

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: eth achinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 08.30.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152

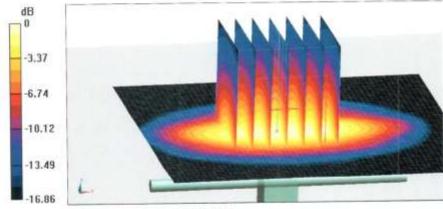
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.358$ S/m; $\epsilon_r = 39.91$; $\rho = 1000$ kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

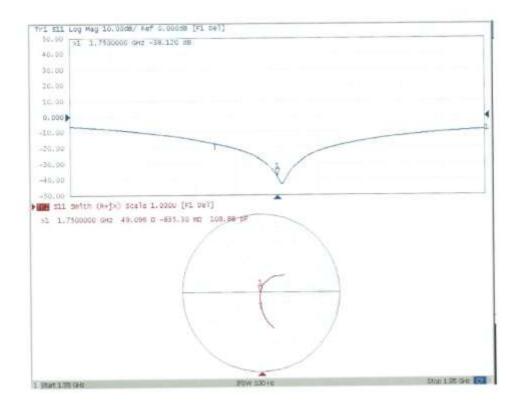

dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.38 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.05 W/kg; SAR(10 g) = 4.8 W/kg

Maximum value of SAR (measured) = 13.9 W/kg


0 dB = 13.9 W/kg = 11.43 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ent.@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Date: 08.30.2019

Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152

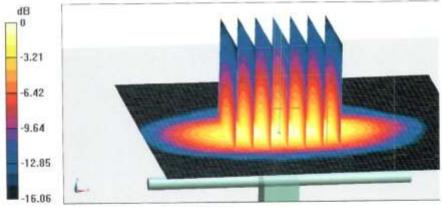
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.516$ S/m; $\epsilon_f = 53.05$; $\rho = 1000$ kg/m3

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

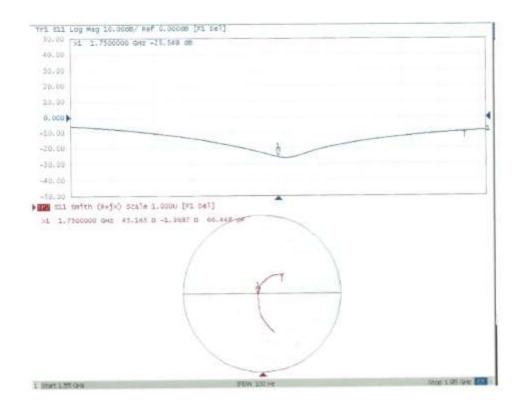

dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.16 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.45 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 14.4 W/kg


0 dB = 14.4 W/kg = 11.58 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Iel: +86-10-62304633-2079 Fax: +86-10-62304633-2564 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

1900 MHz Dipole Calibration Certificate

Client CTTL(South Branch) Certificate No: Z18-60387

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d088

Calibration Procedure(s) FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: October 24, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) € and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
SN 1555	20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Aug-19
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19
	102083 100542 SN 7514 SN 1555 ID# MY49071430	102083 01-Nov-17 (CTTL, No.J17X08756) 100542 01-Nov-17 (CTTL, No.J17X08756) SN 7514 27-Aug-18(SPEAG,No.EX3-7514_Aug18) SN 1555 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) ID # Cal Date(Calibrated by, Certificate No.) MY49071430 23-Jan-18 (CTTL, No.J18X00560)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	32
Reviewed by:	Lin Hao	SAR Test Engineer	ut sto
Approved by:	Qi Dianyuan	SAR Project Leader	and.

Issued: October 28, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

lossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl-rehinattl.com
 http://www.chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1±6%	1.37 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		-

SAR result with Head TSL

SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 18.7 % (k=2)
SAR measured	250 mW input power	5.17 mW / g
SAR averaged over 10 cm1 (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	40.5 mW /g ± 18.8 % (k=2)
SAR measured	250 mW input power	9.92 mW / g
SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature change during test	<1,0 °C	_	

SAR result with Body TSL

SAR averaged over 1 cm2 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.6 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ² (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.41 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW /g ± 18.7 % (k=2)

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Id: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl-rehinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7Ω+ 6.63μΩ
Return Loss	- 23.2dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5Ω+ 7.40jΩ	
Return Loss	- 22.3dB	

General Antenna Parameters and Design

Electrical Detay (one direction)	1.058 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

And and the second of the seco	
Manufactured by	SPEAG

Date: 10.24.2018

 Add: No.51 Xueyuun Road, Haidian District, Beljing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 F-mail: ctl/g/chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

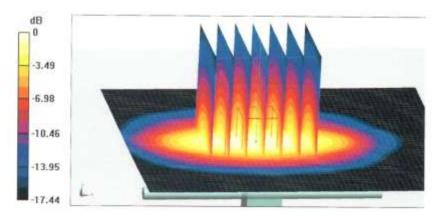
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.367$ S/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m3

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid;


dx=5mm, dy=5mm, dz=5mm

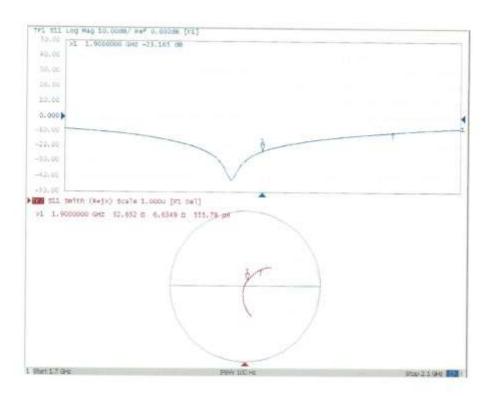
Reference Value = 102.2 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.17 W/kg

Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg


Certificate No: Z18-60387 Page 5 of 8

Add: No.51 Xusyuan Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2879 Fax: +86-10-62304633-2594 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z18-60387 Page 6 of 8

Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: -86-10-62304633-2504 I-mail: cttl g chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 10.24.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

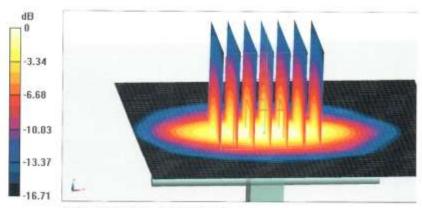
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.551$ S/m; $\epsilon_r = 52.63$; $\rho = 1000$ kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.60 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.41 W/kg

Maximum value of SAR (measured) = 15.9 W/kg

0 dB = 15.9 W/kg = 12.01 dBW/kg

Page 7 of 8

Add: No.51 Xueyuan Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Facc +86-10-62304633-2504 E-mail: cttl.achinattl.com. http://www.chinattl.cm

Impedance Measurement Plot for Body TSL

2450 MHz Dipole Calibration Certificate

Client CTTL(South Branch) Certificate No: Z18-60388

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 873

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: October 26, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
SN 1555	20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Aug-19
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19
	102083 100542 SN 7514 SN 1555 ID # MY49071430	102083 01-Nov-17 (CTTL, No.J17X08758) 100542 01-Nov-17 (CTTL, No.J17X08756) SN 7514 27-Aug-18(SPEAG,No.EX3-7514_Aug18) SN 1555 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) ID# Cal Date(Calibrated by, Certificate No.)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	63
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	502
			1 0 1 1 7 10 10 10 10

Issued: October 29, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60388 Page 1 of 8

Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China Itel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 F-mail: ettl@chinuttl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1; Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60388 Page 2 of 8

Add: No.51 Xueyman Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 F-mall: cttl archinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.10	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	222	1

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.0 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.02 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.1 mW/g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.91 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.5 mW /g ± 18.7 % (k=2)

Certificate No: Z18-60388 Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fux: +86-10-62304633-2504 E-mail: cttl-rehinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5Ω+ 2.11 JΩ
Return Loss	- 28.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.3Q+ 4.51 JQ	
Return Loss	- 26,7dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.024	ns
--	----

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
1.00 (100000000000000000000000000000000000000

Date: 10.26.2018

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2079 Fax: =86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

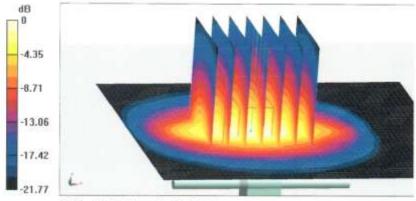
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.802$ S/m; $\epsilon_c = 39.2$; $\rho = 1000$ kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated; 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

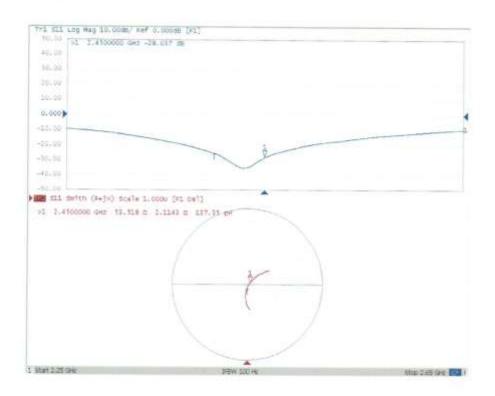

dy=5mm, dz=5mm

Reference Value = 105.0 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (measured) = 21.8 W/kg



0 dB = 21.8 W/kg = 13.38 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: Z18-60388 Page 6 of 8

Add: No.51 Xueyuan Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl-r-chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 10.26,2018

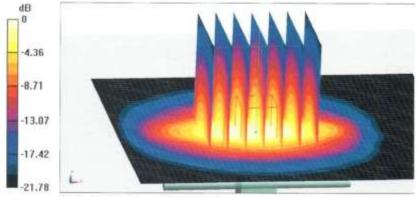
Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.008$ S/m; $\varepsilon_r = 52.76$; $\rho = 1000$ kg/m3

Phantom section: Center Section

DASY5 Configuration:

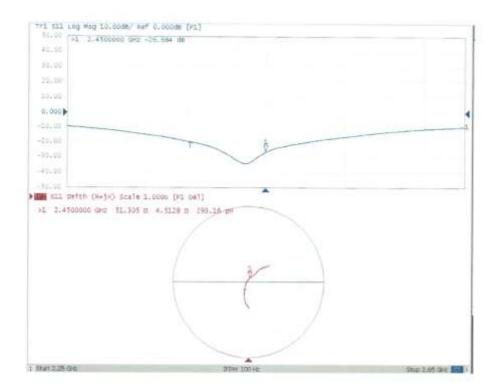

- Probe: EX3DV4 SN7514; ConvF(7.13, 7.13, 7.13) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.89 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kgMaximum value of SAR (measured) = 21.3 W/kg


0 dB = 21.3 W/kg = 13.28 dBW/kg

Add: No.51 Xueyuun Road, Haidiun District, Beijing, 100191, China Tel: +86-10-62304633-2070 Fac: +86-10-62304633-2504 E-mail: cttl/g/chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

2550 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di teratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SA5)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client CTTL (Auden)

Certificate No: D2550V2-1010_Aug18

Object	D2550V2 - SN:1	010	
Adjust.	D2000V2 - 5N:1	010	
Calibration procedure(s)	QA CAL-05.v10		
	Calibration proce	edure for dipole validation kits ab	ove 700 MHz
Salibration date:	August 24, 2018		
This calibration certificate docume	nts the traceability to nar	ional standards, which realize the physical ur	rits of measurements (SI).
The measurements and the uncert	ainties with confidence ;	probability are given on the following pages ar	nd are part of the certificate.
All calibrations have been construct	ed in the closed laborate	ry facility: environment temperature (22 ± 3)*	C and humidia: - 200.
in severalizate interes poeti cocidoco	es a line crossed indering	sy saumy, anvironment temperature (22 ± 3):	5 and numidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standarde	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 183244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRF-Z91	SN: 103245	04-Apr-16 (No. 217-02673)	Apr-19
eference 20 dB Attenuator	SNI 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
leference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
AE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
econdary Standards	ID #	Check Date (in house)	Scheduled Chack
ower mater EPM-442A	SN; GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
ownr sensor HP 8481A	SN: MY41092317	67-Oct-15 (in house check Oct-16)	In house check: Oct-18
F generator R&S SMT-08	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
etwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Menu Seitz	Laboratory Technician	Aut.
			0
	Katja Pokovic	Technical Manager	100101
pproved by:	Pringer's Sciockie		Con the

Certificate No: D2550V2-1010_Aug18

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizeriecher Kalibrierdiem C Service auisse d'étalonnage Servizie svizzero di taratura S Swiss Calibration Service

Accredited by the Swise Accreditation Benvice (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2550V2-1010_Aug18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3±6%	1.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.73 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

he following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	2.14 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm [±] (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Certificate No: D2550V2-1010_Aug18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9 Ω - 2.3 jΩ	
Return Loss	- 25.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω - 2.0 jΩ	
Return Loss	- 33.8 dB	

General Antenna Parameters and Design

Supplemental Company of the Company	
Electrical Delay (one direction)	1.151 ns
the state of the s	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	August 03, 2012		

Certificate No: D2550V2-1010_Aug18 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.08.2018

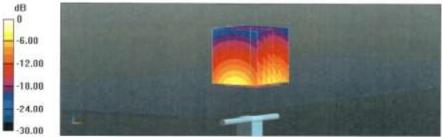
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

Communication System: UID () - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 1.97 \text{ S/m}$; $\sigma = 37.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

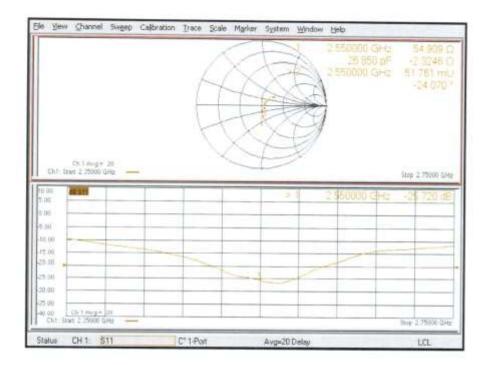

- Probe: EX3DV4 SN7349; ConvF(7.43, 7.43, 7.43) @ 2550 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 30.5 W/kg

SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.73 W/kg

Maximum value of SAR (measured) = 24.9 W/kg



0 dB = 24.9 W/kg = 13.96 dBW/kg

Certificate No: D2550V2-1010_Aug18

Impedance Measurement Plot for Head TSL

Certificate No: D2550V2-1010_Aug18

DASY5 Validation Report for Body TSL

Date: 24.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

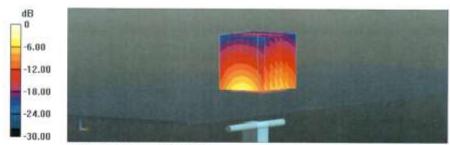
Communication System: UID 0 - CW; Frequency: 2550 MHz

Medium parameters used: f = 2550 MHz; $\alpha = 2.14$ S/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

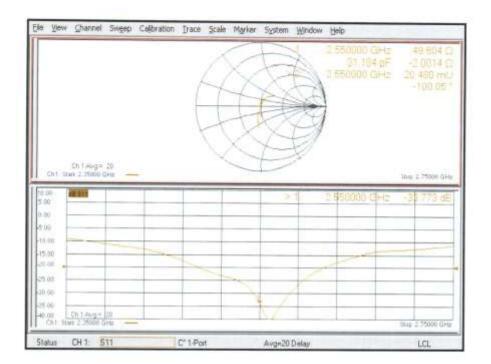
DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.68, 7.68, 7.68) @ 2550 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26:10:2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid; dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.22 W/kg


Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

Impedance Measurement Plot for Body TSL

Certificate No: D2550V2-1010_Aug18

ANNEX J Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D750V3- serial no.1163 (2016)

			Body			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2016-09-19	-29.0	/	49.8	/	-3.5	/
2017-09-17	-25.2	13.1	46.9	2.9	-2.8	0.7
2018-09-15	-24.4	15.9	45.5	4.3	-3.0	0.5

Justification of Extended Calibration SAR Dipole D1750V2- serial no.1152 (2016)

escumentation of Extended Campianon of the Expense Enforce Containing (2010)						
Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2016-09-09	-27.6	/	46.3	/	-1.6	/
2017-09-08	-25.8	6.5	45.4	0.9	-1.4	0.2
2018-09-06	-24.6	10.9	44.7	1.6	-1.2	0.4

Justification of Extended Calibration SAR Dipole D835V2- serial no.4d057 (2018)

oddineation of L	dustineation of Extended Calibration Of it Dipole Doos v 2 Schaino: 40057 (2010)									
Body										
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)				
2018-10-09	-24.3	/	46.8	/	-4.96	/				
2019-10-08	-23.5	3.29	45.6	1.2	-4.75	0.21				

Justification of Extended Calibration SAR Dipole D1900V2- serial no.5d088 (2018)

	Body					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-10-24	-22.3	/	48.5	/	7.4	/
2019-10-20	-21.4	4.04	46.3	2.2	7.9	0.5

Justification of Extended Calibration SAR Dipole D2450V2- serial no.873 (2018)

	Body									
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)				
2018-10-26	-26.7	/	51.3	/	4.51	/				
2019-10-20	-24.8	7.12	49.4	1.9	4.78	0.27				

Justification of Extended Calibration SAR Dipole D2550V2- serial no.1058 (2018)

		Body				
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-08-24	-33.8	/	49.6	/	-2.0	/
2019-08-22	-31.2	7.69	47.4	2.2	-1.7	0.3

ANNEX K Spot Check Test

As the test lab for cp332A from Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd, we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

K.1 Internal Identification of EUT used during the spot check test

EUT ID*	IMEI	HW Version	SW Version	
EUT3	867695041078378	P1	2.0.255.P0.190919.cp332A	

K.2 Measurement results

LTE Band 2 - Body

Freq	luency			Max.	SAR(10g) (W/kg)			
		Tost Position	est Position Conducted	Conducted		Spot check data		Original
MHz	Ch.	163t FOSITION	Power (dBm)	Power	Measured	Reported		
				(dBm)	SAR	SAR	data	
1900	19100	Rear	21.75	22.5	0.967	1.15	1.18	

LTE Band 4 - Body

- 1						•		
	Frequency				Max.	SA	R(10g) (W/k	(g)
			Test Position Conducted tune-up Spot che		Conducted tune-up	eck data	Original	
	MHz	Ch.	Test Fosition	Power (dBm)	Power	Measured	Reported	
					(dBm)	SAR	SAR	data
	1720	20050	Rear	20.95	21.5	1.02	1.16	1.23

LTE Band 5 - Body

Freq	luency			Max.	SAR(10g) (W/kg)					
		Test Position	Conducted	Conducted	Conducted	Conducted	tune-up	Spot check data		Original
MHz	Ch.	Test Fosition	Power (dBm)	Power	Measured	Reported	data			
				(dBm)	SAR	SAR	uala			
829	20450	Rear	23.20	23.5	1.03	1.10	1.05			

LTE Band 12 - Body

Freq	Frequency			Max.	SAR(10g) (W/kg)			
		Test Position	Conducted	tune-up	Spot check data		Original	
MHz	Ch.	163t FOSItiOH	Power (dBm)	Power	Measured	Reported	data	
				(dBm)	SAR	SAR	uala	
707.5	23095	Rear	23.33	24	0.766	0.89	0.81	

LTE Band 13 - Body

Freq	uency		Conducted Max.	Max. SAR(10g) (W/kg)			(g)
		Test Position		O	Spot check data		Original
MHz	Ch.	163t FOSItiOH	Power (dBm)	Power	Measured	Reported	data
				(dBm)	SAR	SAR	uala
782	23230	Rear	23.52	24	0.444	0.50	0.42

LTE Band 25 - Body

Freq	luency			Max.	SAR(10g) (W/kg)		
		Test Position	Conducted	tune-up	Spot check data		Original
MHz	Ch.	1621 FOSITION	Power (dBm)	Power	Measured	Reported	data
				(dBm)	SAR	SAR	uala
1905	26590	Rear	23.52	21.75	0.943	1.02	1.14

LTE Band 26 - Body

Freq	uency			Max.	SAR(10g) (W/kg)				
		Test Position	Conducted	Conducted	0	tune-up	Spot che	ck data	Original
MHz	Ch.	163t FOSItiOH	Power (dBm)	Power	Measured	Reported	data		
				(dBm)	SAR	SAR	uala		
822.5	26775	Rear	23.52	23.21	0.856	0.92	1.06		

LTE Band 41 - Body

Frequency				Max.	SAR(10g) (W/kg)		
	Ch.	Test Position	Conducted Power (dBm)	tune-up Power (dBm)	Spot check data		Original
MHz					Measured	Reported	data
					SAR	SAR	
2593	40620	Rear	23.11	24	0.690	0.85	0.59

LTE Band 66 - Body

Fred	luency			Max.	SAR(10g) (W/kg)		
	Ch.	Test Position	Conducted Power (dBm)	tune-up Power	Spot check data		Original
MHz					Measured	Reported	data
				(dBm)	SAR	SAR	uala
1720	132072	Rear	23.11	21.75	1.16	1.23	1.19

LTE Band 71 - Body

Freq	luency			Max.	SAR(10g) (W/kg)		
	Ch.	Test Position	Conducted Power (dBm)	tune-up Power (dBm)	Spot check data		Original
MHz					Measured	Reported	data
					SAR	SAR	
680.5	133297	Rear	23.22	24	0.454	0.54	0.30

WLAN 2.4G - Body

Freq	uency		Conducted Power (dBm)	Max. tune-up Power (dBm)	SAR(10g) (W/kg)		
	Ch.	Test Position			Spot check data		Original
MHz					Measured	Reported	data
					SAR	SAR	
2462	11	Rear	17.80	18	0.330	0.35	0.36

K.3 Graph Results for Spot Check

LTE Band 2 Body

Date: 2019-11-22

Electronics: DAE4 Sn1527 Medium: Body 1900MHz

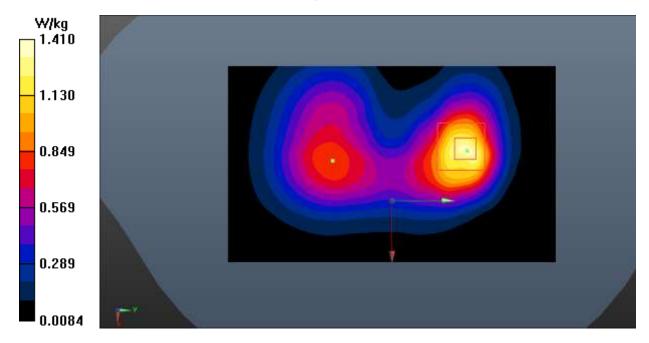
Medium parameters used: f = 1900 MHz; σ = 1.556 S/m; ϵ_r = 52.388; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.67, 7.67, 7.67);

Rear Side High 1RB_Mid/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.35 W/kg


Rear Side High 1RB_Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.29 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 0.967 W/kg; SAR(10 g) = 0.503 W/kg

Maximum value of SAR (measured) = 1.41 W/kg

LTE Band 4 Body

Date: 2019-11-22

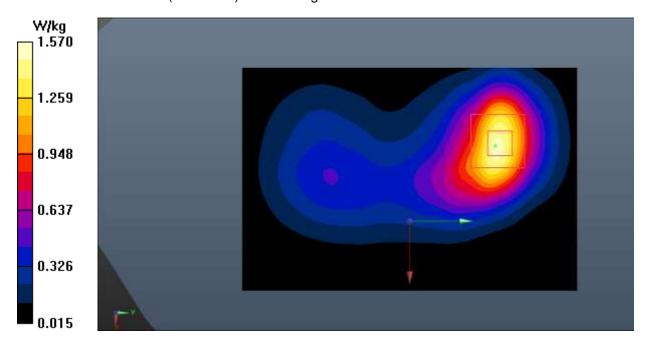
Electronics: DAE4 Sn1527 Medium: Body 1750MHz

Medium parameters used: f = 1720 MHz; σ = 1.434 S/m; ϵ_r = 52.912; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.93, 7.93, 7.93);


Rear Side Low 1RB_Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.51 W/kg

Rear Side Low 1RB_Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.35 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.00 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.565 W/kg Maximum value of SAR (measured) = 1.57 W/kg

LTE Band 5 Body

Date: 2019-11-20

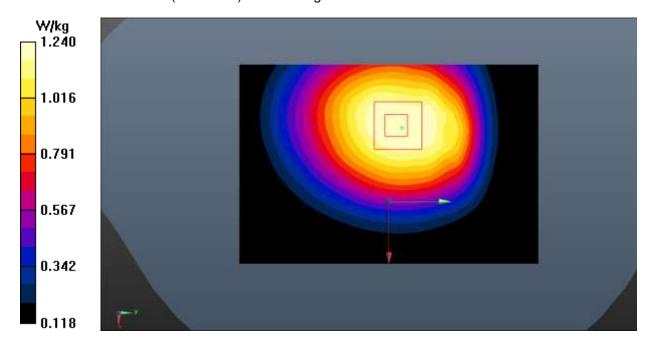
Electronics: DAE4 Sn1527 Medium: Body 835MHz

Medium parameters used (interpolated): f = 829 MHz; $\sigma = 0.981 \text{ S/m}$; $\varepsilon_r = 53.702$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 829 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.56, 9.56, 9.56);


Rear Side Low 1RB_Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.27 W/kg

Rear Side Low 1RB_Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.58 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.744 W/kg Maximum value of SAR (measured) = 1.24 W/kg

LTE Band 12 Body

Date: 2019-11-20

Electronics: DAE4 Sn1527 Medium: Body 750MHz

Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.936 \text{ S/m}$; $\varepsilon_r = 54.464$; $\rho = 1000 \text{ kg/m}^3$

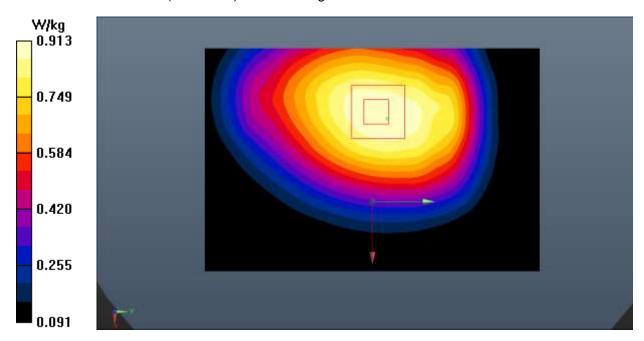
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 707.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.56, 9.56, 9.56);

Rear Side Middle 1RB_Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.925 W/kg


Rear Side Middle 1RB_Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.98 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.766 W/kg; SAR(10 g) = 0.555 W/kg

Maximum value of SAR (measured) = 0.913 W/kg

LTE Band 13 Body

Date: 2019-11-20

Electronics: DAE4 Sn1527 Medium: Body 750MHz

Medium parameters used: f = 782 MHz; σ = 0.983 S/m; ε_r = 53.915; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

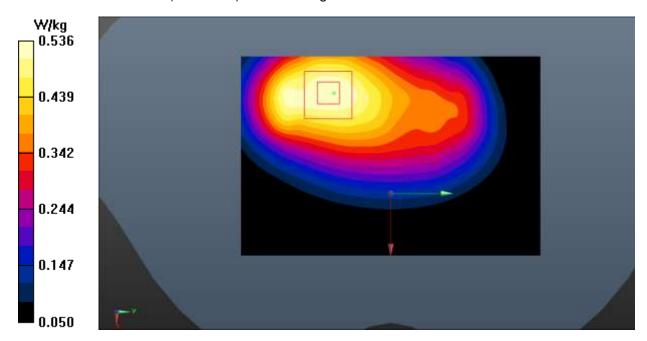
Communication System: UID 0, LTE_FDD (0) Frequency: 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.56, 9.56, 9.56);

Rear Side Middle 1RB_Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.543 W/kg


Rear Side Middle 1RB_Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.36 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.619 W/kg

SAR(1 g) = 0.444 W/kg; SAR(10 g) = 0.316 W/kg

Maximum value of SAR (measured) = 0.536 W/kg

LTE Band 25 Body

Date: 2019-11-22

Electronics: DAE4 Sn1527 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1905 MHz; $\sigma = 1.561$ S/m; $\varepsilon_r = 52.383$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

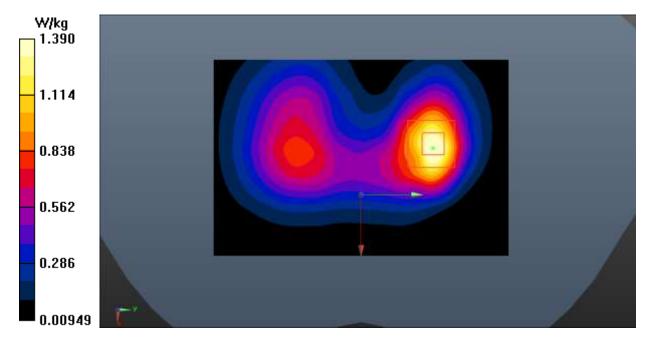
Communication System: UID 0, LTE_FDD (0) Frequency: 1905 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.67, 7.67, 7.67);

Rear Side High 1RB_Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500

 mm

Maximum value of SAR (interpolated) = 1.48 W/kg


Rear Side High 1RB_Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.06 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.81 W/kg

SAR(1 g) = 0.943 W/kg; SAR(10 g) = 0.498 W/kg

Maximum value of SAR (measured) = 1.39 W/kg

LTE Band 26 Body

Date: 2019-11-20

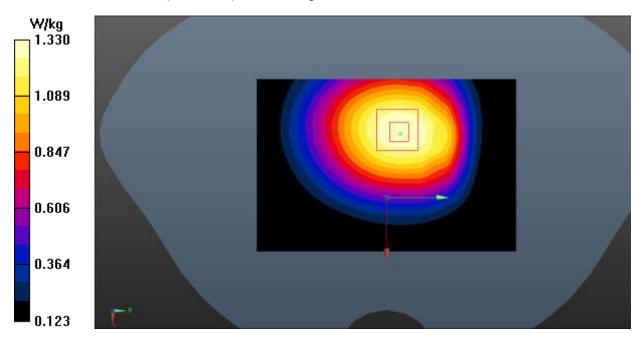
Electronics: DAE4 Sn1527 Medium: Body 835MHz

Medium parameters used (interpolated): f = 822.5 MHz; $\sigma = 0.981 \text{ S/m}$; $\epsilon r = 53.765$; $\rho = 1000 \text{ kg/m}$ 3

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 822.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.56, 9.56, 9.56);


Rear Side Low 1RB_Low/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.33 W/kg

Rear Side Low 1RB_Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.83 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.856 W/kg; SAR(10 g) = 0.613 W/kg Maximum value of SAR (measured) = 1.33 W/kg

LTE Band 41 Body

Date: 2019-11-22

Electronics: DAE4 Sn1527 Medium: Body 2550MHz

Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 2.102$ S/m; $\varepsilon_r = 51.326$; $\rho = 1000$ kg/m³

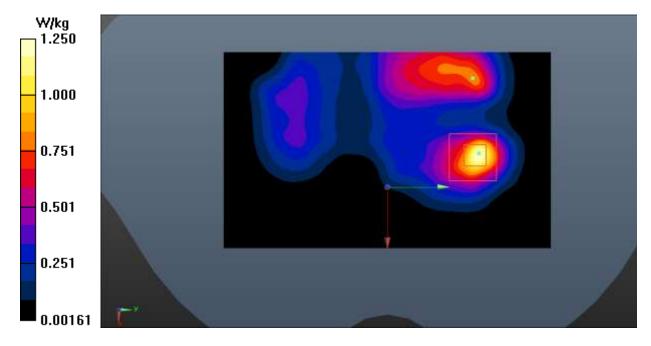
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_TDD (0) Frequency: 2593 MHz Duty Cycle: 1:1.58

Probe: EX3DV4 - SN3633 ConvF (7.21, 7.21, 7.21);

Rear Side Middle 1RB_Mid/Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.25 W/kg


Rear Side Middle 1RB_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.18 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.690 W/kg; SAR(10 g) = 0.308 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

LTE Band 66 Body

Date: 2019-11-22

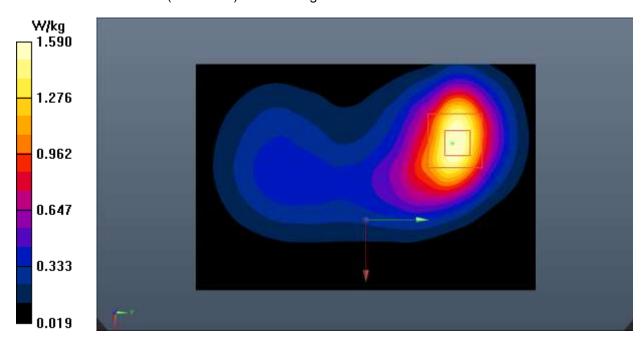
Electronics: DAE4 Sn1527 Medium: Body 1750MHz

Medium parameters used: f = 1720 MHz; σ = 1.434 S/m; ϵ_r = 52.912; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.93, 7.93, 7.93);


Rear Side Low 1RB_Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.62 W/kg

Rear Side Low 1RB_Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.40 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.643 W/kg Maximum value of SAR (measured) = 1.59 W/kg

LTE Band 71 Body

Date: 2019-11-20

Electronics: DAE4 Sn1527 Medium: Body 750MHz

Medium parameters used (extrapolated): f = 680.5 MHz; $\sigma = 0.909 \text{ S/m}$; $\epsilon_r = 54.977$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

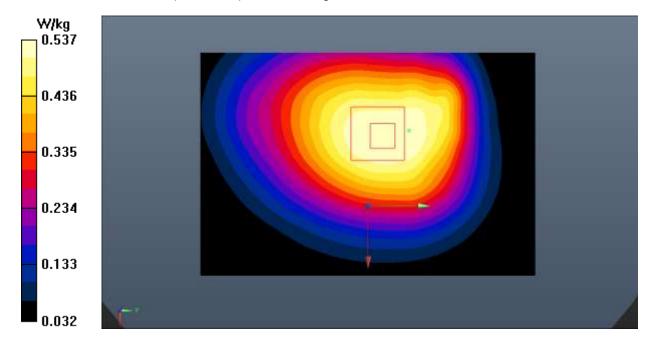
Communication System: UID 0, LTE_FDD (0) Frequency: 680.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.56, 9.56, 9.56);

Rear Side Middle 1RB_Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500

 mm

Maximum value of SAR (interpolated) = 0.541 W/kg


Rear Side Middle 1RB_Middle/Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.85 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.617 W/kg

SAR(1 g) = 0.454 W/kg; SAR(10 g) = 0.329 W/kg

Maximum value of SAR (measured) = 0.537 W/kg

WIFI 2.4G Body

Date: 2019-12-5

Electronics: DAE4 Sn1527 Medium: Body 2450MHz

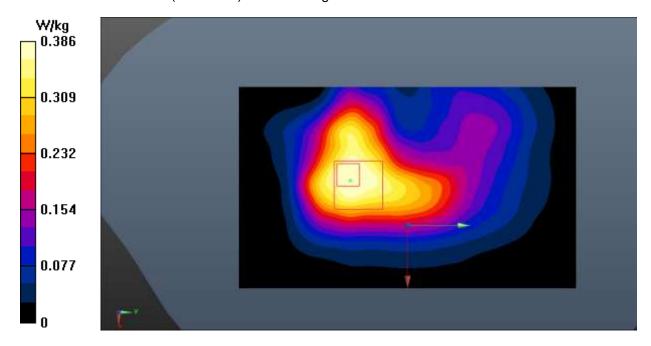
Medium parameters used: f = 2462 MHz; σ = 1.944 S/m; ϵ_r = 51.983; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 2462 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.4, 7.4, 7.4);

Rear Side High/Area Scan (101x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.388 W/kg


Rear Side High /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.776 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.964 W/kg

SAR(1 g) = 0.330 W/kg; SAR(10 g) = 0.145 W/kg

Maximum value of SAR (measured) = 0.386 W/kg

ANNEX L SystemVerification Results for Spot Check Test

750MHz

Date: 2019-11-20

Electronics: DAE4 Sn1527 Medium: Body750MHz

Medium parameters used: f = 750 MHz; σ = 0.949 S/m; ε_r = 54.282; ρ = 1000 kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

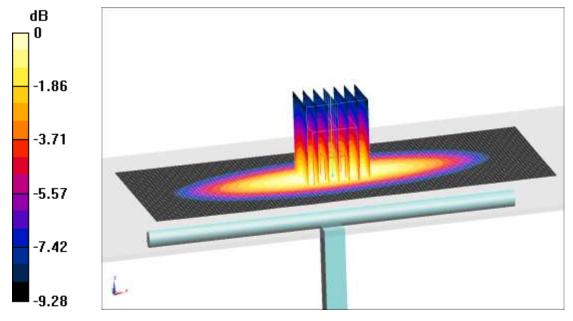
Probe: EX3DV4 - SN3633 ConvF (9.56, 9.56, 9.56);

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 59.101 V/m; Power Drift = -0.02 dB

SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (interpolated) = 2.45 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.101 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.81 W/kg

SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.44 W/kg

Maximum value of SAR (measured) = 2.42 W/kg

0 dB = 2.42 W/kg = 3.84 dB W/kg

Fig.L.1 Validation 750MHz 250mW

Date: 2019-11-20

Electronics: DAE4 Sn1527 Medium: Body 835MHz

Medium parameters used: f = 835 MHz; σ = 0.988 S/m; ε_r = 53.636; ρ = 1000 kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

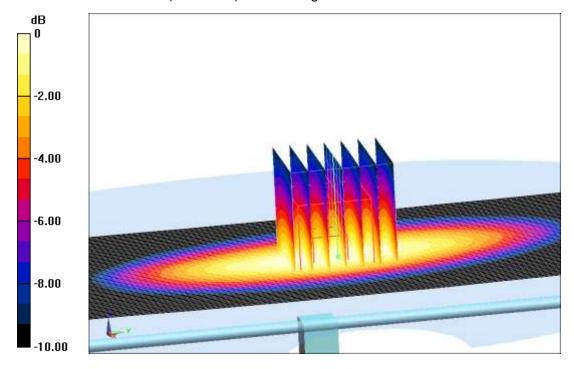
Probe: EX3DV4 - SN3633 ConvF (9.56, 9.56, 9.56);

System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 62.315 V/m; Power Drift = 0.06 dB

SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.65 W/kg

Maximum value of SAR (interpolated) = 2.75 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.315 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.55 W/kg; SAR(10 g) = 1.67 W/kg

Maximum value of SAR (measured) = 2.79 W/kg

0 dB = 2.79 W/kg = 4.46 dB W/kg

Fig.L.2 Validation 835MHz 250mW

Date: 2019-11-22

Electronics: DAE4 Sn1527 Medium: Body 1750MHz

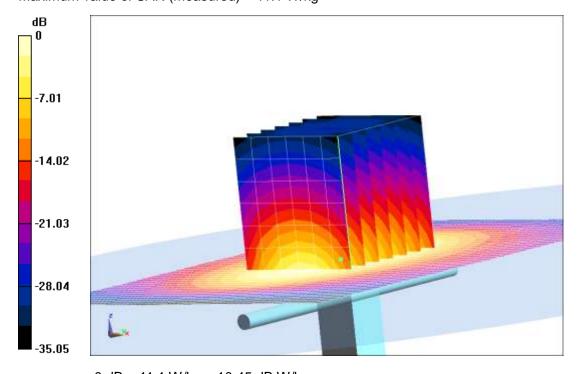
Medium parameters used: f = 1750 MHz; $\sigma = 1.463 \text{ S/m}$; $\varepsilon_r = 52.853$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.93, 7.93, 7.93);

System Validation/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 76.2263 V/m; Power Drift = -0.05 dB


SAR(1 g) = 9.03 W/kg; SAR(10 g) = 4.91 W/kg Maximum value of SAR (interpolated) = 11.3 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 76.2263 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 8.87 W/kg; SAR(10 g) = 4.85 W/kg Maximum value of SAR (measured) = 11.1 W/kg

0 dB = 11.1 W/kg = 10.45 dB W/kg

Fig.L.3 Validation 1750MHz 250mW

Date: 2019-11-22

Electronics: DAE4 Sn1527 Medium: Body 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.556 \text{ S/m}$; $\varepsilon_r = 52.388$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

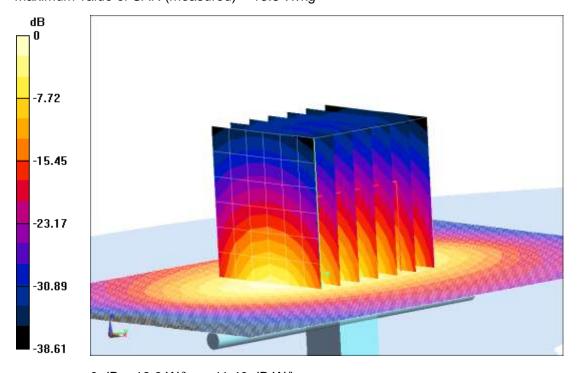
Probe: EX3DV4 - SN3633 ConvF (7.67, 7.67, 7.67);

System validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 89.116 V/m; Power Drift = 0.02 dB

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.47 W/kg

Maximum value of SAR (interpolated) = 13.4 W/kg


System validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.116 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 23.4 W/kg

SAR(1 g) = 10.6 W/kg; SAR(10 g) = 5.51 W/kg

Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dB W/kg

Fig.L.4 Validation 1900MHz 250mW

Date: 2019-12-05

Electronics: DAE4 Sn1527 Medium: Body 2450MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.929 \text{ S/m}$; $\varepsilon_r = 52.02$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

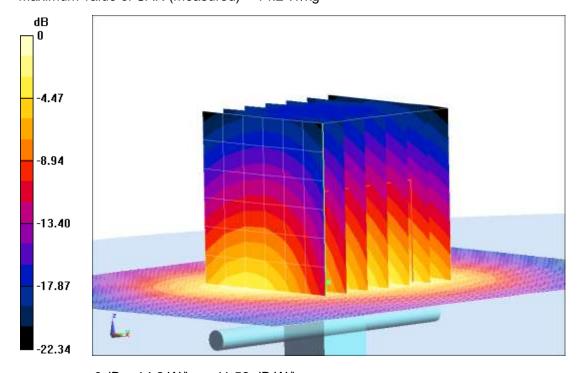
Probe: EX3DV4 - SN3633 ConvF (7.4, 7.4, 7.4);

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 90.438 V/m; Power Drift = -0.10 dB

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.92 W/kg

Maximum value of SAR (interpolated) = 14.5 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.438 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 25.5 W/kg

SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.79 W/kg

Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dB W/kg

Fig.L.5 Validation 2450MHz 250mW

Date: 2019-11-22

Electronics: DAE4 Sn1527 Medium: Body 2550MHz

Medium parameters used: f = 2550 MHz; $\sigma = 2.061 \text{ S/m}$; $\varepsilon_r = 51.464$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2550 MHz Duty Cycle: 1:1

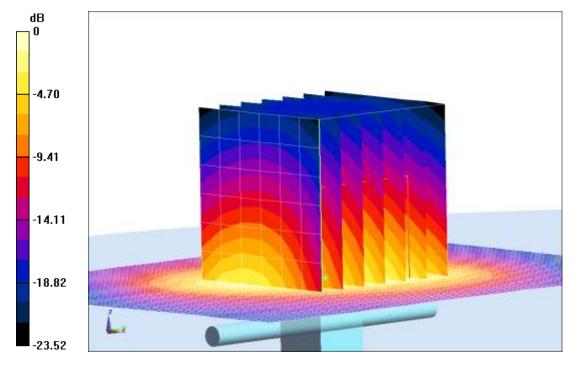
Probe: EX3DV4 - SN3633 ConvF (7.21, 7.21, 7.21);

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 91.862 V/m; Power Drift = -0.03 dB

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (interpolated) = 15.5 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.862 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.06 W/kg

Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dB W/kg

Fig.L.6 Validation 2550MHz 250mW