Shenzhen Academy of Information and Communications Technology

TEST REPORT

No.I17N01718-EMC

for

Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd

Smart Phone

Model Name: Coolpad 3632A

FCC ID: R38YL3632A

with

Hardware Version: P2

Software Version: 7.1.108.92.P2.171030.3632A.mpcs

Issued Date: 2017-11-10

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001 Email:yewu@caict.ac.cn. www.cszit.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I17N01718-EMC	Rev.0	1st edition	2017-11-10

CONTENTS

1.	TEST LABORATORY	. 4
1.1.	TESTING LOCATION	. 4
1.2.	TESTING ENVIRONMENT	. 4
1.3.	PROJECT DATA	. 4
1.4.	SIGNATURE	. 4
2.	CLIENT INFORMATION	. 5
2.1.	APPLICANT INFORMATION	. 5
2.2.	MANUFACTURER INFORMATION	. 5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 6
3.1.	ABOUT EUT	. 6
3.2.	INTERNAL IDENTIFICATION OF EUT	. 6
3.3.	INTERNAL IDENTIFICATION OF AE	. 6
3.4.	EUT SET-UPS	. 7
4.	REFERENCE DOCUMENTS	. 8
4.1.	REFERENCE DOCUMENTS FOR TESTING	. 8
5.	LABORATORY ENVIRONMENT	. 9
6.	SUMMARY OF TEST RESULTS	10
7.	TEST FACILITIES UTILIZED	.11
A NT	NEV A. MEACHDEMENT DECHITC	12

1. Test Laboratory

1.1. Testing Location

Company Name: Shenzhen Academy of Information and Communications

Technology

Address: Building G, Shenzhen International Innovation Center, No.1006

Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

Postal Code: 518026

Telephone: +86(0)755-33322000

Fax: +86(0)755-33322001

1.2. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2017-11-07
Testing End Date: 2017-11-09

1.4. Signature

Liang Yong

(Prepared this test report)

Zhang Yunzhuan

(Reviewed this test report)

Cao Junfei

Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd

Coolpad Information Harbor, High-tech Industrial Park (North), Address:

Nanshan District, Shenzhen, P.R.C.

2.2. Manufacturer Information

Company Name: Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd

Coolpad Information Harbor, High-tech Industrial Park (North),

Address:

Nanshan District, Shenzhen, P.R.C.

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Smart Phone
Model Name Coolpad 3632A
FCC ID R38YL3632A

The Equipment Under Test (EUT) are a model of Smart Phone with integrated antenna.

The EUT supports GPRS service and EGPRS service.

Remark: The above EUT's information is declared by manufacturer. Please refer to the specifications or user's manual for more detailed information.

Note: Smart Phone Coolpad 3632A manufactured by Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd. According to the declaration of changes, Radiated Continuous Emission test needs to been performed. else results are cited from the initial model. The report number for initial model is I17N00032.

3.2. Internal Identification of EUT

EUT ID* SN or IMEI

UT12aa 862429037562459

3.3. Internal Identification of AE

AE ID*	Description	SN
AE1	Battery	/
AE2	Travel charger	/
AE3	USB cable	/

AE1

Model HB406689ECW

Manufacturer Sunwoda Electronic CO.,LTD

Capacity 3900mAh Nominal Voltage 3.6V

AE2

Model HW-050200U01

Manufacturer HUIZHOU BYD BATTERY CO LTD

SN B78994GAP02319

AE3

Model L99U2017-CS-H

Manufacturer Luxshare Precision industry Co., Ltd

^{*}EUT ID: is used to identify the test sample in the lab internally.

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. EUT set-ups

EUT set-up No.	Combination of EUT and AE	Remarks
Set.1	EUT1+ AE1+AE2+ AE3	Charging mode
Set.2	EUT1+ AE1+ AE3	USB mode

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15,	Padia fraguancy dovices	10-1-2016
Subpart B	Radio frequency devices	Edition
	Methods of Measurement of Radio-Noise Emissions from	
ANSI C63.4	Low-Voltage Electrical and Electronic Equipment in the	2014
	Range of 9 kHz to 40 GHz	

5. LABORATORY ENVIRONMENT

Semi-anechoic chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz,>60dB;
	1MHz-18000MHz,>90dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω
Normalised site attenuation (NSA)	$<\pm4\mathrm{dB},3\mathrm{m}$ distance, from 30 to 1000 MHz

Shield room did not exceed following limits along the EMC testing:

	5	
Temperature	Min. = 15 °C, Max. = 30 °C	
Relative humidity	Min. =20 %, Max. = 75 %	
Shielding effectiveness	0.014MHz-1MHz,>60dB;	
	1MHz-10000MHz,>90dB	
Electrical insulation	> 2MΩ	
Ground system resistance	<4 Ω	

Fully-anechoic chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz,>60dB;
	1MHz-18000MHz,>90dB
Electrical insulation	$> 2M\Omega$
Ground system resistance	< 4 Ω
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:	
Р	Pass
NA	Not applicable
F	Fail

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Radiated Emission	15.109(a)	A.1	Р

7. Test Facilities Utilized

NO.	NAME	TYPE	SERIES	PRODUCER	CALDUE	CAL
			NUMBER		DATE	PERIOD
1.	Test Receiver	ESR7	101676	R&S	2017.11.30	1 year
2.	Test Receiver	ESCI	100702	R&S	2018.06.25	1 year
3.	Spectrum Analyzer	FSV40	101192	R&S	2018.05.22	1 year
4.	BiLog Antenna	VULB9163	9163 329	SCHWARZBE CK	2020.02.27	3 years
5.	LISN	ENV216	102067	R&S	2017.12.09	1 year
6.	Horn Antenna	3117	00066577	ETS-lindgren	2019.04.05	3 years
7.	Universal Radio	CMU200	114545	R&S	2018.05.17	1 voor
	Communication Tester	CIVIOZOO	114545	Nas	2010.03.17	1 year
8.	PC	20ET-A00DC	PF-010TM1	Lenovo	/	,
	FO	D	F1-0101WI1	Lenovo	,	/
9.	Printer	P1008	VNF6C12491	HP	/	/
10.	Mouse	MOEUUOA	44NY517	Lenovo	/	/
11.	Chamber	FACT3-2.0	1285	ETS-Lindgren	2019.11.27	3 years

ANNEX A: MEASUREMENT RESULTS

A.1 Radiated Emission (§15.109(a))

Reference

FCC: CFR Part 15.109(a)

A.1.1 Method of measurement

The field strength of radiated emissions from the unintentional radiator (USB mode of MS and charging mode of MS) at a distance of 3 meters is tested. Tested in accordance with the procedures of ANSI C63.4 - 2014, section 8.3.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

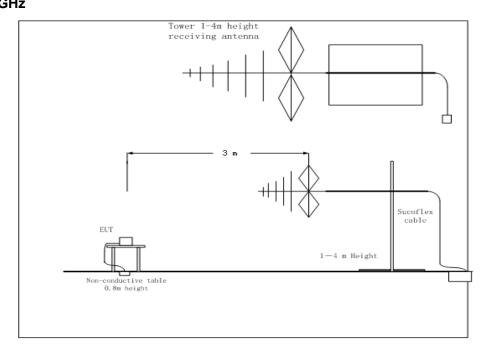
A.1.2 EUT Operating Mode:

Charging mode: The MS is synchronized to SS, and able to respond to paging messages and incoming call. An established call has been released. The MS is connected to a charger.

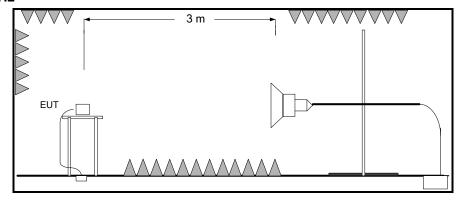
USB mode: The model of the PC is Lenovo 2OET-A00DCD, and the serial number of the PC is PF-010TM1. The software is used to let the PC keep on copying data to MS, reading and erasing the data after copy action was finished.

A.1.3 Measurement Limit

Limit from CFR Part 15.109(a)


Frequency range	Field strength limit (μV/m)			
(MHz)	Quasi-peak	Average	Peak	
30-88	100			
88-216	150			
216-960	200			
960-1000	500			
>1000		500	5000	

^{*}Note: The original limit is defined at 10m test distance. This limit is calculated according to CISPR requirements.


A.1.4 Test Condition

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)	
30-1000	120kHz (IF bandwidth)	5	
Above 1000	1MHz/3MHz	15	

A.1.5 Test set-up: 30MHz-1GHz

1GHz-18GHz

A.1.6 Measurement Results

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss". It includes the antenna factor of receive antenna and the path loss.

The measurement results are obtained as described below:

Result = $P_{Mea} + A_{Rpl} = P_{Mea} + G_A + G_{PL}$

Where

G_A: Antenna factor of receive antenna

G_{PL}: Path Loss

 P_{Mea} : Measurement result on receiver.

Note: the result contains vertical part and Horizontal part

RE Measurement uncertainty: 30M-1GHz: 4.90dB (k=2);

1GHz-18GHz: 5.32 dB (k=2)

Set.1 Charging mode / Peak detector

Frequency(MHz)	Result(dBuV/m)	Limit	Margin(dB)	Polarity	ARpl	P _{Mea}
		(dBµV/m)			(dB/m)	(dBµV)
13904.500000	57.05	74.00	16.95	V	20.8	36.25
14788.500000	56.73	74.00	17.27	Η	21.6	35.13
15570.500000	60.48	74.00	13.52	V	23.6	36.88
15922.000000	62.06	74.00	11.94	Η	24.7	37.36
16582.500000	63.27	74.00	10.73	Н	26.4	36.87
17716.000000	62.52	74.00	11.48	V	27.7	34.82

Set.1 Charging mode / Average detector

Frequency(MHz)	Result(dBuV/m)	Limit	Margin(dB)	Polarity	ARpl	P _{Mea}
		(dBµV/m)			(dB/m)	(dBµV)
13911.000000	44.85	54.00	9.15	Н	21.1	23.75
14681.000000	45.28	54.00	8.72	Н	21.5	23.78
15572.000000	48.99	54.00	5.01	V	23.6	25.39
15967.500000	50.38	54.00	3.62	Н	25.6	24.78
16596.000000	51.16	54.00	2.84	V	26.3	24.86
17721.000000	51.04	54.00	2.96	Н	27.7	23.34

Set.2 USB mode / Peak detector

Frequency(MHz)	Result(dBuV/m)	Limit (dBµV/m)	Margin(dB)	Polarity	ARpl (dB/m)	P _{Mea} (dBµV)
13909.000000	57.70	74.00	16.30	V	21.1	36.6
14593.000000	57.73	74.00	16.27	Н	21.4	36.33
15043.500000	60.37	74.00	13.63	Н	22.5	37.87
16301.500000	62.51	74.00	11.49	Н	25.3	37.21
16583.000000	63.09	74.00	10.91	V	26.4	36.69
17990.500000	62.79	74.00	11.21	Н	27.5	35.29

Set.2 USB mode / Average detector

Frequency(MHz)	Result(dBuV/m)	Limit (dBµV/m)	Margin(dB)	Polarity	ARpl (dB/m)	P _{Mea} (dBµV)
13907.500000	45.50	54.00	8.50	V	21.0	24.5
14688.000000	46.02	54.00	7.98	V	21.6	24.42
15573.500000	49.15	54.00	4.85	Н	23.7	25.45
15940.000000	50.56	54.00	3.44	V	24.9	25.66
16594.500000	51.23	54.00	2.77	V	26.3	24.93
17705.500000	51.24	54.00	2.76	Н	27.6	23.64

Note: The measurement result of Set.1, and Set.2 showed here are worst cases of combinations of different batteries and USB cables.

Charging mode: Set 1

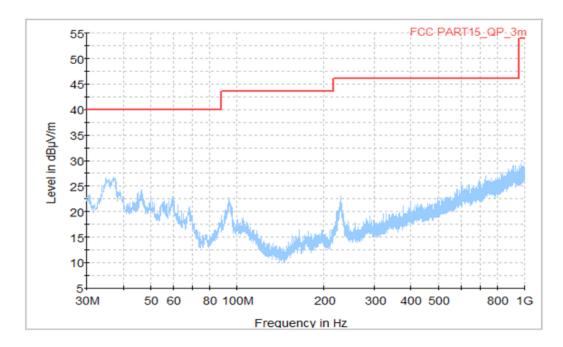


Figure A.1 Radiated Emission from 30MHz to 1GHz

Figure A.2 Radiated Emission from 1GHz to 18GHz

USB mode: Set 2

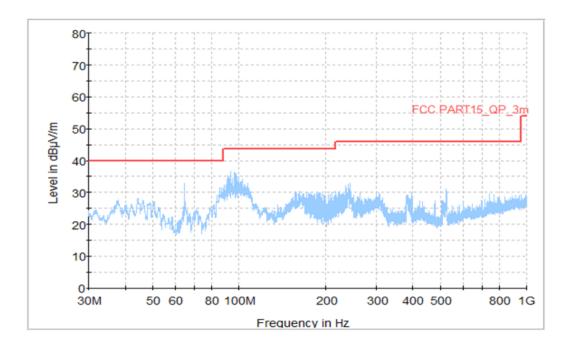


Figure A.3 Radiated Emission from 30MHz to 1GHz

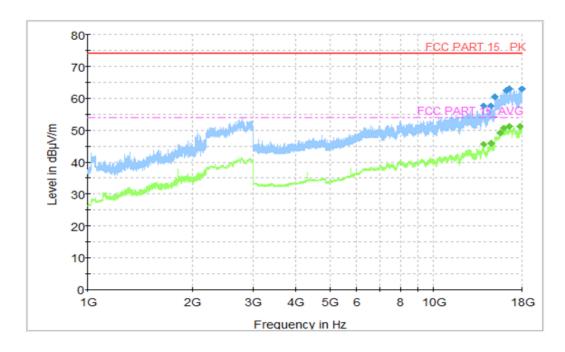


Figure A.4 Radiated Emission from 1GHz to 18GHz

END OF REPORT