ANNEX F PROBE, DAE and DIPOLE CALIBRATION CERTIFICATE E-mail: cttl@chinuttl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn Intertek Client Certificate No: Z19-60328 # CALIBRATION CERTIFICATE Object EX3DV4 - SN:7322 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: October 22, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 18-Jun-19 (CTTL, No.J19X05125) | Jun-20 | | Power sensor NRP-Z91 | 101547 | 18-Jun-19 (CTTL, No.J19X05125) | Jun-20 | | Power sensor NRP-Z91 | 101548 | 18-Jun-19 (CTTL, No.J19X05125) | Jun-20 | | Reference10dBAttenuator | 18N50W-10dB | 09-Feb-18(CTTL, No.J18X01133) | Feb-20 | | Reference20dBAttenuator | 18N50W-20dB | 09-Feb-18(CTTL, No.J18X01132) | Feb-20 | | Reference Probe EX3DV4 | SN 7307 | 24-May-19(SPEAG,No.EX3-7307_May19/2) | May-20 | | DAE4 | SN 1525 | 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) | Aug -20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 18-Jun-19 (CTTL, No.J19X05127) | Jun-20 | | Network Analyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan -20 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | Amo) | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 21/7 | Issued: October 24, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60328 Page 1 of 11 TRF No.: FCC SAR_b Page 1 of 62 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel. +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization 8 8 rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle Information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" # Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z19-60328 Page 2 of 11 # Probe EX3DV4 SN: 7322 Calibrated: October 22, 2019 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z19-60328 Page 3 of 11 TRF No.: FCC SAR_b Page 3 of 62 Add: No.51 Xueyuan Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7322 # **Basic Calibration Parameters** | 3200 | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |---|----------|----------|----------|-----------| | Norm(µV/(V/m) ²) ^A | 0.45 | 0.56 | 0.52 | ±10.0% | | DCP(mV) ^B | 97.8 | 98.5 | 98.9 | | # **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc E
(k=2) | |------|------------------------------|-----|---------|-----------|------|---------|----------|----------------| | 0 CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 155.3 | ±2.2% | | | | Y | 0.0 | 0.0 | 1.0 | | 176.3 | 1 | | | | Z | 0.0 | 0.0 | 1.0 | | 171.6 | 1 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. B Numerical linearization parameter: uncertainty not required. Certificate No: Z19-60328 Page 4 of 11 TRF No.: FCC SAR_b Page 4 of 62 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). ^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7322 # Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.92 | 9.92 | 9.92 | 0.40 | 0.80 | ±12.1% | | 835 | 41.5 | 0.90 | 9.63 | 9.63 | 9.63 | 0.14 | 1.44 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.33 | 8.33 | 8.33 | 0.22 | 1.10 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.06 | 8.06 | 8.06 | 0.24 | 1.02 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.73 | 7.73 | 7.73 | 0.48 | 0.75 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.49 | 7.49 | 7.49 | 0.54 | 0.73 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.28 | 7.28 | 7.28 | 0.42 | 0.85 | ±12.1% | | 5250 | 35.9 | 4.71 | 5.28 | 5.28 | 5.28 | 0.45 | 1.40 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.70 | 4.70 | 4.70 | 0.50 | 1.50 | ±13.3% | $^{^{\}circ}$ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Certificate No: Z19-60328 Page 5 of 11 TRF No.: FCC SAR_b Page 5 of 62 FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies
below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Betjing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mnil: cttl@chinatil.com Hitp://www.chinatil.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7322 # Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ⁶ | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 835 | 55.2 | 0.97 | 9.71 | 9.71 | 9.71 | 0.18 | 1.34 | ±12.1% | | 1750 | 53.4 | 1.49 | 8.03 | 8.03 | 8.03 | 0.20 | 1.18 | ±12.1% | | 1900 | 53.3 | 1.52 | 7.75 | 7.75 | 7.75 | 0.20 | 1.15 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.46 | 7.46 | 7.46 | 0.57 | 0.77 | ±12.1% | | 2600 | 52.5 | 2.16 | 7.22 | 7.22 | 7.22 | 0.66 | 0.70 | ±12.1% | | 5250 | 48.9 | 5.36 | 4.74 | 4.74 | 4.74 | 0.47 | 1.49 | ±13.3% | | 5750 | 48.3 | 5.94 | 4.22 | 4.22 | 4.22 | 0.50 | 1.70 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z19-60328 Page 6 of 11 TRF No.: FCC SAR_b Page 6 of 62 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z19-60328 Page 7 of 11 # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Page 8 of 11 TRF No.: FCC SAR_b Page 9 of 62 # Conversion Factor Assessment # Deviation from Isotropy in Liquid Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) Certificate No: Z19-60328 Page 10 of 11 TRF No.: FCC SAR_b Page 10 of 62 # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7322 # Other Probe Parameters Sensor Arrangement Triangular Connector Angle (°) 41.2 Mechanical Surface Detection Mode enabled Optical Surface Detection Mode disable **Probe Overall Length** 337mm **Probe Body Diameter** 10mm Tip Length 9mm **Tip Diameter** 2.5mm Probe Tip to Sensor X Calibration Point 1mm Probe Tip to Sensor Y Calibration Point 1mm Probe Tip to Sensor Z Calibration Point 1mm Recommended Measurement Distance from Surface 1.4mm Certificate No: Z19-60328 Page 11 of 11 TRF No.: FCC SAR_b Page 11 of 62 Client : Intertek Certificate No: Z19-60329 # CALIBRATION CERTIFICATE Object DAE4 - SN: 1473 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: September 24, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) © and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 24-Jun-19 (CTTL, No.J19X05126) Jun-20 Calibrated by: Name Function Signature Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 26, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60329 Page 1 of 3 TRF No.: FCC SAR_b Page 12 of 62 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: -86-10-62304633-2512 Fax: -86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z19-60329 Page 2 of 3 TRF No.: FCC SAR_b Page 13 of 62 Add: Nn.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.010 ± 0.15% (k=2) | 404.606 + 0.15% (k=2) | 404.459 ± 0.15% (k=2) | | Low Range | 3.96560 ± 0.7% (k=2) | 3.99658 ± 0.7% (k=2) | 3.99009 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 347° ± 1 ° | |---|------------| | | | Certificate No: Z19-60329 Page 3 of 3 TRF No.: FCC SAR_b Page 14 of 62 Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Intertek Certificate No: Z19-60330 # CALIBRATION CERTIFICATE Object D750V3 - SN: 1141 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Power sensor NRP6A | 101369 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1555 | 22-Aug-19(CTTL-SPEAG,No.Z19-60295) | Aug-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | (259)257 A CV | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 多 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Oi Dianuuan | CAR Project London | 7 - | Issued: September 25, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60330 Page 1 of 8 TRF No.: FCC SAR_b Page 15 of 62 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.co Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NOI ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60330 Page 1 of 8 TRF No.: FCC SAR_b Page 16 of 62 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Measurement Conditions DASY system configuration, as | DASY Version | DASY52 | 52.8.8.1258 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.6 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.12 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 8.34 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.41 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 5.56 mW/g ± 20.4 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.9 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.20 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 8.72 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.49 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 5.92 mW /g ± 20.4 % (k=2) | Certificate No: Z19-60330 Page 3 of 8 TRF No.: FCC SAR_b Page 17 of 62 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Appendix # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.3Ω- 0.96jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 29.6dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.2Ω- 1.58jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 34.0dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.140 ns | |----------------------------------|---| | | 111111111111111111111111111111111111111 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z19-60330 Page 4 of 8 TRF No.: FCC SAR_b Page 18 of 62 Date: 07.06.2016 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1048 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.908$ S/m; $\epsilon_r = 41.58$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(10.47, 10.47, 10.47); Calibrated: 2/19/2016; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2016-02-02 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.20 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.10 W/kg # SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (measured) = 2.65 W/kg 0 dB = 2.65 W/kg = 4.23 dBW/kg Page 5 of 8 Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY5 Validation Report for Body TSL Date: 07.06.2016 Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1048 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.968$ S/m; $\varepsilon_t = 54.92$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(9.93,9.93, 9.93); Calibrated: 2/19/2016; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2016-02-02 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.43 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.16 W/kg #### SAR(1 g) = 2.2 W/kg; SAR(10 g) = 1.49 W/kg Maximum value of SAR (measured) = 2.73 W/kg 0 dB = 2.73 W/kg = 4.36 dBW/kg Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Client Intertek Certificate No: Z18-60298 # CALIBRATION CERTIFICATE E-mail: cttl@chinattl.com Object D835V2 - SN: 4d196 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 6, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)10 and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Power sensor NRV-Z5 | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Reference Probe EX3DV4 | SN 7464 | 12-Sep-17(SPEAG,No.EX3-7464_Sep17) | Sep-18 | | DAE4 | SN 1524 | 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) | Sep-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | | | | | | Name Calibrated by: Zhao Jing Function SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 9, 2018 This calibration certificate shall not be
reproduced except in full without written approval of the laboratory. Certificate No: Z18-60298 Page 1 of 8 TRF No.: FCC SAR_b Page 23 of 62 Add: No.51 Xuoyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctd/@chinattl.com http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1; Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60298 Page 2 of 8 Add: No.51 Xueyuan Road, Haidlan District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 B-mail: crtl@chinattl.com http://www.chinattl.cn # Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.1.1476 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.7 ± 6 % | 0.90 mha/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.37 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.51 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.58 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.25 mW /g ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.0 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | 02351 | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.46 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.66 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.65 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.50 mW /g ± 18.7 % (k=2) | Certificate No: Z18-60298 Page 3 of 8 TRF No.: FCC SAR_b Page 25 of 62 Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191. China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinartl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.3Ω- 4.84jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 26.3dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.4Ω- 6.67jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.7dB | | #### General Antenna Parameters and Design | Electrical Delevidence disenting | 1000 | |----------------------------------|----------| | Electrical Delay (one direction) | 1.257 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # Additional EUT Data | ***************** | 2017/04/04/20 | |-------------------|---------------| | Manufactured by | SPEAG | Certificate No: Z18-60298 Page 4 of 8 TRF No.: FCC SAR_b Page 26 of 62 Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: 186-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Date: 09.04.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d196 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.904 S/m; ϵ_r = 42.71; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(10.28, 10.28, 10.28) @ 835 MHz; Calibrated: 9/12/2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1524; Calibrated: 9/13/2017 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.52 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.59 W/kg #### SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 3.18 W/kg Certificate No: Z18-60298 Page 5 of 8 Add: No.51 Xusyuan Ruul, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Certificate No: Z18-60298 Page 6 of 8 Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191. China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinsttl.com DASY5 Validation Report for Body TSL Date: 09.06.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d196 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.998$ S/m; $\epsilon_r = 56.04$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(10.21, 10.21, 10.21) @ 835 MHz; Calibrated: 9/12/2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAF4 Sn1524; Calibrated: 9/13/2017 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx-5mm, dy=5mm, dz=5mm Reference Value = 55.63 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.65 W/kg Maximum value of SAR (measured) = 3.27 W/kg Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Certificate No; Z18-60298 Page 8 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en E-mail: cttl@chinattl.com Intertek Client
Certificate No: Z18-60300 # CALIBRATION CERTIFICATE Object D1750V2 - SN: 1138 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 13, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(2213)**C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | SN 3846 | 25-Jan-18(SPEAG,No.EX3-3846_Jan18) | Jan-19 | | SN 777 | 15-Dec-17(SPEAG,No.DAE4-777_Dec17 | Dec-18 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | MY46110673 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | | | 102083
100542
SN 3846
SN 777
ID#
MY49071430 | 102083 01-Nov-17 (CTTL, No.J17X08756)
100542 01-Nov-17 (CTTL, No.J17X08756)
SN 3846 25-Jan-18(SPEAG,No.EX3-3846_Jan18)
SN 777 15-Dec-17(SPEAG,No.DAE4-777_Dec17
ID# Cal Date(Calibrated by, Certificate No.)
MY49071430 23-Jan-18 (CTTL, No.J18X00560) | Calibrated by: Function Signature Reviewed by: Name Zhao Jing Qi Dianyuan SAR Test Engineer Approved by: Lin Jun SAR Test Engineer SAR Project Leader Issued: September 16, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60300 Page 1 of 8 TRF No.: FCC SAR_b Page 31 of 62 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tei: +86-10-62304633-2079 Fnx: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)*, July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60300 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.1.1478 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mha/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.19 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 37.1 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.96 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.0 mW /g ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.4 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | 0.55550 | SAR result with Body TSL | SAR averaged over 1 cm^2 (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.61 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 38.0 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.19 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 mW /g ± 18.7 % (k=2) | Certificate No: Z18-60300 Page 3 of 8 TRF No.: FCC SAR_b Page 33 of 62 Add: No.51 Xueyuan Road, Haidinn District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.7- 2.73 jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 31.2 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.9Ω- 2.90 jΩ | |--------------------------------------|----------------| | Return Loss | - 24.2 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.088 ns | |----------------------------------|----------| | | - N | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: Z18-60300 Page 4 of 8 TRF No.: FCC SAR_b Page 34 of 62 Date: 09.13.2018 Add: No.51 Xneynan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.on # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China # DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1138 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.361$ S/m; $\varepsilon_r = 40.85$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(8.41, 8.41, 8.41) @ 1750 MHz; Calibrated: 1/25/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 12/15/2017 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz-5mm Reference Value = 96.76 V/m; Power Drift = -0.02 dB Peak SAR
(extrapolated) = 16.8 W/kg # SAR(1 g) = 9.19 W/kg; SAR(10 g) = 4.96 W/kg Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg Certificate No: Z18-60300 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: Z18-60300 Page 6 of 8 Page 36 of 62 Add: No.51 Xueymm Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.com # DASY5 Validation Report for Body TSL Date: 09.13.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1138 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.519$ S/m; $\epsilon_r = 53.44$; $\rho = 1000$ kg/m3 Phantom section: Left Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(7.84, 7.84, 7.84) @ 1750 MHz; Calibrated: 1/25/2018 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 12/15/2017 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value - 93.43 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 17.2 W/kg #### SAR(1 g) = 9.61 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (measured) = 14.6 W/kg 0 dB = 14.6 W/kg = 11.64 dBW/kg Certificate No: Z18-60300 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: Z18-60300 Page 8 of 8 E-mail: cttl@chinnttl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: #86-10-62304633-2079 Fax: #86-10-62304633-2504 Fax: 186-10-62304633-2504 http://www.chinattl.cn Client Intertek Certificate No: Z18-60301 ## CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d203 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 11, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Power sensor NRV-Z5 | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Reference Probe EX3DV4 | SN 7464 | 12-Sep-17(SPEAG,No.EX3-7464_Sep17) | Sep-18 | | DAE4 | SN 1524 | 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) | Sep-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | Name Function Calibrated by: Zhao Jing SAR Test Engineer SAR Test Engineer Reviewed by: Approved by: Lin Jun Qi Dianyuan SAR Project Leader Issued: September 15, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60301 Page 1 of 8 TRF No.: FCC SAR_b Page 39 of 62 Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn http://www.chinattl.cn lossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)*, July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60301 Page 2 of 8 Add: No.51 Xueyuan Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.com ## Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.1.1476 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.44 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.77 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 38.5 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.16 mVV / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 mW/g ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.3 ± 6 % | 1.49 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | 1000 | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.96 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 40.3 mW/g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.37 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.6 mW /g ± 18.7 % (k=2) | Certificate No: Z18-60301 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Reijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.cem http://www.chinattl.cei # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.2Ω+ 6.92jΩ | |--------------------------------------|---------------| | Return Loss | - 22.6dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.6Ω+ 6.69jΩ | |--------------------------------------|---------------| | Return Loss | - 23.2dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.087 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected
by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z18-60301 Page 4 of 8 TRF No.: FCC SAR_b Page 42 of 62 Date: 09.10.2018 Add: Nn.51 Xueyunn Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Typc: D1900V2; Serial: D1900V2 - SN: 5d203 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.438$ S/m; $\epsilon_r = 40.37$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(8.39, 8.39, 8.39) @ 1900 MHz; Calibrated: 9/12/2017 - Sensor-Surface; 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1524; Calibrated: 9/13/2017 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Scrial: 1062 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.27 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.77 W/kg; SAR(10 g) = 5.16 W/kg Maximum value of SAR (measured) = 15.1 W/kg 0 dB = 15.1 W/kg = 11.79 dBW/kg Certificate No: Z18-60301 Page 5 of 8 Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL Certificate No: Z18-60301 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fnx: +86-10-62304633-2504 http://www.chinnttl.en #### DASY5 Validation Report for Body TSL Date: 09.10.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d203 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Mcdium parameters used: f - 1900 MHz; $\sigma = 1.493$ S/m; $\epsilon_r = 53.34$; $\rho - 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(8.32, 8.32, 8.32) @ 1900 MHz; Calibrated: 9/12/2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1524; Calibrated: 9/13/2017 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.17 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 17.4 W/kg #### SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.37 W/kg Maximum value of SAR (measured) = 14.9 W/kg 0 dB = 14.9 W/kg = 11.73 dBW/kg Certificate No: Z18-60301 Page 7 of 8 http://www.chinattl.en # Impedance Measurement Plot for Body TSL E-mail: cttl@chinattl.com Certificate No: Z18-60301 Page 8 of 8 In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, Chima Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chimattl.com http://www.chimattl.cn Fax: +86-10-52304633-2504 http://www.chinattl.on Client Intertek Certificate No: Z18-60303 ## CALIBRATION CERTIFICATE Object D2450V2 - SN: 986 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 31, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)10 and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Power sensor NRV-Z5 | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Reference Probe EX3DV4 | SN 7464 | 12-Sep-17(SPEAG,No.EX3-7464_Sep17) | Sep-18 | | DAE4 | SN 1524 | 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) | Sep-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | NetworkAnalyzer E5071C | MY46110873 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | | | | | | Calibrated by: Function SAR Test Engineer Reviewed by: Lin Hao Name Zhao Jing SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 3, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60303 Page 1 of 8 TRF No.: FCC SAR_b Page 47 of 62 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fux: +86-10-62304633-2504 E-mail: cttl@chinatt.com http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60303 Page 2 of 8 Add: No.51 Xueyuun Road, Haidinn District, Beijing, 100191, China Iel: +86-10-62304633-2079 Fux: +86-10-62304633-2504 E-mail: crtf@chinatt.com http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.1.1476 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 1.80 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | **** | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.3 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 53.1 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR messured | 250 mW input power | 6.20 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 mW /g ± 18.7 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.3 ± 6 % | 1.98 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 12.22 | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.8 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.7 mW /g ± 18.8 % (k=2) | | SAR averaged over 10
cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.01 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.9 mW /g ± 18.7 % (k=2) | Certificate No: Z18-60303 Page 3 of 8 Add: No.51 Xueyunn Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL | Impedance, transformed to food point | 53.0Ω+ 2.76jΩ | |--------------------------------------|---------------| | Return Loss | - 28.1dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.3Ω+ 5.09jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.7dB | | #### General Antenna Parameters and Design | 1.021 ns | | |----------|----------| | | 1.021 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |---|---| | 20 A | 100000000000000000000000000000000000000 | Certificate No: Z18-60303 Page 4 of 8 TRF No.: FCC SAR_b Page 50 of 62 Date: 08.31.2018 Add: No.51 Xueyuan Road, Haidian District, Berjing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 966 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.802$ S/m; $\epsilon_r = 38.84$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(7.89, 7.89, 7.89) @ 2450 MHz; Calibrated: 9/12/2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1524; Calibrated: 9/13/2017 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.1 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.2 W/kg 0 dB = 22.2 W/kg = 13.46 dBW/kg Certificate No: Z18-60303 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: Z18-60303 Page 6 of 8 ## DASY5 Validation Report for Body TSL Date: 08.30,2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 966 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.982$ S/m; $\epsilon_r = 52.34$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(8.09, 8.09, 8.09) @ 2450 MHz; Calibrated: 9/12/2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1524; Calibrated: 9/13/2017 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Scrial: 1062 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value - 93.62 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 25.8 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.01 W/kg Maximum value of SAR (measured) = 21.0 W/kg 0 dB = 21.0 W/kg = 13.22 dBW/kg Certificate No: Z18-60303 Page 7 of 8 # Impedance Measurement Plot for Body TSL Ccrtificate No: Z18-60303 Page 8 of 8 In Collaboration with e CALIBRATION LABORATORY Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinatrl.co Client Intertek Certificate No: Z18-60304 # CALIBRATION CERTIFICATE Object D2600V2 - SN: 1108 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 31, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Power sensor NRV-Z5 | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Reference Probe EX3DV4 | SN 7464 | 12-Sep-17(SPEAG,No.EX3-7464_Sep17) | Sep-18 | | DAE4 | SN 1524 | 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) | Sep-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | Network Analyzer E5071C | MY46110673 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | | | | | | Calibrated by: Name Function Reviewed by: Zhao Jing Lin Hao SAR Test Engineer SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 3, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60304 Page 1 of 8 TRF No.: FCC SAR_b Page 55 of 62 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.ehinattl.com Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ## Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60304 Page 2 of 8 Add: No.51 Xuoyuun Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52,10.1.1476 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.3 ± 6 % | 1.98 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 2 | 2000 | ## SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | |
---|--------------------|---------------------------| | SAR measured | 250 mW input power | 14.3 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 56.8 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.41 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 mW /g ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 2.15 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 944 | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.7 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 54.9 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.16 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.7 mW /g ± 18.7 % (k=2) | Certificate No: Z18-60304 Page 3 of B TRF No.: FCC SAR_b Page 57 of 62 Add: No.51 Xueyuan Road, Haidinn District, Beijing, 100191, Chinn Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinatl.com http://www.chinatl.cn ## Appendix(Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.7Ω- 7.33jΩ | |--------------------------------------|---------------| | Return Loss | - 22.5dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.3Ω- 5.48jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.4dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.020 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z18-60304 Page 4 of 8 TRF No.: FCC SAR_b Page 58 of 62 Add: No.51 Xusyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Date: 08.30.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1108 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: Γ = 2600 MHz; σ = 1.977 S/m; ϵ r = 38.28; ρ = 1000 kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(7.76, 7.76, 7.76) @ 2600 MHz; Calibrated: 9/12/2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1524; Calibrated: 9/13/2017 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.6 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.41 W/kg Maximum value of SAR (measured) = 24.6 W/kg 0 dB = 24.6 W/kg = 13.91 dBW/kg Certificate No: Z18-60304 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: Z18-60304 Page 6 of 8 Add: No.51 Xueyuan Rond, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fnx: +86-10-62304633-2504 http://www.chinuttl.cn #### DASY5 Validation Report for Body TSL Date: 08,30,2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1108 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.152$ S/m; $\epsilon r = 52.38$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 9/12/2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1524; Calibrated: 9/13/2017 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062. - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.65 V/m; Power Drift - 0.03 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.16 W/kg Maximum value of SAR (measured) = 23.3 W/kg 0 dB = 23.3 W/kg = 13.67 dBW/kg Certificate No: Z18-60304 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: Z18-60304 Page 8 of 8