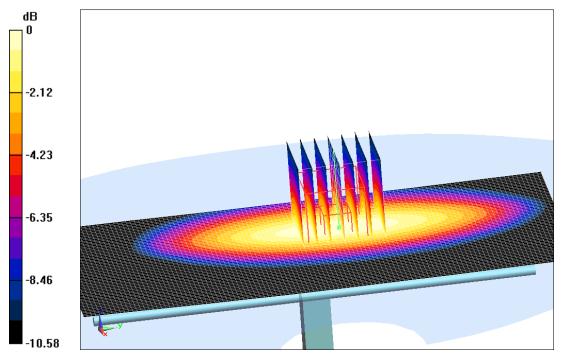

System Validation /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 60.203 V/m; Power Drift = -0.09 dB SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.60 W/kg Maximum value of SAR (interpolated) = 2.61 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.203 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 3.16 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.58 W/kg

0 dB = 2.58 W/kg = 4.12 dB W/kg

No.I19N00846-SAR Page 210 of 292


835MHz

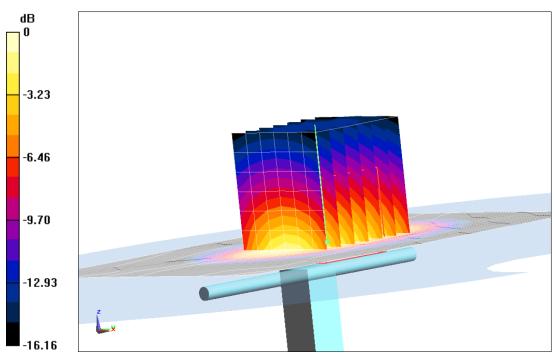
Date: 2019-5-31 Electronics: DAE4 Sn786 Medium: Head 835MHz Medium parameters used: f = 835 MHz; σ =0.923 S/m; ϵ r = 40.258; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (9.51, 9.51, 9.51);

System Validation /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 61.242 V/m; Power Drift = 0.05 dB SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.60 W/kg Maximum value of SAR (interpolated) = 2.62 W/kg

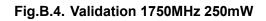
System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.242 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.25 W/kg SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.61 W/kg

Maximum value of SAR (measured) = 2.66 W/kg

0 dB = 2.66 W/kg = 4.25 dB W/kg



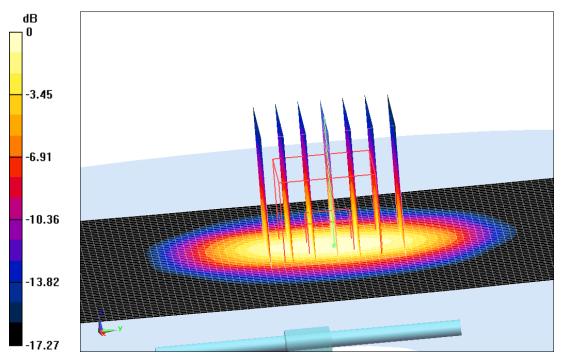
No.I19N00846-SAR Page 211 of 292


1750MHzDate: 2019-6-4Electronics: DAE4 Sn786Medium: Head 1750MHzMedium parameters used: f = 1750 MHz; σ = 1.361 S/m; ϵ_r = 40.334; ρ = 1000 kg/m³Ambient Temperature: 22.5°CLiquid Temperature: 22.0°CCommunication System: CW Frequency: 1750 MHz Duty Cycle: 1:1Probe: EX3DV4 – SN3633 ConvF (8.07, 8.07, 8.07);

System Validation/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 77.815 V/m; Power Drift = -0.11 dB SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.86 W/kg Maximum value of SAR (interpolated) = 11.2 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 77.815 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 8.85 W/kg; SAR(10 g) = 4.80 W/kg Maximum value of SAR (measured) = 11.0 W/kg

0 dB = 11.0 W/kg = 10.41 dB W/kg


No.I19N00846-SAR Page 212 of 292

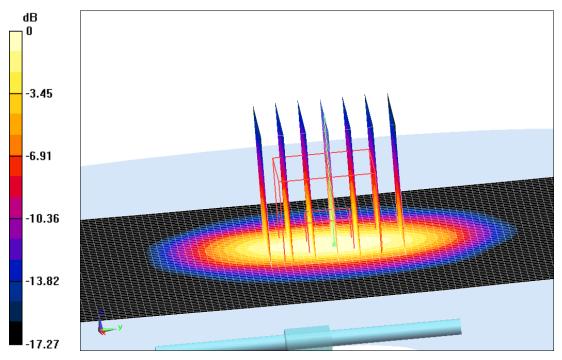
1900MHz Date: 2019-6-19 Electronics: DAE4 Sn786 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.384 S/m; ϵ_r = 40.452; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.63, 7.63, 7.63);

System Validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 89.521 V/m; Power Drift = -0.05 dB SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.16 W/kg Maximum value of SAR (interpolated) = 12.4 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.521 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 20.2 W/kg SAR(1 g) = 9.77 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 12.1 W/kg

0 dB = 12.1 W/kg = 10.83 dB W/kg


No.I19N00846-SAR Page 213 of 292

1900MHz Date: 2019-6-20 Electronics: DAE4 Sn786 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.395 S/m; ϵ_r = 40.266; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.63, 7.63, 7.63);

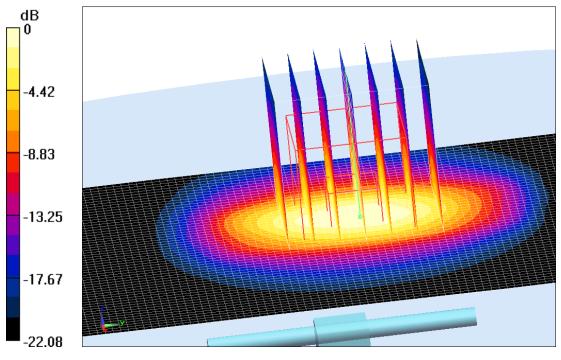
System Validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 90.448 V/m; Power Drift = -0.06 dB SAR(1 g) = 10.0 W/kg; SAR(10 g) = 5.20 W/kg Maximum value of SAR (interpolated) = 12.8 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.448 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 21.1 W/kg SAR(1 g) = 9.83 W/kg; SAR(10 g) = 5.16 W/kg

Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dB W/kg

No.I19N00846-SAR Page 214 of 292


2450MHz

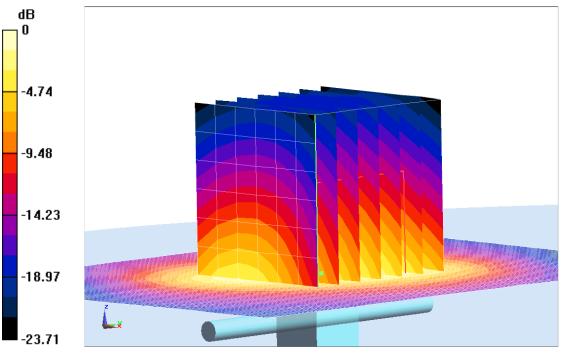
Date: 2019-6-17 Electronics: DAE4 Sn786 Medium: Head 2450MHz Medium parameters used: f = 2450 MHz; σ = 1.823 S/m; ϵ_r = 38.142; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.33, 7.33, 7.33);

System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 91.905 V/m; Power Drift = -0.10 dB SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.13 W/kg Maximum value of SAR (interpolated) = 15.1 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.905 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 25.8 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg

Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dB W/kg



No.I19N00846-SAR Page 215 of 292

2550 MHz Date: 2019-6-7 Electronics: DAE4 Sn786 Medium: Head 2550MHz Medium parameters used: f = 2550 MHz; σ = 1.951 S/m; ϵ_r = 38.363; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW_TMC Frequency: 2550 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.12, 7.12, 7.12);

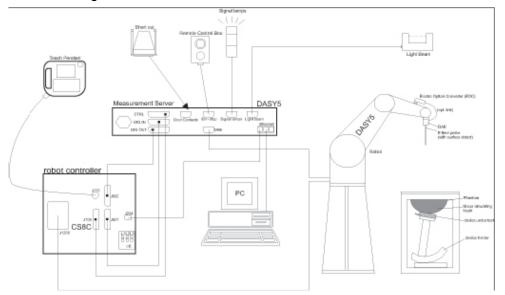
System Validation/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 92.426 V/m; Power Drift = 0.08 dB SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.66 W/kg Maximum value of SAR (interpolated) = 16.1 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.426 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.72 W/kg Maximum value of SAR (measured) = 16.3 W/kg

0 dB = 16.3 W/kg = 12.12 dB W/kg

Fig.B.8. validation 2550MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.


Band (MHz)	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
750	Head	2.12	2.15	1.42
835	Head	2.49	2.47	-0.80
835	Head	2.46	2.49	1.22
1750	Head	9.02	8.85	-1.88
1900	Head	9.92	9.77	-1.51
1900	Head	10.0	9.83	-1.70
2450	Head	13.3	13.2	-0.75
2550	Head	14.7	14.9	1.36

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

No.I19N00846-SAR Page 218 of 292

C.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:	SAR Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or

No.I19N00846-SAR Page 219 of 292

other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm^2 .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5:128MB), RAM (DASY5:128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

No.I19N00846-SAR Page 221 of 292

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material

has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.7-1: Device Holder

Picture C.7-2: Laptop Extension Kit

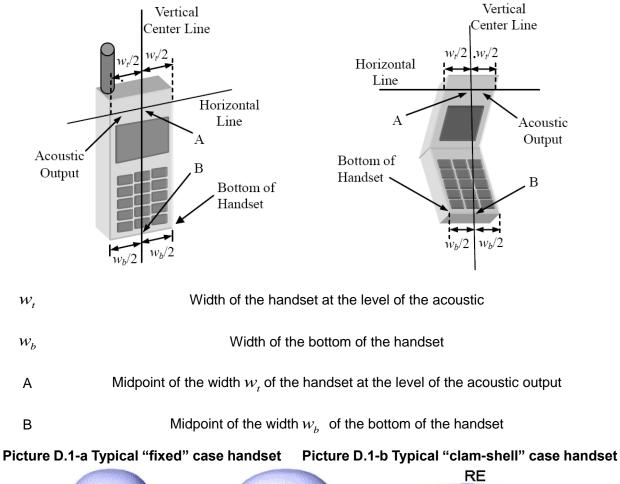
C.4.5 Phantom

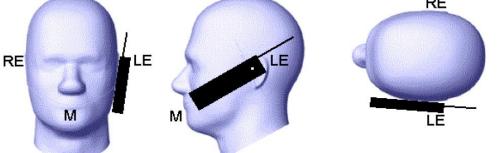
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

No.I19N00846-SAR Page 222 of 292

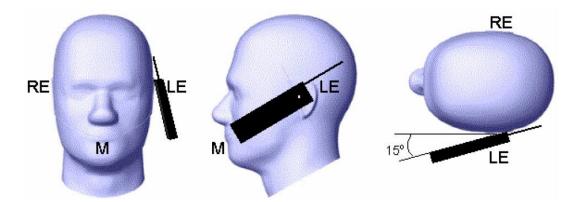
Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special


Picture C.8: SAM Twin Phantom

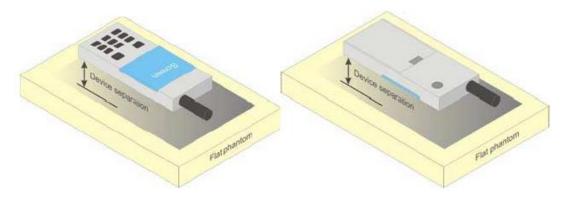


ANNEX D Position of the wireless device in relation to the phantom

D.1 General considerations


This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

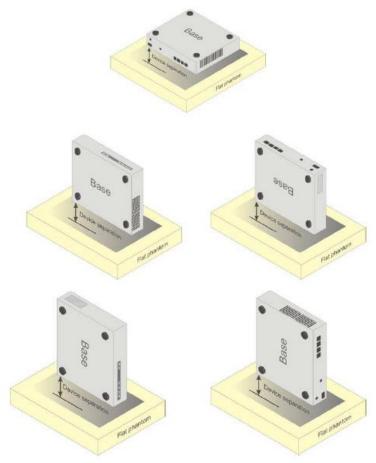
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 700-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Frequency	835	835	1900	1900	2450	2450	5800	5800
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)								
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	١	١	١	١	١	١
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	١
Preventol	0.1	0.1	١	١	١	١	\	\
Cellulose	1.0	1.0	١	١	١	١	١	\
Glycol	١	\	44.452	29.96	41.15	27.22		
Monobutyl	``	``	41.402	20.00	41.10	21.22	١	\
Diethylenglycol	1	λ.	1	1	١	1		
monohexylether	١	1	١	١	١	١	17.24	17.24
Triton X-100	١	١	١	١	١	١	17.24	17.24
Dielectric	a-44 E	a-EE 0		a=E2 2		a=50.7		
Parameters	ε=41.5 σ=0.00	ε=55.2	ε=40.0	ε=53.3	ε=39.2 σ=1.80	ε=52.7 σ=1.05	ε=35.3	ε=48.2
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00
					1000 000			

Table E.1: Composition of the Tissue Equivalent Matter

Note: There is a little adjustment respectively for 750, 1800, 2600, 5200, 5300, and 5600, based on the recipe of closest frequency in table E.1

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

	Table F.1: System Validation					
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)		
3633	Head 750MHz	2019-03-02	750 MHz	OK		
3633	Head 835MHz	2019-03-02	835 MHz	OK		
3633	Head 1750MHz	2019-03-02	1800 MHz	OK		
3633	Head 1900MHz	2019-03-02	1900 MHz	OK		
3633	Head 2450MHz	2019-03-02	2450 MHz	OK		
3633	Head 2550MHz	2019-03-02	2550 MHz	OK		
3633	Head 5200MHz	2019-03-02	5200 MHz	OK		
3633	Head 5300MHz	2019-03-02	5300 MHz	OK		
3633	Head 5600MHz	2019-03-02	5600 MHz	OK		
3633	Head 5800MHz	2019-03-02	5800 MHz	OK		
3633	Body 750MHz	2019-03-03	750 MHz	OK		
3633	Body 835MHz	2019-03-03	835 MHz	OK		
3633	Body 1750MHz	2019-03-03	1800 MHz	OK		
3633	Body 1900MHz	2019-03-03	1900 MHz	OK		
3633	Body 2450MHz	2019-03-03	2450 MHz	OK		
3633	Body 2550MHz	2019-03-03	5200 MHz	OK		
3633	Body 5200MHz	2019-03-03	5200 MHz	OK		
3633	Body 5300MHz	2019-03-03	5300 MHz	OK		
3633	Body 5600MHz	2019-03-03	5600 MHz	OK		
3633	Body 5800MHz	2019-03-03	5800 MHz	OK		

Table F1: System Validation

ANNEX G LTE Band 41 Power Class 2 and Power Class 3 Linearity

This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per May 2017 TCB Workshop Notes based on the device behavior, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR for each exposure condition. The linearity between the Power Class 2 and Power Class 3 SAR results and the respective frame averaged powers was calculated to determine that the results were linear. When ULCA is active, the device does not supports Power Class 2. Per May 2017 TCB Workshop, no additional SAR measurements were required since the linearity between power classes was < 10% and all reported SAR values were < 1.4 W/kg for 1g and < 3.5 W/kg for 10g.

LTE Band 41 SAR testing with power class 2 at the highest power and available duty factor was additionally performed for the power class 3 configuration with the highest SAR for each exposure condition.

1	LTE Band 41 PC3	LTE Band 41 PC2			
Maximum Tune up Power (dBm)	24.0	26.5			
Reported 1g SAR (W/kg)	0.15	0.17			
Duty Cycle	63.30%	43.30%			
Frame Averaged (mW)	159.00	193.41			
Linearity SAR (W/kg)	0.182				
% deviation from expected linearity		-6.83%			

Table G.1 LTE Band 41 Single Carrier Head Linearity Data

	olingie ourrier notopot Ellical	ity Data
/	LTE Band 41 PC3	LTE Band 41 PC2
Maximum Tune up Power (dBm)	21.0	23.5
Reported 1g SAR (W/kg)	0.12	0.14
Duty Cycle	63.30%	43.30%
Frame Averaged (mW)	79.69	96.94
Linearity SAR (W/kg)	0.146	
% deviation from expected linearity		-4.09%

Table G.2 LTE Band 41 Single Carrier Hotspot Linearity Data

Table G.3 LTE Band 41 Single Carrier Body-Worn Linearity Data				
1				

/	LTE Band 41 PC3	LTE Band 41 PC2		
Maximum Tune up Power (dBm)	24.0	26.5		
Reported 1g SAR (W/kg)	0.24	0.31		
Duty Cycle	63.30%	43.30%		
Frame Averaged (mW)	159.00	193.41		
Linearity SAR (W/kg)	0.292			
% deviation from expected linearity		6.19%		

ANNEX H DAE Calibration Certificate

DAE4 SN: 786 Calibration Certificate

CALIBRATION	TL(South Branch		ate No: Z19-60016	
Object	DAE4 -	SN: 786		
Calibration Procedure(s)	FF-211-	002-01 on Procedure for the Data Acc	uisition Electronics	
Calibration date:	January	11, 2019		
pages and are part of the	e certificate.	he uncertainties with confidence p ne closed laboratory facility: env		
humidity<70%.				
Calibration Equipment u	sed (M&TE critical fo	r calibration)		
Calibration Equipment u Primary Standards		r calibration) Date(Calibrated by, Certificate No.) Scheduled Calibration	on
	ID # Cal) Scheduled Calibratio	on
Primary Standards	ID # Cal 1971018 2	Date(Calibrated by, Certificate No.	June-19	on
Primary Standards	ID # Cal	Date(Calibrated by, Certificate No.		on
Primary Standards Process Calibrator 753	ID # Cal 1971018 2 Name	Date(Calibrated by, Certificate No. 0-Jun-18 (CTTL, No.J18X05034) Function	June-19	on
Primary Standards Process Calibrator 753 Calibrated by:	ID # Cal 1971018 2 Name Yu Zongying	Date(Calibrated by, Certificate No. 0-Jun-18 (CTTL, No.J18X05034) Function SAR Test Engineer	June-19	on

No.I19N00846-SAR Page 231 of 292

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z19-60016

Page 2 of 3

229.5° ± 1 °

DC Voltage Measurement

A/D - Converter Res	solution nomin	nal		
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measuremen	t parameters:	Auto Zero	Time: 3 sec; Meas	uring time: 3 sec

Calibration Factors	х	Y	z
High Range	404.064 ± 0.15% (k=2)	$404.247 \pm 0.15\%$ (k=2)	404.629 ± 0.15% (k=2)
Low Range	$3.97273 \pm 0.7\%$ (k=2)	3.97435 ± 0.7% (k=2)	3.95858 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	
---	--

Certificate No: Z19-60016

Page 3 of 3

ANNEX I Probe Calibration Certificate

Probe EX3DV4-SN: 3633 Calibration Certificate

Add: No.51 Xueyu	an Road, Haidian Distr		CNAS LO
Tel: +86-10-62304 E-mail: cttl@china	633-2512 Fax: +8	36-10-62304633-2504	
	L(South Brand		60033
CALIBRATION C	and the second second second		
CALIBRATION C	ERTIFICAT	E	194534
Object	EX3DV4	4 - SN:3633	
Calibration Procedure(s)	FF-Z11-	004-01	
		on Procedures for Dosimetric E-field Probes	
Calibration date:		y 26, 2019	
This calibration Continues	de expression de la		
nis calibration Certificate	documents the tr	aceability to national standards, which reali	ze the physical units of
pages and are part of the ce	asurements and t	he uncertainties with confidence probability a	re given on the following
ages and are part of the ce	entincate.		
\II colibrations have been	and the last of the		
All calibrations have been	conducted in th	ne closed laboratory facility: environment t	emperature(22±3)°C and
All calibrations have been numidity<70%.	conducted in th	ne closed laboratory facility: environment t	emperature(22±3)°C and
numidity<70%.			emperature(22±3)°C and
numidity<70%. Calibration Equipment used	(M&TE critical for	r calibration)	
numidity<70%. Calibration Equipment used	(M&TE critical for	r calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards	(M&TE critical for ID #	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032)	Scheduled Calibration Jun-19
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical for ID # 101919	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032)	Scheduled Calibration Jun-19 Jun-19
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	(M&TE critical for ID # 101919 101547	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Jun-19
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB	Calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19 Aug-19
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID #	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18 (CTTL, No.J18X01133) 09-Feb-18 (CTTL, No.J18X01132) 27-Aug-18 (SPEAG, No.EX3-7514_Aug18/2) 20-Aug-18 (SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18 (CTTL, No.J18X01133) 09-Feb-18 (CTTL, No.J18X01132) 27-Aug-18 (SPEAG, No.EX3-7514_Aug18/2) 20-Aug-18 (SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration Jun-19
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration Jun-19 Jan -19
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673 Name	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18 (CTTL, No.J18X05032) 09-Feb-18 (CTTL, No.J18X01133) 09-Feb-18 (CTTL, No.J18X01132) 27-Aug-18 (SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18 (SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-18 (CTTL, No.J18X00561) Function	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration Jun-19
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673	r calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration Jun-19 Jan -19
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by:	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673 Name Yu Zongying	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration Jun-19 Jan -19
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by:	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673 Name	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18 (CTTL, No.J18X05032) 09-Feb-18 (CTTL, No.J18X01133) 09-Feb-18 (CTTL, No.J18X01132) 27-Aug-18 (SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18 (SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-18 (CTTL, No.J18X00561) Function	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration Jun-19 Jan -19
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673 Name Yu Zongying	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X005033) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer	Scheduled Calibration Jun-19 Jun-19 Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration Jun-19 Jan -19

Certificate No: Z19-60033

Page 1 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL NORMx,y,z ConvF DCP CF A,B,C,D Polarization Φ Polarization θ

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Φ Φ rotation around probe axis

θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
 θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z19-60033

Page 2 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Probe EX3DV4

SN: 3633

Calibrated: February 26, 2019

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z19-60033

Page 3 of 11

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3633

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.39	0.37	0.39	±10.0%
DCP(mV) ^B	97.3	98.8	98.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	0 CW	Х	0.0	0.0	1.0	0.00	144.3	±2.0%
		Y	0.0	0.0	1.0		145.2	
		Ζ	0.0	0.0	1.0		147.9	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z19-60033

Page 4 of 11

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3633

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊦]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.51	9.51	9.51	0.09	1.70	±12.1%
900	41.5	0.97	9.27	9.27	9.27	0.27	0.92	±12.1%
1640	40.3	1.29	8.16	8.16	8.16	0.21	1.06	±12.1%
1750	40.1	1.37	8.07	8.07	8.07	0.26	1.00	±12.1%
1900	40.0	1.40	7.63	7.63	7.63	0.24	1.07	±12.1%
2100	39.8	1.49	7.60	7.60	7.60	0.25	1.02	±12.1%
2300	39.5	1.67	7.60	7.60	7.60	0.61	0.69	±12.1%
2450	39.2	1.80	7.33	7.33	7.33	0.61	0.70	±12.1%
2600	39.0	1.96	7.12	7.12	7.12	0.47	0.99	±12.1%
3500	37.9	2.91	6.74	6.74	6.74	0.62	0.86	±13.3%
3700	37.7	3.12	6.47	6.47	6.47	0.58	0.88	±13.3%
5250	35.9	4.71	5.42	5.42	5.42	0.45	1.15	±13.3%
5600	35.5	5.07	4.72	4.72	4.72	0.45	1.30	±13.3%
5750	35.4	5.22	4.73	4.73	4.73	0.45	1.30	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^O Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z19-60033

Page 5 of 11

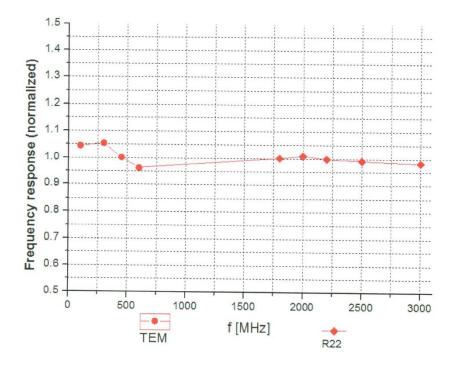
DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3633

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.56	9.56	9.56	0.40	0.80	±12.1%
900	55.0	1.05	9.25	9.25	9.25	0.20	1.24	±12.1%
1640	53.8	1.40	7.90	7.90	7.90	0.22	1.14	±12.1%
1750	53.4	1.49	7.93	7.93	7.93	0.20	1.16	±12.1%
1900	53.3	1.52	7.67	7.67	7.67	0.21	1.20	±12.1%
2100	53.2	1.62	7.56	7.56	7.56	0.22	1.18	±12.1%
2300	52.9	1.81	7.48	7.48	7.48	0.55	0.80	±12.1%
2450	52.7	1.95	7.40	7.40	7.40	0.62	0.76	±12.1%
2600	52.5	2.16	7.21	7.21	7.21	0.69	0.70	±12.1%
3500	51.3	3.31	6.45	6.45	6.45	0.50	1.15	±13.3%
3700	51.0	3.55	6.37	6.37	6.37	0.52	1.05	±13.3%
5250	48.9	5.36	5.03	5.03	5.03	0.55	1.30	±13.3%
5600	48.5	5.77	4.19	4.19	4.19	0.55	1.50	±13.3%
5750	48.3	5.94	4.29	4.29	4.29	0.55	1.30	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: Z19-60033

Page 6 of 11

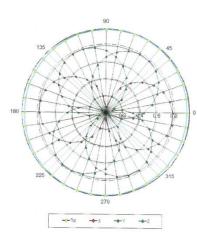
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

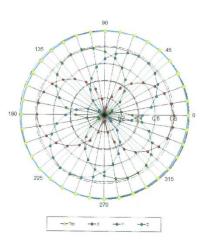
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

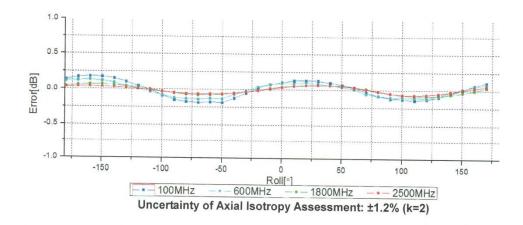
Certificate No: Z19-60033

Page 7 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

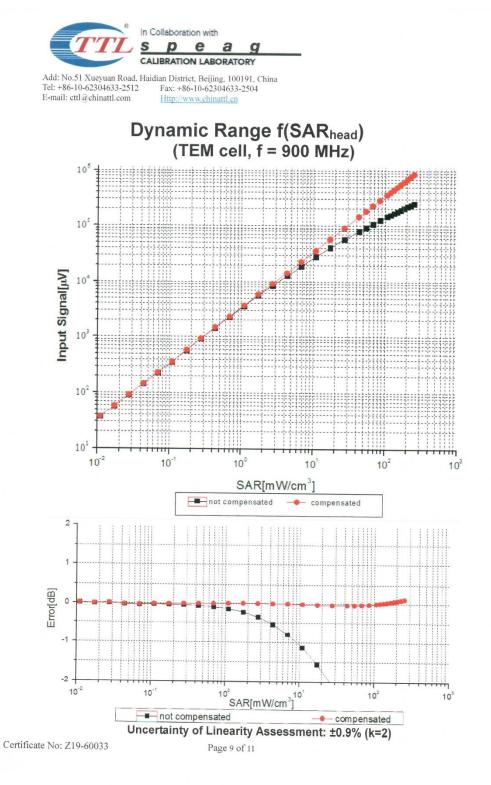

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504


 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn


Receiving Pattern (Φ), θ=0°

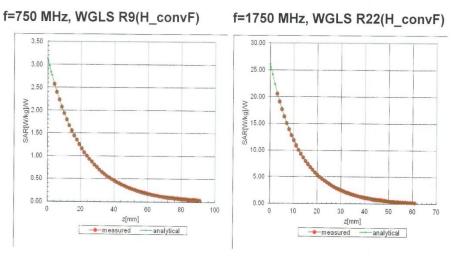
f=600 MHz, TEM

f=1800 MHz, R22

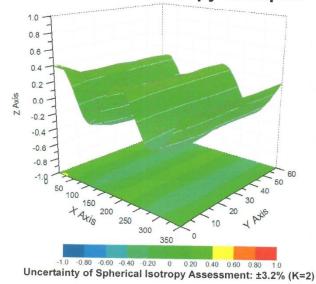


Certificate No: Z19-60033

Page 8 of 11



E-mail: cttl@chinattl.com



Http://www.chinattl.cn

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: Z19-60033

Page 10 of 11

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3633

Sensor Arrangement	Triangular
Connector Angle (°)	72.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Other Probe Parameters

Certificate No: Z19-60033

Page 11 of 11