

RF TEST REPORT

Product Name: Smart Phone

Model Name: CP12p

FCC ID: R38YLCP12P

Yulong Computer Telecommunication Scientific (Shenzhen)
Issued For :

Co., Ltd

Floor 21, Block A, Coolpad Building, Intersection of Keyuan Avenue and Baoshen Road, North High-Tech Industrial Park,

Nanshan District, Shenzhen, Guangdong, China

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Chen Hsong Industrial Park,

No.177 Renmin West Road, Jinsha Community, Kengzi

Street, Pingshan New District, Shenzhen, China

Report Number: LGT23C004RF04

Sample Received Date: Mar. 02, 2023

Date of Test: Mar. 02, 2023 ~ Mar. 23, 2023

Date of Issue: Mar. 23, 2023

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd

Floor 21, Block A, Coolpad Building, Intersection of Keyuan Avenue

Address and Baoshen Road, North High-Tech Industrial Park, Nanshan

District, Shenzhen, Guangdong, China

Manufacturer Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd

Floor 21, Block A, Coolpad Building, Intersection of Keyuan Avenue

Address and Baoshen Road, North High-Tech Industrial Park, Nanshan

District, Shenzhen, Guangdong, China

Product Name Smart Phone

Trademark coolpad

Model Name CP12p

Sample Status: Normal

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
FCC Part 15.407, Subpart E ANSI C63.10-2013	PASS				

Prepared by:

Zane Shan

Zane Shan

Engineer

Approved by:

Vita Li

Technical Director

Report No.: LGT23C004RF04 Page 2 of 68

Table of Contents	Pag
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2 . GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	11
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3 . EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 RADIATED EMISSION AND (BANDEDGE) MEASUREMENT	17
4. POWER SPECTRAL DENSITY TEST	29
4.1 LIMIT	29
4.2 TEST PROCEDURE	29
4.3 DEVIATION FROM STANDARD	29
4.4 TEST SETUP	29
4.5 EUT OPERATION CONDITIONS	30
4.6 TEST RESULTS	30
5. BANDWIDTH MEASUREMENT	31
5.1 EMISSION BANDWIDTH (EBW) 26 BANDWID PROCEDURES / LIMIT	31
5.2 OCCUPIED BANDWIDTH (99%) TEST APPLIED PROCEDURES / LIMIT	32
5.3 MINIMUM EMISSION BANDWIDTH(6 DB) PROCEDURES / LIMIT	33
6. MAXIMUM CONDUCTED OUTPUT POWER	34
6.1 LIMIT	34
6.2 TEST PROCEDURE	34
6.3 DEVIATION FROM STANDARD	34
6.4 TEST SETUP	34
6.5 EUT OPERATION CONDITIONS	34
6.6 TEST RESULTS	34
7. AUTOMATICALLY DISCONTINUE TRANSMISSION	35
7.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	35
7.2 TEST RESULT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	35
8. ANTENNA REQUIREMENT	36

Report No.: LGT23C004RF04 Page 3 of 68

Page 4 of 68

Table of Contents	Page
8.1 STANDARD REQUIREMENT	36
8.2 EUT ANTENNA	36
APPENDIX I:TEST RESULTS	37
DUTY CYCLE	37
MAXIMUM CONDUCTED OUTPUT POWER	44
-26DB BANDWIDTH	45
OCCUPIED CHANNEL BANDWIDTH	49
MAXIMUM POWER SPECTRAL DENSITY LEVEL	56
-6DB BANDWIDTH	63
APPENDIX II:PHOTOS OF TEST SETUP	67

Report No.: LGT23C004RF04

Revision History

Rev.	Issue Date	Contents
00	Mar. 23, 2023	Initial Issue

Report No.: LGT23C004RF04 Page 5 of 68

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: Part 15.407,KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

FCC Part 15.407					
FCC standard	Results				
15.207	AC Conducted Emission	PASS			
15.407 (a) /15.407 (e)	26dB/6dB &99% Bandwidth	PASS			
15.407(a)	Maximum Conducted Output Power	PASS			
15.407(b)/15.205/15.209	Radiated Emission And (bandedge Emissions) Measurement	PASS			
15.407(a)	Power Spectral Density	PASS			
15.407(c)	Automatically Discontinue Transmission	PASS			
15.203/15.204	Antenna Requirement	PASS			

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

Report No.: LGT23C004RF04 Page 6 of 68

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.		
Address:	Room 205, Building 13, Zone B, Chen Hsong Industrial Park, No.1 Renmin West Road, Jinsha Community, Kengzi Street, Pingshan N District, Shenzhen, China		
	A2LA Certificate No.: 6727.01		
Accreditation Certificate:	FCC Registration No.: 746540		
	CAB ID: CN0136		

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

Report No.: LGT23C004RF04 Page 7 of 68

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Smart Phone			
Trademark	coolpad			
Model Name	CP12p			
Series Model	N/A			
Model Difference	N/A			
Product Description	The EUT is a Smart Phone IEEE 802.11a/n(HT20)/ac(VHT20): 5.180GHz-5.240GHz IEEE 802.11n(HT40)/ac(VHT40): 5.190GHz-5.230GHz Operation IEEE 802.11ac(VHT80): 5.210GHz Frequency: I IEEE 802.11a/n(HT20)/ac(VHT20): 5.745GHz-5.825GHz IEEE 802.11a/n(HT40)/ac(VHT40): 5.755GHz-5.795GHz IEEE 802.11ac(VHT80): 5.775GHz 802.11a(OFDM): BPSK, QPSK, 16-QAM, 64-QAM Modulation Rozenta			
Test Channel	Please refer to the Note 2.			
Adapter	Input: 100-240V, 50/60Hz, 0.3A Output: 5V, 2A			
Battery	Capacity: 4500mAh Rated Voltage: 3.85V			
Hardware Version	V1.0			
Software Version	CP12p.230327.0S.SE			
Connecting I/O Port(s)	Please refer to the Note 1.			

Note

Report No.: LGT23C004RF04 Page 8 of 68

^{1.} For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

<u> </u>	eration Frequency of channel 5.180GHz-5.240GHz		
Channel	Frequency		
36	5180		
38	5190		
40	5200		
42	5210		
44	5220		
46	5230		
48	5240		
	5.745GHz-5.825GHz		
Channel	Frequency		
149	5745		
151	5755		
153	5765		
157	5785		
159	5795		
161	5805		
165	5825		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Carrier Frequency Channel

	Channel List for 802.11a/n/ac(20MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	40	5200	44	5220	48	5240
149	5745	153	5765	157	5785	161	5805
165	5825						

Channel List for 802.11n/ac(40MHz)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)							Frequency (MHz)
38	5190	46	5230	151	5755	159	5795

Channel List for 802.11ac(80MHz)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)						Frequency (MHz)	
42	5210	155	5775				

3KDB 662911 D01 Multiple Transmitter Output v02r01

. 2) Directional Gain Calculations for In-Band Measurements

a) Basic methodology with NANT transmit antennas, each with the same directional gain GANT d Bi, being driven by NANT transmitter outputs of equal power. Directional gain is to be computed

Ant	Brand	Model Name	Ant Type	Connector	Gain (dBi)	NOTE
1	coolpad	CP12p	FPC antenna	N/A	-1.7	WLAN Ant

Note: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

Report No.: LGT23C004RF04 Page 9 of 68

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11a HT20 CH36&CH40&CH48	6 Mbps
Mode 2	TX IEEE 802.11a HT20 CH149&CH157&CH165	6 Mbps
Mode 3	TX IEEE 802.11n HT20 CH36&CH40&CH48	MCS 0
Mode 4	TX IEEE 802.11ac HT20 CH36&CH40&CH48	NSS1 MCS0
Mode 5	TX IEEE 802.11n HT20 CH149&CH157&CH165	MCS 0
Mode 6	TX IEEE 802.11ac HT20 CH149&CH157&CH165	NSS1 MCS0
Mode 7	TX IEEE 802.11n HT40 CH38&CH46	MCS 0
Mode 8	TX IEEE 802.11ac HT40 CH38&CH46	NSS1 MCS0
Mode 9	TX IEEE 802.11n HT40 CH151&CH159	MCS 0
Mode 10	TX IEEE 802.11ac HT40 CH151&CH159	NSS1 MCS0
Mode 11	TX IEEE 802.11ac HT80 CH42	NSS1 MCS0
Mode 12	TX IEEE 802.11ac HT80 CH155	NSS1 MCS0

Note: (1) The measurements are performed at the highest, middle, lowest available channels.

- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (3) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation.
- (4) The battery is fully-charged during the radited and RF conducted test.

AC Conducted Emission

	Test Case	
AC Conducted Emission	Mode 13: TX Mode	

Report No.: LGT23C004RF04 Page 10 of 68

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software Version	Test program: 5G WIFI B1		
	а	18	
anging aring made	n/ac20	18	
engineering mode	n/ac40	18	
	ac80	18	
Test software Version	Test program: 5G WIFI B4		
	а	18	
angingering made	n/ac20	18	
engineering mode	n/ac40	18	
	ac80	18	

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating			
Adapter	SHENZHEN TIANYIN ELECTRONICS CO., LTD.	TPA- 23A050200UU01	N/A	Input:100-240V ~ 50/60Hz 0.3A Output:5V, 2000mA			
USB-A to USB-C Cable	N/A	N/A	N/A	1m, unshielded, without ferrite core			

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating
Earphone	N/A	39630078	N/A	N/A
Laptop	HUAWEI	HKF-16	N/A	N/A

Note:

(1) For detachable type I/O cable should be specified the length in cm in [®] Length [®] column.

Report No.: LGT23C004RF04 Page 11 of 68

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conducted Emission

Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU	100372	2022.04.12	2023.04.11
LISN	COM-POWER	LI-115	02032	2022.04.13	2023.04.12
LISN	SCHWARZBECK	NNLK 8121	00847	2022.08.19	2023.08.18
CE Cable	N.A	C01	N.A	2022.05.05	2023.05.04
Transient Limiter	CYBERTEK	EM5010A	E2250100049	2022.08.19	2023.08.18
Temperature & Humidity	KTJ	TA218B	N.A	2022.05.05	2023.05.04
Testing Software		EMC-I_'	V1.4.0.3_SKET		

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESU	100372	2022.04.12	2023.04.11
Spectrum Analyzer	Keysight	N9010B	MY60242508	2022.04.29	2023.04.28
Bilog Antenna	SCHWARZBE CK	VULB 9168	01447	2022.12.12	2025.12.11
Horn Antenna(18GHz)	SCHWARZBE CK	3115	10SL0060	2022.06.02	2025.06.01
Horn Antenna(40 GHz)	A-INFO	LB-180400-KF	J211060273	2022.03.28	2025.03.27
Pre-amplifier(3GHz)	HP	8447D	2727A05655	2022.04.11	2023.04.10
Pre-amplifier(26.5G)	Agilent	8449B	3008A4722	2022.04.12	2023.04.11
Pre-amplifier(40 GHz)	com-mw	LNPA_18-40-01	18050001	2022.06.08	2023.06.07
RE Cable (9K-1G)	N.A	R01	N.A	2022.05.05	2023.05.04
RE Cable (1-26G)	N.A	R02	N.A	2022.05.05	2023.05.04
Temperature & Humidity	KTJ	TA218B	N.A	2022.05.05	2023.05.04
Testing Software		EMC-I_	V1.4.0.3_SKET		

RF Connected Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Signal Generator	Keysight	N5182B	MY59100717	2022.04.30	2023.04.29
Signal Analyzer	Keysight	N9010B	MY60242508	2022.04.29	2023.04.28
Temperature & Humidity	KTJ	TA218B	N/A	2022.05.05	2023.05.04
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2022.05.10	2023.05.09
Attenuator	eastsheep	90db	N/A	2022.04.29	2023.04.28
Testing Software		MTS 8310)_2.0.0.0_MWRF-T	EST	

Report No.: LGT23C004RF04 Page 12 of 68

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class B (dBuV)		
FREQUENCT (IVITIZ)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

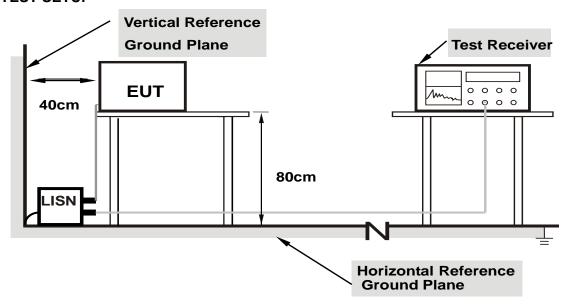
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

Report No.: LGT23C004RF04 Page 13 of 68


3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

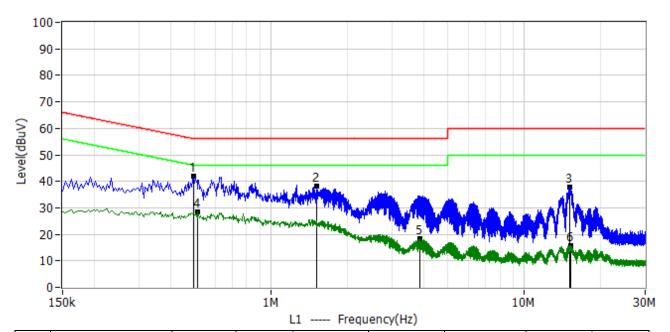
No deviation

3.1.4 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.5 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Report No.: LGT23C004RF04 Page 14 of 68

3.1.6 TEST RESULTS

Project: LGT23C004	Test Engineer: Dylan.shi
EUT: Smart Phone	Temperature: 22.7°C
M/N: CP12p	Humidity: 49%RH
Test Voltage: AC 120V/60Hz	Test Data: 2023-03-04
Test Mode: TX 5G WIFI	
Note:	

No.	Frequency	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	494.000kHz	31.47	10.58	42.05	56.10	-14.05	PK	L1
2*	1.514MHz	27.46	10.67	38.13	56.00	-17.87	PK	L1
3*	15.138MHz	26.90	11.10	38.00	60.00	-22.00	PK	L1
4*	510.000kHz	17.90	10.58	28.48	46.00	-17.52	AV	L1
5*	3.870MHz	7.61	10.72	18.33	46.00	-27.67	AV	L1
6*	15.206MHz	4.74	11.10	15.84	50.00	-34.16	AV	L1

Report No.: LGT23C004RF04 Page 15 of 68

Project: LGT23C004	Test Engineer: Dylan.shi
EUT: Smart Phone	Temperature: 22.7°C
M/N: CP12p	Humidity: 49%RH
Test Voltage: AC 120V/60Hz	Test Data: 2023-03-04
Test Mode: TX 5G WIFI	
Note:	

No.	Frequency	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	162.000kHz	31.82	10.57	42.39	65.36	-22.97	PK	N
2*	630.000kHz	31.33	10.58	41.91	56.00	-14.09	PK	N
3*	15.082MHz	22.09	11.15	33.24	60.00	-26.76	PK	N
4*	178.000kHz	19.51	10.58	30.09	54.58	-24.49	AV	N
5*	778.000kHz	17.90	10.58	28.48	46.00	-17.52	AV	N
6*	15.142MHz	2.00	11.15	13.15	50.00	-36.85	AV	N

3.2 RADIATED EMISSION AND (BANDEDGE) MEASUREMENT 3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.407(b)7&15.205/209(a), then the limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	68.2	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15E.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Note: In case the emission radiated emission above 1000MHz fall within the restricted band the restricted frequency bands, the peak limit is 74 dBuV/m.

Report No.: LGT23C004RF04 Page 17 of 68

LIMITS OF EMISSIONS OUTSIDE OF THE FREQUENCY BANDS

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note: dBuV/m(at 3M) = EIRP(dBm) + 95.3.

Peak Limit = -27dBm/MHz + 95.3 = 68.3 dBuV/m.

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier harmonic (Peak/AV)
RB / VB (emission in restricted band)	1 MHz / 1 MHz, AV=1 MHz /3 MHz

For Band edge

Spectrum Parameter	Setting
Detector	Peak
RB / VB (emission in restricted band)	1 MHz / 1 MHz, AV=1 MHz /3 MHz

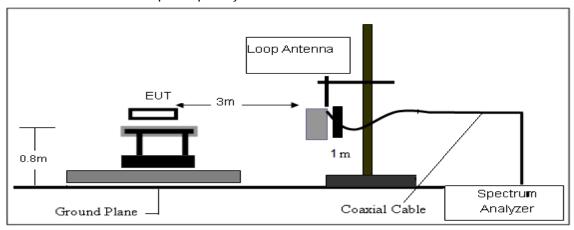
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

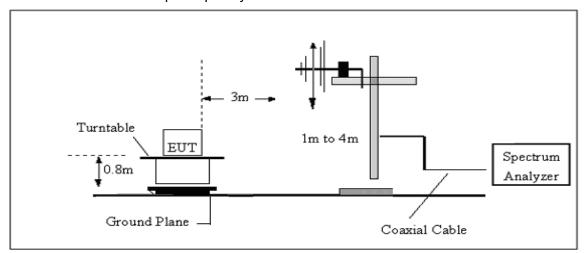
- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Report No.: LGT23C004RF04 Page 18 of 68

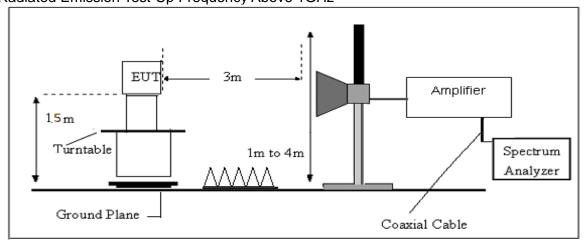
Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.2 DEVIATION FROM TEST STANDARD


No deviation

3.2.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

Report No.: LGT23C004RF04 Page 19 of 68

3.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

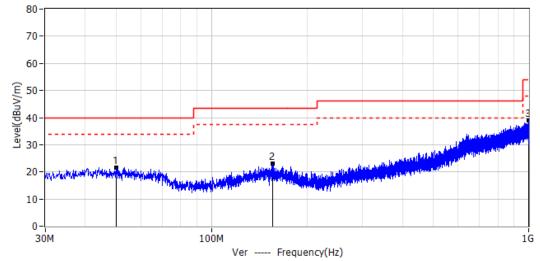
AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1


Factor=AF+CL-AG

Report No.: LGT23C004RF04 Page 20 of 68



3.2.6 TEST RESULTS

Project: LGT23C004	Test Engineer: Dylan.shi
EUT: Smart Phone	Temperature: 26.9°C
M/N: CP12p	Humidity: 42%RH
Test Voltage: Battery	Test Data: 2023-03-10
Test Mode: TX 5G WIFI	
Note:	

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	156.706MHz	2.72	19.89	22.61	43.50	-20.89	PK	Hor
2*	417.394MHz	2.05	23.10	25.15	46.00	-20.85	PK	Hor
3*	975.750MHz	4.09	34.45	38.54	54.00	-15.46	PK	Hor

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	50.006MHz	2.22	19.36	21.58	40.00	-18.42	PK	Ver
2*	155.615MHz	3.26	19.91	23.17	43.50	-20.33	PK	Ver
3*	998.303MHz	4.47	34.56	39.03	54.00	-14.97	PK	Ver

Report No.: LGT23C004RF04 Page 21 of 68

1-18GHz

Project: LGT23C004	Test Engineer: Dylan.shi
EUT: Smart Phone	Temperature: 26.7°C
M/N: CP12p	Humidity: 52%RH
Test Voltage: Battery	Test Data: 2023-03-12
Test Mode: 802.11a 5180	
Note:	

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar	
1*	4.787GHz	52.09	-5.98	46.11	74.00	-27.89	PK	Hor	
2*	11.393GHz	51.36	1.86	53.22	74.00	-20.78	PK	Hor	
3*	17.964GHz	45.64	8.49	54.13	74.00	-19.87	PK	Hor	
4*	17.964GHz	35.41	8.49	43.90	54.00	-10.10	AV	Hor	
No.	Frequency	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
140.		dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	i olai	
1*	4.795GHz	51.72	-5.98	45.74	74.00	-28.26	PK	Ver	
2*	8.988GHz	52.95	-1.20	51.75	74.00	-22.25	PK	Ver	
3*	17.907GHz	46.52	8.45	54.97	74.00	-19.03	PK	Ver	
4*	17.907GHz	37.45	8.45	45.90	54.00	-8.10	AV	Ver	

Project: LGT23C004	Test Engineer: Dylan.shi
EUT: Smart Phone	Temperature: 26.7°C
M/N: CP12p	Humidity: 52%RH
Test Voltage: Battery	Test Data: 2023-03-12
Test Mode: 802.11a 5200	
Note:	

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	4.749GHz	52.44	-5.95	46.49	74.00	-27.51	PK	Hor
2*	8.926GHz	53.42	-1.38	52.04	74.00	-21.96	PK	Hor
3*	17.805GHz	45.85	8.38	54.23	74.00	-19.77	PK	Hor
4*	17.805GHz	36.22	8.38	44.60	54.00	-9.40	AV	Hor
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	4.559GHz	51.58	-5.80	45.78	74.00	-28.22	PK	Ver
2*	11.281GHz	51.17	1.80	52.97	74.00	-21.03	PK	Ver
3*	17.902GHz	46.90	8.45	55.35	74.00	-18.65	PK	Ver
4*	17.902GHz	37.35	8.45	45.80	54.00	-8.20	AV	Ver

Report No.: LGT23C004RF04 Page 22 of 68