

Variant FCC RF Test Report

APPLICANT	:	Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd.
EQUIPMENT	:	Mobile Phone
BRAND NAME	:	Vodafone Smart 4G
MODEL NAME	:	Coolpad 8860U
MARKETING NAME	:	Vodafone Smart 4G
FCC ID	:	R38YL8860UO
STANDARD	:	FCC 47 CFR Part 2, 24(E)
CLASSIFICATION	:	PCS Licensed Transmitter Held to Ear (PCE)

This is a variant report which is only valid together with the original test report. The product was received on Aug. 29, 2013 and testing was completed on Sep. 13, 2013. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI / TIA / EIA-603-C-2004 and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL : 86-755- 3320-2398 FCC ID : R38YL8860UO

Page Number: 1 of 16Report Issued Date: Sep. 17, 2013Report Version: Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Site	6
	1.7	Applied Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Test Mode	7
	2.2	Connection Diagram of Test System	8
	2.3	Support Unit used in test configuration and system	8
3	TEST	RESULT	9
	3.1	Conducted Output Power Measurement	9
	3.2	Field Strength of Spurious Radiation Measurement1	1
4	LIST	OF MEASURING EQUIPMENT1	5
5	UNCE	RTAINTY OF EVALUATION	6

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FG340403-01	Rev. 01	EUT is variant version of Coolpad 8860U (FCC ID: R38YL8860U which supports NFC function), and now the variant sample with FCC ID: R38YL8860UO is not support NFC function. Due to the similarity, the parent sample RF performance is representative and part of test data (Sporton Report Number FG340403 for FCC ID: R38YL8860U) is referenced; only the conducted power and the worst case of Radiated Spurious Emission were verified for the differences for the variant sample.	Sep. 17, 2013

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	§2.1046	Conducted Output Power	N/A	PASS	-
3.2	§2.1051 §24.238(a)	Band Edge Measurement	< 43+10log ₁₀ (P[Watts])	PASS	-
3.2	§2.1053 §24.238(a)	Field Strength of Spurious Radiation	< 43+10log ₁₀ (P[Watts])	PASS	Under limit 35.14 dB at 9400.000 MHz

SUMMARY OF TEST RESULT

1 General Description

1.1 Applicant

Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd.

Coolpad Information Harbor, 2nd Mengxi Road, Northern Part of Science&Technology Park, Nanshan district, Shenzhen, P.R.China

1.2 Manufacturer

Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd.

Coolpad Information Harbor, 2nd Mengxi Road, Northern Part of Science&Technology Park, Nanshan district, Shenzhen, P.R.China

1.3 Feature of Equipment Under Test

Product Feature						
Equipment	Mobile Phone					
Brand Name	Vodafone Smart 4G					
Model Name	Coolpad 8860U					
Marketing Name	Vodafone Smart 4G					
FCC ID	R38YL8860UO					
FUT supports Radios application	GSM/GPRS/EGPRS/LTE/WLAN 802.11abgn HT 20/					
	Bluetooth v3.0 + EDR/Bluetooth v4.0					
HW Version	ТЗ					
SW Version	082.12.T3.130819.CP8860U					
EUT Stage	Production Unit					

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard					
Tx Frequency GSM1900: 1850.2 MHz ~ 1909.8MHz					
Rx Frequency	GSM1900: 1930.2 MHz ~ 1989.8 MHz				
Maximum Output Power to Antenna	GSM1900 : 30.58 dBm				
Antenna Type	PIFA Antenna				
	GSM: GMSK				
Type of Modulation	GPRS: GMSK				
	EDGE: GMSK / 8PSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Site

Test Site	SPORTON INTERI	PORTON INTERNATIONAL (SHENZHEN) INC.					
	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan						
Test Site Location	warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.						
	TEL: +86-755- 3320-2398						
Toot Site No	Sporton	Site No.	FCC Registration No.				
Test Site No.	TH01-SZ	03CH01-SZ	831040				

1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR Part 2, 24(E)
- ANSI / TIA / EIA-603-C-2004
- FCC KDB 971168 D01 Power Meas. License Digital Systems v02r01

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode

During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range.

Frequency range investigated for radiated emission is from 30 MHz to 19000 MHz.

Test Modes				
Band	Radiated TCs			
GSM 1900	GSM Link			

Remark: For Radiated TCs, all the test modes are performed with Battery 1.

The conducted power tables are as follows:

Conducted Power (*Unit: dBm)								
Band		GSM1900						
Channel	512	512 661 810						
Frequency	1850.2	1880.0	1909.8					
GSM	30.43	<mark>30.58</mark>	30.54					
GPRS class 8	30.45	30.57	30.47					
GPRS class 10	27.78	27.86	27.82					
GPRS class 11	24.48	24.79	24.73					
GPRS class 12	23.74	23.73	23.62					
EGPRS class 8	26.16	<mark>26.22</mark>	26.21					
EGPRS class 10	26.12	26.15	26.15					
EGPRS class 10	25.13	25.07	25.07					
EGPRS class 12	24.05	24.03	23.98					

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Agilent	E5515C	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	TOPWORD	3303DR	N/A	N/A	Unshielded, 1.8 m

3 Test Result

3.1 Conducted Output Power Measurement

3.1.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The transmitter output port was connected to base station.
- 2. Set EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

3.1.4 Test Setup

3.1.5 Test Result of Conducted Output Power

PCS Band									
Modes	GSM1900 (EDGE 8)								
Channel	512 (Low)	661 (Mid)	810 (High)	512 (Low)	661 (Mid)	810 (High)			
Frequency (MHz)	1850.2	1880	1909.8	1850.2	1880	1909.8			
Conducted Power (dBm)	30.43	30.58	30.54	26.16	26.22	26.21			
Conducted Power (Watts)	1.10	1.14	1.13	0.41	0.42	0.42			

Note: maximum burst average power for GSM.

3.2 Field Strength of Spurious Radiation Measurement

3.2.1 Description of Field Strength of Spurious Radiated Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The EUT was placed on a rotatable wooden table with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 11. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)
 = P(W) [43 + 10log(P)] (dB)
 - = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
 - = -13dBm.
- 12. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain

3.2.4 Test Setup

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.2.5 Test Result of Field Strength of Spurious Radiated

Band :		GSN	GSM1900				Temperature :		24~25°C			
Test Mode	e :	GSN	/I Link (GMSK)			Relative H	lumidity :	48~49%			
Test Engi	neer :	Leo	Liao				Polarizati	on :	Horizont	al		
Remark :		Spu	rious er	nissions	within 30)-1000MH	z were foun	d more tha	n 20dB b	elow limit	line.	
	Level (dBm)							Date: 2013-09-13				
	-10									-13DBN	л	
											1	
	-20										_	
	30											
	-30											
	-40										_	
							L					
	-50			1	2	3					_	
					Ĩ							
	-60											
	-70-										_	
	-8030	1000.	300	0. 500	0. 700	0. 9000	. 11000.	13000.	15000. 1	7000. 190	000	
						Freque	ncy (MHz)					
	Site Conditio	n	: 03CH(: -13DB	01-SZ MHFEIR	P H 13010	1 HORIZONT	AL					
	Project		: (FG)3	40403-01			-					
_	Plane	_	: Y									
Frequency	y EIR	RP	Limit	Over	SPA Decedim	S.G.	TX Cal	ole TX An	tenna Po	larization	Result	
(MHz)	(dB	m) ((dBm)	(dB)	(dBm)	y Powe (dBm) (dB) (dF	Bi)	(H/V)		
3760	-55.	59	-13	-42.59	-67.74	-62.3	<u> </u>	8.0)2	Η	Pass	
5640	-54.	73	-13	-41.73	-72.72	-63.1	5 1.58	10.	00	н	Pass	
7520	-53.	03	-13	-40.03	-74.97	-63.3	5 1.78	12.	10	Н	Pass	
9400	-48.	14	-13	-35.14	-70.26	-58.9	2 2.22	13.	00	Н	Pass	

Band :		GSM1900				Temperature :		24~25°C	
Test Mode	:	GSM Link (GMSK)				Relative Humidity :		48~49%	
Test Engin	eer :	Leo Liao				Polarizatio	n :	Vertical	
Remark :		Spurious	emissions	within 30	-1000MHz	were found	more that	n 20dB below	ı limit line.
	oLev	el (dBm)	1			1		Date: 20)13-09-13
	-10								-13DBM
	20								
	-20								
	-30								
	-40								
	-50				2 4				
				2	ĭ				
	-60								
	-70								
	- ⁸⁰ 30	1000. 3	000. 50	00. 700	0. 9000.	11000.	13000.	15000. 17000). 19000
	lito	- 030	H01 S7		Frequen	CY (MHZ)			
Condition : -13DBM HF_EIRP_V_130101 VERTICAL									
F	roject	: (FG)340403-01						
F	lane	: Y							
Frequency	EIR	P Limit	Over	SPA	S.G.	TX Cable	e TX Ant	enna Polariz	ation Result
(Reading	Power	loss	Ga	in an an	0
(IVIHZ)	(aBn	и) (авт 18 12) (ab)	-70.51	(asm) (ab) 1.00	(dE	(H/) (H/)	I) Doco
5640	-55.4	-13 85 -13	-42.40 -42.35	-70.01	-02.22	1.20	0.0	v∠ V) \/	rass Pass
7520	-53 6	5 -13	-40 65	-75.9	-63.97	1 78	12	, v .1 V	Pass
9400	-51.9	94 -13	-38.94	-75.56	-62.72	2.22	13	. v	Pass

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 28, 2013	Sep. 13, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	N/A	Mar. 28, 2013	Sep. 13, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	N/A	Mar. 28, 2013	Sep. 13, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Spectrum Analyzer	Agilent Technologies	N9038A	MY52260185	20Hz~26.5GHz	Apr. 04, 2013	Sep. 13, 2013	Apr. 03, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 12, 2012	Sep. 13, 2013	Oct. 11, 2013	Radiation (03CH01-SZ)
Bilog Antenna	SCHAFFNER	CBL6112B	2614	30MHz~2GHz	Nov. 03, 2012	Sep. 13, 2013	Nov. 02, 2013	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz~3000MHz GAIN 30db	Mar. 28, 2013	Sep. 13, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	Mar. 28, 2013	Sep. 13, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
SHF-EHF-Hor n	Schwarzbeck	BBHA9170	BBHA917024 9	14GHz~40GHz	Nov. 23, 2012	Sep. 13, 2013	Nov. 22, 2013	Radiation (03CH01-SZ)
Turn Table	EM Electronice	EM 1000	N/A	0~360 degree	N/A	Sep. 13, 2013	N/A	Radiation (03CH01-SZ)
Antenna Mast	EM Electronice	EM 1000	N/A	1 m~4 m	N/A	Sep. 13, 2013	N/A	Radiation (03CH01-SZ)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2.54
Confidence of 95% (U = 2Uc(y))	2.34

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4 70
Confidence of 95% (U = 2Uc(y))	4.72