

RF TEST REPORT

Product Name: Smart Phone

Model Name: CP12t

FCC ID: R38YLCP12T

Issued For : Yulong Computer Telecommunication Scientific (Shenzhen)

Co., Ltd

Floor 21, Block A, Coolpad Building, Intersection of Keyuan Avenue and Baoshen Road, North High-Tech Industrial Park,

Nanshan District, Shenzhen, Guangdong, China

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Chen Hsong Industrial Park,

No.177 Renmin West Road, Jinsha Community, Kengzi

Street, Pingshan New District, Shenzhen, China

Report Number: LGT23B071RF03

Sample Received Date: Mar. 01, 2023

Date of Test: Mar. 01, 2023 ~ Mar. 21, 2023

Date of Issue: Mar. 21, 2023

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd

Floor 21, Block A, Coolpad Building, Intersection of Keyuan Avenue

Address and Baoshen Road, North High-Tech Industrial Park, Nanshan

District, Shenzhen, Guangdong, China

Manufacturer Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd

Floor 21, Block A, Coolpad Building, Intersection of Keyuan Avenue

Address and Baoshen Road, North High-Tech Industrial Park, Nanshan

District, Shenzhen, Guangdong, China

Product Name Smart Phone

Trademark coolpad

Model Name CP12t

Sample Status: Normal

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
FCC Part 15.247, Subpart C ANSI C63.10-2013	PASS		

Prepared by:

Zane Shan

Zane Shan

Engineer

Approved by:

Vita Li

Technical Director

Report No.: LGT23B071RF03 Page 2 of 65

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 RADIATED EMISSION MEASUREMENT	17
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	27
4.1 LIMIT	27
4.2 TEST PROCEDURE	27
4.3 DEVIATION FROM STANDARD	27
4.4 TEST SETUP	27
4.5 EUT OPERATION CONDITIONS	27
4.6 TEST RESULTS	27
5. POWER SPECTRAL DENSITY TEST	28
5.1 LIMIT	28
5.2 TEST PROCEDURE	28
5.3 DEVIATION FROM STANDARD	28
5.4 TEST SETUP	28
5.5 EUT OPERATION CONDITIONS	28
5.6 TEST RESULTS	28
6. BANDWIDTH TEST	29
6.1 LIMIT	29
6.2 TEST PROCEDURE	29
6.3 DEVIATION FROM STANDARD	29
6.4 TEST SETUP	29
6.5 EUT OPERATION CONDITIONS	29
6.6 TEST RESULTS	29
7. PEAK OUTPUT POWER TEST	30

Report No.: LGT23B071RF03 Page 3 of 65

Table of Contents	Page
7.1 LIMIT	30
7.2 TEST PROCEDURE	30
7.3 DEVIATION FROM STANDARD	30
7.4 TEST SETUP	30
7.5 EUT OPERATION CONDITIONS	30
7.6 TEST RESULTS	30
8. ANTENNA REQUIREMENT	31
8.1 STANDARD REQUIREMENT	31
8.2 EUT ANTENNA	31
APPENDIX I:TEST RESULTS	32
DUTY CYCLE	32
MAXIMUM PEAK CONDUCTED OUTPUT POWER	37
-6DB BANDWIDTH	38
MAXIMUM POWER SPECTRAL DENSITY LEVEL	43
BAND EDGE	48
CONDUCTED RF SPURIOUS EMISSION	55
APPENDIX II:PHOTOS OF TEST SETUP	64

Report No.: LGT23B071RF03 Page 4 of 65

Revision History

Rev.	Issue Date	Contents
00	Mar. 21, 2023	Initial Issue

Report No.: LGT23B071RF03 Page 5 of 65

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C				
Standard Section	IAST ITAM		Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)(3)	Output Power	PASS		
15.209 Radiated Spurious Emission		PASS		
15.247 (d)	15.247 (d) Conducted Spurious & Band Edge Emission			
15.247 (e)	Power Spectral Density	PASS		
15.205	Restricted Band Edge Emission	PASS	1	
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS		
15.203	Antenna Requirement	PASS	1	

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

Report No.: LGT23B071RF03 Page 6 of 65

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.	
Room 205, Building 13, Zone B, Chen Hsong Industrial Park, N Address: Renmin West Road, Jinsha Community, Kengzi Street, Pingsha District, Shenzhen, China		
	A2LA Certificate No.: 6727.01	
Accreditation Certificate	FCC Registration No.: 746540	
	CAB ID: CN0136	

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

No.	Item	Uncertainty
1	RF Output Power, Conducted	±0.71dB
2	Power Spectral Density, Conducted	±1.57 dB
3	Unwanted Emission, Conducted	±0.63dB
4	Conducted emission	±2.80dB
5	All Emissions, Radiated (0.009-30MHz)	±2.16dB
6	All Emissions, Radiated (30MHz-1GHz)	±4.40dB
7	All Emissions, Radiated (1GHz-18GHz)	±5.49dB

Report No.: LGT23B071RF03 Page 7 of 65

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Smart Phone		
Trademark	coolpad		
Model Name	CP12t		
Series Model	N/A		
Model Difference	N/A		
Product Description	The EUT is a Smart Phone Operation		
Channel List	Please refer to the N	Note 2.	
Adapter	Input: 100-240V, 50/ Output: 5V, 1A	60Hz, 0.2A	
Battery	Battery Capacity: 4000mAh Rated Voltage: 3.8V		
Hardware Version	P2		
Software Version	CP12t.230321.0S.AL		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

Report No.: LGT23B071RF03 Page 8 of 65

2	Operation Frequency of channel			
. [802.11b/g/n(20MHz)		Chann	el List for 802.11n(40MHz)
	Channel Frequency		Channel	Frequency
	01	2412	03	2422
	02	2417	04	2427
	03	2422	05	2432
	04	2427	06	2437
	05	2432	07	2442
	06	2437	08	2447
	07	2442	09	2452
	08	2447		
	09	2452		
	10	2457		
	11	2462		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, themiddle frequency, and the highest frequency of channel were selected to perform the test, and the selectedchannel see below:

Carrier Frequency Channel

2.4GHz Test Frequency:

2110112 10011 104011091				
For 802.11b	o/g/n (HT20)	For 802.11n (HT40)		
Channel Freq.(MHz)		Channel Freq.(MHz)		
01	2412	03	2422	
06	2437	06	2437	
11	2462	09	2452	

3KDB 662911 D01 Multiple Transmitter Output v02r01

- . 2) Directional Gain Calculations for In-Band Measurements
- a) Basic methodology with NANT transmit antennas, each with the same directional gain GANT d Bi, being driven by NANT transmitter outputs of equal power. Directional gain is to be computed a s follows:
- (i) If any transmit signals are correlated with each other,

Directional gain = GANT + 10 log(NANT) dBi

(ii) If all transmit signals are completely uncorrelated with each other,

Directional gain = GANT

4

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Note
1	coolpad	CP12t	FPC antenna	N/A	0.22	WLAN Antenna

Note: The antenna information refer the manufacturer provide report, applicable only to the tested sa-mple identified in the report.

2.2 DESCRIPTION OF THE TEST MODES

Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was

evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11b CH1	1 Mbps
Mode 2	TX IEEE 802.11b CH6	1 Mbps
Mode 3	TX IEEE 802.11 b CH11	1 Mbps
Mode 4	TX IEEE 802.11g CH1	6 Mbps
Mode 5	TX IEEE 802.11g CH6	6 Mbps
Mode 6	TX IEEE 802.11g CH11	6 Mbps
Mode 7	TX IEEE 802.11n HT20 CH1	MCS 0
Mode 8	TX IEEE 802.11n HT20 CH6	MCS 0
Mode 9	TX IEEE 802.11n HT20 CH11	MCS 0
Mode 10 TX IEEE 802.11n HT40 CH3		MCS 0
Mode 11	TX IEEE 802.11n HT40 CH6	MCS 0
Mode 12	TX IEEE 802.11n HT40 CH9	MCS 0

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

AC Conducted Emission

Test Case		
AC Conducted	Madada Kaning TV - MI ANI I inle	
Emission	Mode13: Keeping TX + WLAN Link	

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software Version	Test program: 2.4G WIFI			
engineering mode	b	12		
	g	8		
	n20	8		
	n40	8		

Report No.: LGT23B071RF03 Page 10 of 65

2.4 DESCRIPTION OF necessary accessories AND support units During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating
Adapter	ShenZhen Huajin Electronics Co,.Ltd	HJ-0501000E1-US	N/A	Input:100-240V ~ 50/60Hz 0.2A Output:5V, 1000mA
USB-A to USB-C Cable	N/A	N/A	N/A	1m, unshielded, without ferrite core

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating
Earphone	N/A	39630078	N/A	N/A
Laptop	HUAWEI	HKF-16	N/A	N/A

Note:

(1) For detachable type I/O cable should be specified the length in cm in [®] Length ^a column.

Report No.: LGT23B071RF03 Page 11 of 65

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Kind of Equipment	Manufacturer	Manufacturer Type No. Co		Last calibration	Calibrated until	
EMI Test Receiver	R&S	ESU8	100372	2022.04.12	2023.04.11	
Active loop Antenna	R&S	HFH2-Z2	POS871398181	2022.06.02	2024.06.01	
Spectrum Analyzer	Keysight	N9010B	MY60242508	2022.04.29	2023.04.28	
Bilog Antenna	SCHWARZBECK	VULB 9168	01447	2022.12.12	2024.12.11	
Horn Antenna	SCHWARZBECK	3115	10SL0060	2022.06.02	2024.06.01	
Pre-amplifier(0.1M-3GHz)	HP	8447D	2727A05655	2022.04.11	2023.04.10	
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2022.04.13	2023.04.12	
RE Cable (9K-1G)	N.A	R01	N.A	2022.05.05	2023.05.04	
RE Cable (1-26G)	N.A	R02	N.A	2022.05.05	2023.05.04	
Wireless Communications Test Set	R&S	CMW 500	137737	2022.04.29	2023.04.28	
Temperature & Humidity	KTJ	TA218B	N.A	2022.05.05	2023.05.04	
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)					

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until	
EMI Test Receiver	R&S	ESU8	100372	2022.04.12	2023.04.11	
LISN	COM-POWER	LI-115	02032	2022.04.13	2023.04.12	
LISN	SCHWARZBECK	NNLK 8121	00847	2022.08.19	2023.08.18	
CE Cable	N.A	C01	N.A	2022.05.05	2023.05.04	
Transient Limiter	CYBERTEK EM5010A E2250100049 2022.08.19 2023.08.1					
Temperature & Humidity	KTJ TA218B N.A 2022.05.05 2023.05.04					
Testing Software	EZ-EMC(Ver.EMC-CON 3A1.1)					

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
Signal Analyzer	Keysight	N9010B	MY60242508	2022.04.29	2023.04.28
RF Automatic Test system	MTS	MW200-RFCB	MW220322LG	2022.04.29	2023.04.28
Temperature & Humidity	KTJ	TA218B	N.A	2022.05.05	2023.05.04
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2022.05.10	2023.05.09
Attenuator	eastsheep	90db	N.A	2022.04.29	2023.04.28
Testing Software	MTS 8310_2.0.0.0_MWRF-TEST				

Report No.: LGT23B071RF03 Page 12 of 65

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

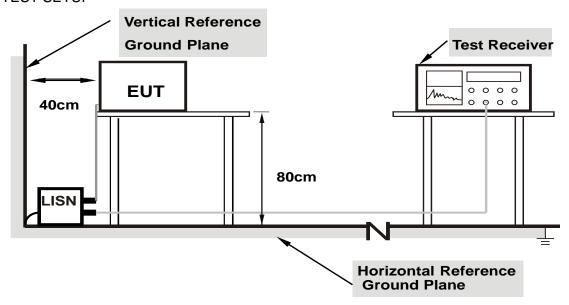
EDECLIENCY (MLL-)	Conducted Emissionlimit (dBuV)			
FREQUENCY (MHz)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


Report No.: LGT23B071RF03 Page 13 of 65

3.1.2 TEST PROCEDURE

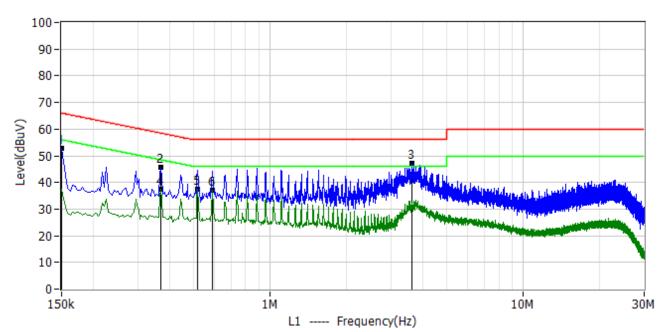
- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

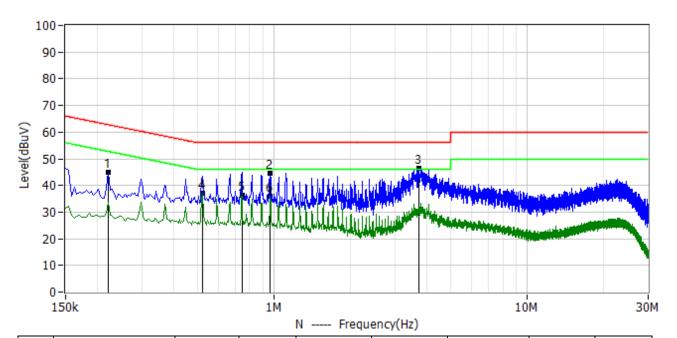
3.1.4 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Report No.: LGT23B071RF03 Page 14 of 65

3.1.5 TEST RESULT

Project: LGT23B071	Test Engineer: Dylan.shi
EUT: Smart Phone	Temperature: 24.9°C
M/N: CP12t	Humidity: 45%RH
Test Voltage: AC 120V/60Hz	Test Data: 2023-03-02
Test Mode: TX 2.4G WIFI	
Note:	



No.	Frequency	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	150.000kHz	42.14	10.56	52.70	66.00	-13.30	PK	L1
2*	370.000kHz	35.18	10.59	45.77	58.50	-12.73	PK	L1
3*	3.618MHz	36.56	10.72	47.28	56.00	-8.72	PK	L1
4*	370.000kHz	27.03	10.59	37.62	48.50	-10.88	AV	L1
5*	518.000kHz	26.87	10.58	37.45	46.00	-8.55	AV	L1
6*	590.000kHz	26.58	10.58	37.16	46.00	-8.84	AV	L1

Report No.: LGT23B071RF03 Page 15 of 65

Project: LGT23B071	Test Engineer: Dylan.shi
EUT: Smart Phone	Temperature: 24.9°C
M/N: CP12t	Humidity: 45%RH
Test Voltage: AC 120V/60Hz	Test Data: 2023-03-02
Test Mode: TX 2.4G WIFI	
Note:	

No.	Frequency	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	222.000kHz	34.30	10.60	44.90	62.74	-17.84	PK	N
2*	966.000kHz	34.09	10.59	44.68	56.00	-11.32	PK	N
3*	3.714MHz	35.57	10.72	46.29	56.00	-9.71	PK	N
4*	522.000kHz	26.57	10.58	37.15	46.00	-8.85	AV	N
5*	746.000kHz	25.68	10.58	36.26	46.00	-9.74	AV	N
6*	966.000kHz	25.24	10.59	35.83	46.00	-10.17	AV	N

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

EDEOLIENCY (MH-1)	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41		-	

Report No.: LGT23B071RF03 Page 17 of 65

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted band)	9KHz (From 0.15MHz to 30MHz);		
RB/ VB (emission in restricted band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted band)	120 KHz / 300 KHz

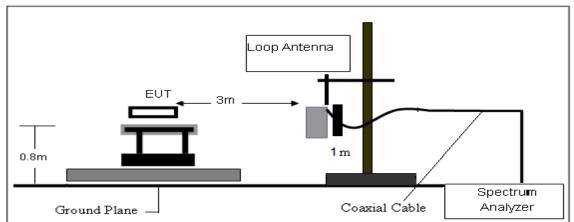
Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted band)	1 MHz / 3 MHz(Peak)		
	1 MHz/1/T MHz(AVG)		

For Restricted band

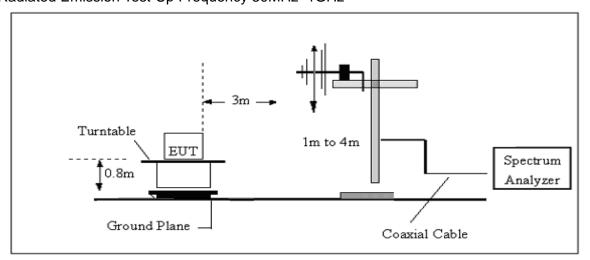
Spectrum Parameter	Setting				
Detector Peak					
Stort/Ston Fraguency	Lower Band Edge: 2310 to 2430 MHz				
Start/Stop Frequency	Upper Band Edge: 2445 to 2500 MHz				
DR / V/R	1 MHz / 3 MHz(Peak)				
RB / VB	1 MHz/1/T MHz(AVG)				

Receiver Parameter	Setting		
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV		
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP		
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV		
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP		
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP		

Report No.: LGT23B071RF03 Page 18 of 65

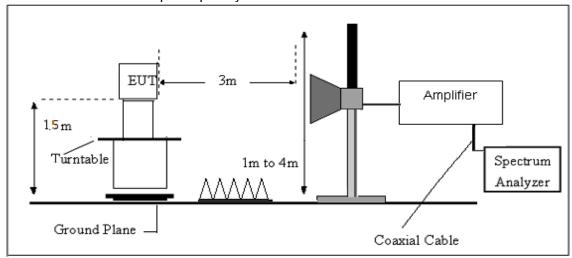

3.2.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Report No.: LGT23B071RF03 Page 19 of 65

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

Please refer to section 3.1.4 of this report.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

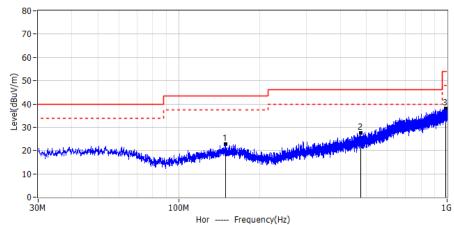
RA = Reading Amplitude

AG = Amplifier Gain

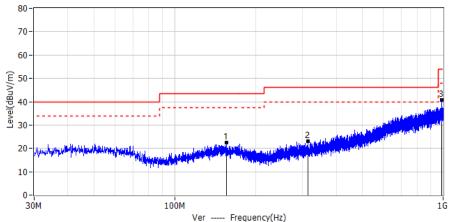
AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1


Factor=AF+CL-AG

Report No.: LGT23B071RF03 Page 20 of 65



3.2.6 TEST RESULT

Project: LGT23B071	Test Engineer: Dylan.shi
EUT: Smart Phone	Temperature: 25.7°C
M/N: CP12t	Humidity: 45%RH
Test Voltage: Battery	Test Data: 2023-03-02
Test Mode: TX 2.4G WIFI	
Note:	

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	149.674MHz	2.96	19.96	22.92	43.50	-20.58	PK	Hor
2*	477.413MHz	2.96	24.51	27.47	46.00	-18.53	PK	Hor
3*	990.906MHz	3.63	34.53	38.16	54.00	-15.84	PK	Hor

Tel Haddaney(Hz)								
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	155.736MHz	2.46	19.90	22.36	43.50	-21.14	PK	Ver
2*	313.483MHz	2.66	20.34	23.00	46.00	-23.00	PK	Ver
3*	987.633MHz	6.27	34.51	40.78	54.00	-13.22	PK	Ver

Report No.: LGT23B071RF03 Page 21 of 65