

Variant FCC RF Test Report

APPLICANT	: Yulong Computer Telecommunication
	Scientific (Shenzhen) Co., Ltd
EQUIPMENT	: mobile phone
BRAND NAME	: Coolpad
MODEL NAME	: Coolpad 801EM
FCC ID	: R38YL801EM
STANDARD	: FCC 47 CFR Part 2, 22(H), 24(E)
CLASSIFICATION	: PCS Licensed Transmitter Held to Ear (PCE)

This is a variant report which is only valid together with the original test report. The product was received on Aug. 09, 2013 and testing was completed on Sep. 10, 2013. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI / TIA / EIA-603-C-2004 and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL : 86-755- 3320-2398 FCC ID : R38YL801EM Page Number: 1 of 22Report Issued Date: Sep. 18, 2013Report Version: Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Maximum ERP/EIRP Power	6
	1.7	Testing Site	6
	1.8	Applied Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Test Mode	8
	2.2	Connection Diagram of Test System	9
	2.3	Support Unit used in test configuration and system	9
3	TEST	RESULT	10
	3.1	Conducted Output Power Measurement	
	3.2	Effective Radiated Power and Effective Isotropic Radiated Power Measurement	
	3.3	Field Strength of Spurious Radiation Measurement	
4	LIST	OF MEASURING EQUIPMENT	21
5	UNCE	ERTAINTY OF EVALUATION	22

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FG311602-01A	Rev. 01	EUT is variant version of Coolpad 801E (FCC ID: R38YL801E), and now the variant sample is with FCC ID: R38YL801EM, please refer the product equality declaration exhibit submitted. Due to the similarity, the parent sample RF performance is representative and part of test data (Sporton Report Number FG311602A for FCC ID: R38YL801E) is referenced; only the conducted power,ERP/EIRP and worst case of Spurious Emission was verified for the differences for the variant sample.	Sep. 18, 2013

Report Section	FCC Rule Description		Limit	Result	Remark
3.1	§2.1046	Conducted Output Power	N/A	PASS	-
3.2	§22.913(a)(2)	Effective Radiated Power	< 7 Watts	PASS	-
3.2	§24.232(c)	Equivalent Isotropic Radiated Power	< 2 Watts	PASS	-
3.3	§2.1053 §22.917(a) §24.238(a)	Field Strength of Spurious Radiation	< 43+10log ₁₀ (P[Watts])	PASS	Under limit 34.98 dB at 2510.000 MHz

SUMMARY OF TEST RESULT

1 General Description

1.1 Applicant

Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd

Coolpad Information Harbor, 2nd Mengxi Road, Northern Part of Science&Technology Park, Nanshan district, Shenzhen, P.R.China

1.2 Manufacturer

Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd

Coolpad Information Harbor, 2nd Mengxi Road, Northern Part of Science&Technology Park, Nanshan district, Shenzhen, P.R.China

1.3 Feature of Equipment Under Test

Product Feature				
Equipment	mobile phone			
Brand Name	Coolpad			
Model Name	Coolpad 801EM			
FCC ID	R38YL801EM			
	CDMA/EV-DO/LTE/WLAN 2.4GHz 802.11b/g/n HT20			
EUT supports Radios application	Bluetooth v3.0 + EDR			
	Bluetooth v4.0 + LE			
HW Version	P0			
SW Version	4.1.003.P0.130809.801EM			
EUT Stage Identical Prototype				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard					
Tx Frequency	CDMA2000 BC0: 824.70 MHz ~ 848.31 MHz CDMA2000 BC1: 1851.25 MHz ~ 1908.75 MHz				
Rx Frequency	CDMA2000 BC0: 869.70 MHz ~ 893.31 MHz CDMA2000 BC1: 1931.25 MHz ~ 1988.75 MHz				
Maximum Output Power to Antenna	CDMA2000 BC0 : 23.50 dBm CDMA2000 BC1 : 23.54 dBm				
Antenna Type	PIFA Antenna				
Type of Modulation	CDMA2000 : QPSK CDMA2000 1xEV-DO : QPSK/8PSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Maximum ERP/EIRP Power

FCC Rule	System	Type of Modulation	Maximum ERP/EIRP (W)
Part 22	CDMA2000 BC0 1xRTT	QPSK	0.0577
Part 24	CDMA2000 BC11xRTT	QPSK	0.2939

1.7 Testing Site

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.			
Test Site Location	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C. TEL: +86-755- 3320-2398			
Test Offenha	Sporton Site No. FCC Registration No.			
Test Site No.	TH01-SZ	03CH01-SZ	831040	

1.8 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR Part 2, 22(H), 24(E)
- ANSI / TIA / EIA-603-C-2004
- FCC KDB 971168 D01 Power Meas. License Digital Systems v02r01
- FCC KDB 412172 D01 Determining ERP and ERIP v01

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- **2.** This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

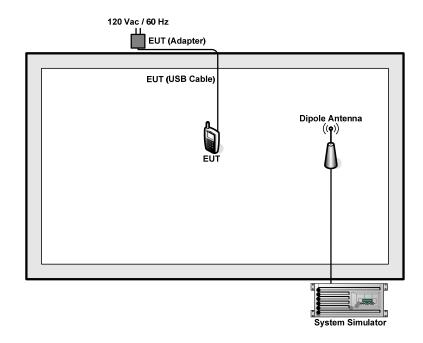
2.1 Test Mode

During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT is rotated on three test planes to find out the worst emission.

Frequency range investigated for radiated emission is as follows:

- 1. 30 MHz to 9000 MHz for CDMA2000 BC0.
- 2. 30 MHz to 19000 MHz for CDMA2000 BC1.

Test Modes				
Band	Radiated TCs			
CDMA2000 BC0	■ 1xRTT Link Mode			
CDMA2000 BC1	■ 1xRTT Link Mode			


Note: The maximum RF output power levels are 1xRTT RC3+SO55 mode for CDMA2000 BC0 on QPSK Link and 1xRTT RC3+SO55 mode for CDMA2000 BC1 on QPSK Link; only these modes were used for all tests.

Conducted Power (*Unit: dBm)							
Band	CE	0MA2000 B	C0	CE	MA2000 BC1		
Channel	1013	384	777	25	600	1175	
Frequency	824.7	836.52	848.31	1851.25	1880	1908.75	
1xRTT RC1 SO55	23.42	23.43	23.49	23.47	23.39	23.51	
1xRTT RC3 SO55	23.48	<mark>23.50</mark>	23.46	23.41	23.31	<mark>23.54</mark>	
1xRTT RC3 SO32(+ F-SCH)	23.46	23.39	23.45	23.39	23.28	23.51	
1xRTT RC3 SO32(+SCH)	23.42	23.39	23.46	23.37	23.28	23.47	
1xEV-DO RTAP 153.6Kbps	23.37	23.33	23.36	23.38	23.25	23.49	
1xEV-DO RETAP 4096Bits	23.38	23.31	23.40	23.37	23.25	23.48	

The conducted power table is as follows:

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

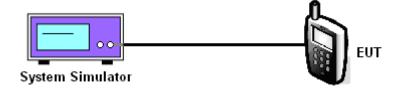
ltem	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Agilent	E5515C	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	TOPWORD	3303DR	N/A	N/A	Unshielded, 1.8 m

3 Test Result

3.1 Conducted Output Power Measurement

3.1.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.


3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The transmitter output port was connected to base station.
- 2. Set EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

3.1.4 Test Setup

3.1.5 Test Result of Conducted Output Power

CDMA2000 BC0						
Test Mode		CDMA 2000 1xRTT				
Test Status	RC3+SO55					
Channel	1013 (Low) 384 (Mid) 777 (High)					
Frequency (MHz)	824.7 836.52 848.31					
Conducted Power (dBm)	23.48	23.50	23.46			
Conducted Power (Watts)	0.22	0.22	0.22			

CDMA2000 BC1										
Test Mode	CDMA 2000 1xRTT									
Test Status	RC3+SO55									
Channel	25 (Low) 600 (Mid) 1175 (High)									
Frequency (MHz)	1851.25	1880	1908.75							
Conducted Power (dBm)	23.41	23.31	23.54							
Conducted Power (Watts)	0.22 0.21 0.23									

Note: maximum average power for CDMA2000.

3.2 Effective Radiated Power and Effective Isotropic Radiated Power Measurement

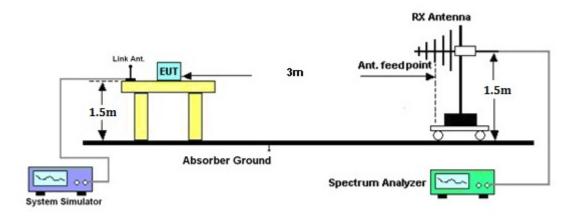
3.2.1 Description of the ERP/EIRP Measurement

The substitution method, in ANSI / TIA / EIA-603-C-2004, was used for ERP/EIRP measurement, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems v02r01. The ERP of mobile transmitters must not exceed 7 Watts and the EIRP of mobile transmitters are limited to 2 Watts.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures


- 1. The EUT was placed on a turntable with 1.5 meter height in a fully anechoic chamber.
- 2. The EUT was set at 3 meters from the receiving antenna, which was mounted on the antenna tower.
- GSM operating modes: Set RBW= 1MHz, VBW= 3MHz, RMS detector over burst; UMTS operating modes: Set RBW= 100 kHz, VBW= 300 kHz, RMS detector over frame, and use channel power option with bandwidth=5MHz, per KDB 971168 D01.
- 4. The table was rotated 360 degrees to determine the position of the highest radiated power.
- 5. The height of the receiving antenna is adjusted to look for the maximum ERP/EIRP.
- 6. Taking the record of maximum ERP/EIRP.
- 7. A dipole antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. The conducted power at the terminal of the dipole antenna is measured.
- 9. Repeat step 3 to step 5 to get the maximum ERP/EIRP of the substitution antenna.
- 10. ERP/EIRP = Ps + Et Es + Gs = Ps + Rt Rs + Gs

Ps (dBm) : Input power to substitution antenna. Gs (dBi or dBd) : Substitution antenna Gain. Et = Rt + AF Es = Rs + AF AF (dB/m) : Receive antenna factor Rt : The highest received signal in spectrum analyzer for EUT.

Rs : The highest received signal in spectrum analyzer for substitution antenna.

3.2.4 Test Setup

3.2.5 Test Result of ERP

	CDMA2000 BC0 1xRTT_RC3+SO55 Radiated Power ERP									
	Horizontal Polarization									
Frequency	ency Rt Rs Ps Gs ERP ERP									
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(W)				
824.70	-30.47	-48.12	0.00	-1.08	16.57	0.0454				
836.52	-29.74	-48.28	0.00	-0.93	17.61	0.0577				
848.31	-30.79	-48.35	0.00	-0.76	16.80	0.0478				
		Ve	rtical Polarizat	ion						
Frequency	Rt	Rs	Ps	Gs	ERP	ERP				
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(W)				
824.70	-43.88	-47.97	0.00	-1.08	3.01	0.0020				
836.52	-42.15	-48.01	0.00	-0.93	4.93	0.0031				
848.31	-41.92	-48.05	0.00	-0.76	5.37	0.0034				

3.2.6 Test Result of EIRP

	CDMA2000 BC1 1xRTT_RC3+SO55 Radiated Power EIRP									
	Horizontal Polarization									
Frequency (MHz)										
1851.25	-30.21	-51.88	0.00	1.96	23.63	0.2306				
1880.00	-30.34	-52.99	0.00	2.00	24.65	0.2915				
1908.75	-32.00	-54.28	0.00	1.98	24.26	0.2666				
		Ve	rtical Polarizati	on						
Frequency (MHz)	Rt (dBm)	Rs (dBm)	Ps (dBm)	Gs (dBi)	EIRP (dBm)	EIRP (W)				
1851.25	-30.53	-52.13	0.00	1.96	23.56	0.2270				
1880.00	-30.49	-53.17	0.00	2.00	24.68	0.2939				
1908.75	-31.81	-54.13	0.00	1.98	24.30	0.2689				

3.3 Field Strength of Spurious Radiation Measurement

3.3.1 Description of Field Strength of Spurious Radiated Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43+10log₁₀(P[Watts]) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

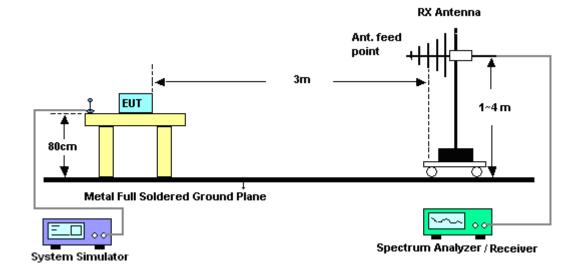
3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

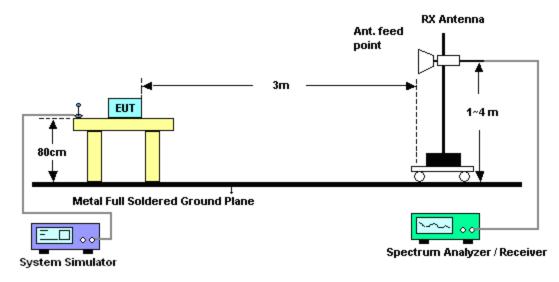
3.3.3 Test Procedures

- 1. The EUT was placed on a rotatable wooden table with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain
- 11. ERP (dBm) = EIRP 2.15
- 12. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 13. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)


 $= [30 + 10\log(P)] (dBm) - [43 + 10\log(P)] (dB)$

= -13dBm.



3.3.4 Test Setup

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Band :		CDMA2	2000	BC0					Tem	perature :		25~26°	С	
Test Mode	:	1xRTT_	1xRTT_RC3+SO55 LinkRelative Humidity :48~49%											
Test Engin	eer:	Leo Liao Polarization : Horizonta												
Remark :		Spuriou	Spurious emissions within 30-1000MHz were found more than 20dB below limit											
	oLevel	(dBm)									Date: 20	13-08-22		
	Ŭ													
-	10											-13DBM		
-	20													
-	30													
-	40													
-	50			2										
L	60		1		3									
-	70													
-	80 <mark>30</mark>	1000.		2000.	3000.		4000. 50 Frequency (M	00.	6000.	7000.	8000.	900	0	
Site	2	· 030	:H01-9	37			Frequency (M	12)						
	ndition				H_13010	1 HO	RIZONTAL							
Frequency	ERI	P Lim	it	Over	SPA	-	S.G.	тх с	Cable	TX Antenna	Polar	ization	Resu	
(MHz)	(dBr	n) (dB	m)	Limit (dB)	Readi (dBn		Power (dBm)		ss IB)	Gain (dBi)	/L	I/V)		
1672	-57.2			-44.24	-70.1	-	-60.21	-	88	6.00		H	Pass	
2510	-47.9			-34.98	-70.0		-50.59		08	5.84		H	Pass	
3346	-61.2	21 -1;	2	-48.21	-71.8	1	-65.58	1	14	7.66		н	Pass	

3.3.5 Test Result of Field Strength of Spurious Radiated

Band :		CDMA200	00 BC0			Ten	nperature :	25~26°	С					
Test Mode	:	1xRTT_R	xRTT_RC3+SO55 Link Relative Humidity : 48~49%											
Test Engine		Leo Liao												
					<u> </u>									
Remark :			emission	s within 3	0-1000MHz v	vere found r	nore than 20d							
	0 Level	(dBm)					[Date: 2013-08-22						
-1	10							-13DBM						
-2	20													
3	30													
4	40													
-	50													
-6	50		1	3										
-7	70													
-4	80 <mark>30</mark>	1000.	2000.	3000.	4000. 50 Frequency (M	000. 6000. Hz)	7000.	8000. 900	0					
Site Con	dition	: 03CH0 : -13DBM		_V_130101	VERTICAL	_								
Frequency	ERI	P Limit	Over	SPA	S.G.	TX Cable	TX Antenna	Polarization	Result					
	(Limit	Reading	-	loss	Gain	(115.0)						
(MHz) 1672	(dBr -59.2		(dB) -46.27	(dBm) -69.90		(dB) 0.88	(dBi) 6.00	(H/V)	Pass					
2510	-59.2	-	-38.50	-70.63		1.08	5.84	V	Pass					
3346	-59.5		-46.58	-71.41		1.14	7.66	V	Pass					

Band :		CDMA2	2000) BC1								Те	mper	atu	ire :		2	5~26	°C
Test Mode :		1xRTT_RC3+SO55 LinkRelative Humidity :48~49%											%						
Test Engine	er :	Leo Liao Polarization : Horizont												ntal					
Remark :		Spuriou	ıs e	missio	ons	withir	n 3(0-1000)M	Hz we	ere fou	ind	more	tha	an 20	dB I	pelo	w lim	it line.
0	Level (dBm)														Date:	2013	3-08-22	
0																			
-10																	-1	3DBM	
-20																			
-30																			
-50																			
-40																			
-50					2		3		4										
-60					_														
-70					\neg		_		+										
00																			
-00	30 100	0. 30	00.	500	00.	70	00.	900 Frequ		110 y (MHz);	00.	130	00.	150	000.	170)00.	1900	0
Site		: 03Cl						-											
Condi					-			ORIZON						_		<u>-</u> -			
Frequency	EIR	P Lim	hit	Ove Limi		SP Reac			5.G ow		TX Ca los:		ТХ	An Ga		Po	olaria	zation	Result
(MHz)	(dBn	n) (dBi	m)	(dB		(dB				n)	(dB			(dE			(H/	V)	
3760	-61.8		-	-48.8	-	-73.			68.9		1.28			8.0			+		Pass
5640	-55.6	57 -13	3	-42.6	7	-73.	66	-6	64.0	09	1.58	В		10.	00		F	ł	Pass
7520	-54.2			-41.2		-76.	22		64.6		1.78			12.			F	ł	Pass
9400	-55.6	51 -13	3	-42.6	1	-77.	73	-6	6.3	39	2.22	2		13.	00		H	1	Pass

Band :		CDMA20	DMA2000 BC1 Temperature : 25~26°C												С					
Test Mode :		1xRTT_I	xRTT_RC3+SO55 Link Relative Humidity : 48~49%												6					
Test Engine	er :	Leo Liac	eo Liao Polarization : Vertica																	
Remark :		Spurious	purious emissions within 30-1000MHz were found more than 20dB below limit												t line.					
	Level	(dBm)					_										Date	: 201:	3-08-22	
-1(0																	-1	3DBM	
-20	0																			
-31	0																			
-40	0																			
-50	0				2		3	3		4										
-60	0			1	_															
-7(0									-										
-8	0 30 10	00. 30	00.	50	00.	70	00.	F	900 reau		11(y (MHz)	000.	130	000.	15	000.	17	000.	1900	0
Site		: 03CH																		
Cond				HF_EIR	_			/ERT												
Frequency	EIRI	P Limi	t	Over Limit		SP. Read			S. Po	G.		FX Ca los		ТХ	C Ant Gai		Po	lariz	ation	Result
(MHz)	(dBn	n) (dBm)	(dB)		(dBi	_	,	(dE			(dB			(dB			(H/\	Λ	
3760	-59.2		-	-46.29		-74.3	-		-66			1.2			8.0			V	/	Pass
5640	-56.4	3 -13		-43.43	3	-73.	51		-64	.85	5	1.5	8		10)		V		Pass
7520	-53.6	9 -13		-40.69)	-75.	94		-64	.01		1.7	8		12.	1		V		Pass
9400	-54.1	3 -13		-41.13	3	-77.	75		-64	.91		2.2	2		13	3		V		Pass

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 28, 2013	Sep. 10, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	N/A	Mar. 28, 2013	Sep. 10, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	N/A	Mar. 28, 2013	Sep. 10, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Thermal Chamber	Hongzhan	LP-150U	HD201204 25	N/A	Mar. 28, 2013	Sep. 10, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Spectrum Analyzer	Agilent Technologies	N9038A	MY522601 85	20Hz~26.5GHz	Apr. 04, 2013	Aug. 22, 2013	Apr. 03, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 12, 2012	Aug. 22, 2013	Oct. 11, 2013	Radiation (03CH01-SZ)
Bilog Antenna	SCHAFFNER	CBL6112B	2614	30MHz~2GHz	Nov. 03, 2012	Aug. 22, 2013	Nov. 02, 2013	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz-3000MHz GAIN 30db	Mar. 28, 2013	Aug. 22, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	Mar. 28, 2013	Aug. 22, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
SHF-EHF-Horn	Schwarzbeck	BBHA9170	BBHA9170 249	14GHz~40GHz	Nov. 23, 2012	Aug. 22, 2013	Nov. 22, 2013	Radiation (03CH01-SZ)
Turn Table	EM Electronice	EM 1000	N/A	0 ~ 360 degree	N/A	Aug. 22, 2013	N/A	Radiation (03CH01-SZ)
Antenna Mast	EM Electronice	EM 1000	N/A	1 m - 4 m	N/A	Aug. 22, 2013	N/A	Radiation (03CH01-SZ)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2.54
Confidence of 95% (U = 2Uc(y))	2.34

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4.72
Confidence of 95%(U = 2Uc(y))	4.72