

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4Ω- 3.05jΩ	
Return Loss	- 30.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.3Ω- 4.70jΩ	
Return Loss	- 23.1dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.267 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

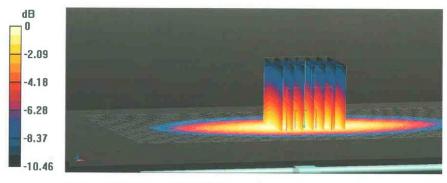
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	0. 1.10

Certificate No: Z14-97127

Page 4 of 8

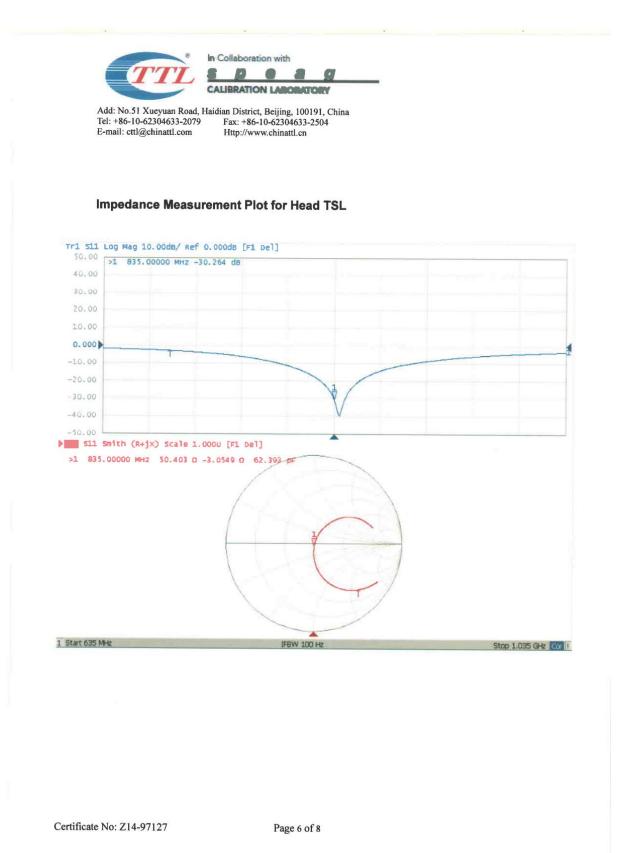

DASY5 Validation Report for Head TSL

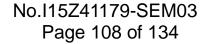
Date: 04.11.2014

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057** Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.916$ S/m; $\varepsilon_r = 40.82$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.67, 9.67, 9.67); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

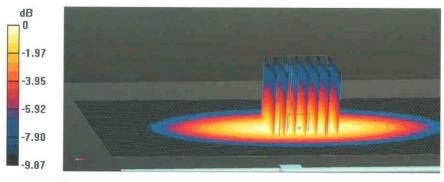
System Performance Check at Frequencies above 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.60 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.08 W/kg


0 dB = 3.08 W/kg = 4.89 dBW/kg


Certificate No: Z14-97127

Page 5 of 8

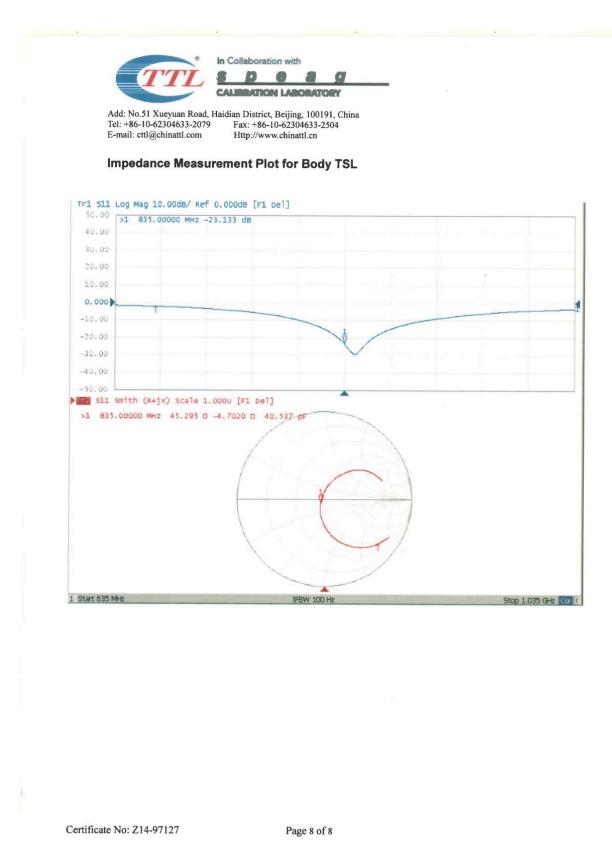
No.I15Z41179-SEM03 Page 107 of 134



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.94 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.05 W/kg


0 dB = 3.05 W/kg = 4.84 dBW/kg

Certificate No: Z14-97127

Page 7 of 8

No.I15Z41179-SEM03 Page 109 of 134

1800 MHz Dipole Calibration Certificate

E-mail: cttl@china Client CT	ttl.com Http:	Harmony I. Second Second	No. L0570
	FL(South Bran	//www.chinattl.cn (ch) Certificate No: Z	14-97129
CALIBRATION C		, , , , , , , , , , , , , , , , , , , ,	
Object	D1800	V2 - SN: 2d147	
		DS-E-02-194 ation Procedures for dipole validation kits	
Calibration date:		nber 6, 2014	
All calibrations have been humidity<70%.	o conducted in	the closed laboratory facility: environment	temperature(22±3)℃ and
humidity<70%. Calibration Equipment used	I (M&TE critical f	or calibration)	
humidity<70%.		or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards	I (M&TE critical f	or calibration)	
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	I (M&TE critical f ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146)	Scheduled Calibration Jun-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146)	Scheduled Calibration Jun-15 Jun-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 101919 101547 SN 3617 SN 1331 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Scheduled Calibration Jun-15 Jun-15 Aug-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781)	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical f ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14 (SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function SAR Test Engineer	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15

Certificate No: Z14-97129

Page 1 of 8

No.I15Z41179-SEM03 Page 111 of 134

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97129

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR for nominal Head TSL parameters	normalized to 1W	20.4 mW /g ± 20.4 % (k=2)
SAR measured	250 mW input power	5.06 mW / g
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	38.4 mW /g ± 20.8 % (k=2)
SAR measured	250 mW input power	9.49 mW / g
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.96 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.3 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.24 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.1 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97129

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.7Ω- 3.73jΩ	
Return Loss	- 27.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.0Ω- 3.95jΩ
Return Loss	- 21.3dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.317 ns

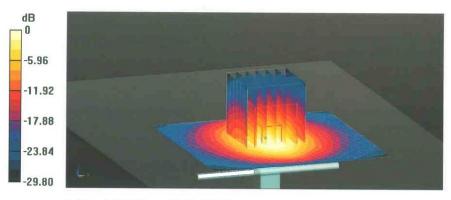
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

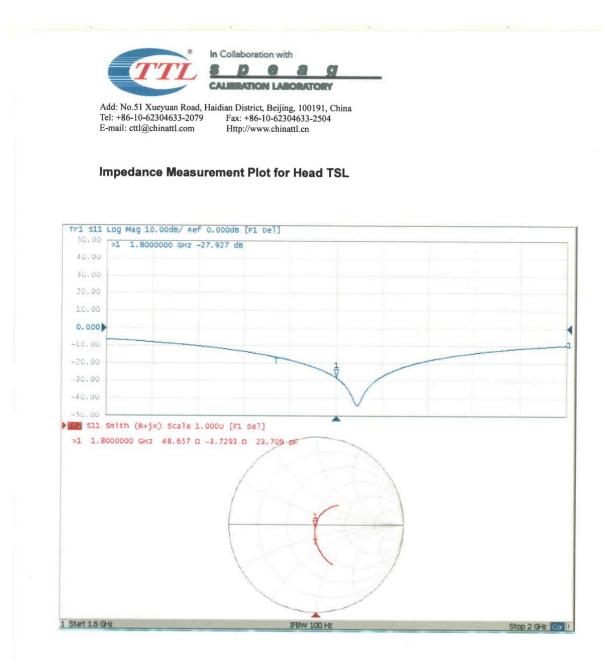
Manufactured by	SPEAG

Certificate No: Z14-97129


Page 4 of 8

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.9 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.49 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 13.4 W/kg


0 dB = 14.2 W/kg = 11.53 dBW/kg

Certificate No: Z14-97129

Page 5 of 8

No.I15Z41179-SEM03 Page 115 of 134

Certificate No: Z14-97129

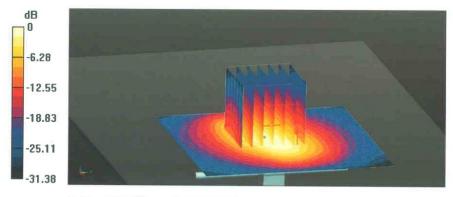
Page 6 of 8

No.I15Z41179-SEM03 Page 116 of 134

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China Date: 06.11.2014

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d147


Communication System: UID 0, CW; Frequency: 1800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; σ = 1.489 S/m; ϵ_r = 52.85; ρ = 1000 kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

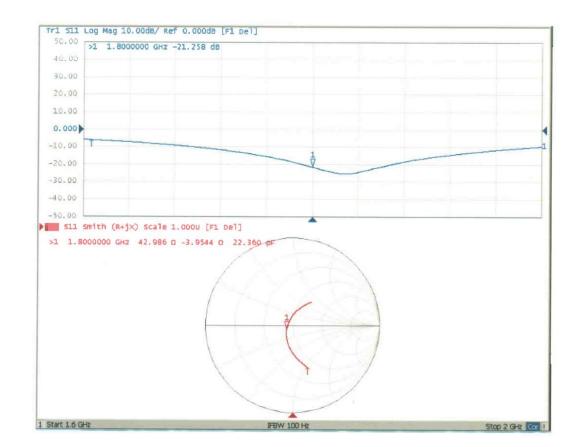
- Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.99 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.24 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 15.3 W/kg = 11.86 dBW/kg

Certificate No: Z14-97129

Page 7 of 8



No.I15Z41179-SEM03 Page 117 of 134

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z14-97129

Page 8 of 8

1900 MHz Dipole Calibration Certificate

Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax:	strict, Beijing, 100191, China +86-10-62304633-2504 ://www.chinattl.cn	CALIBRATIC No. L0570
Client CT	TL(South Bran		14-97130
CALIBRATION C	ERTIFICA	ТЕ	Palat aller
Object	D1900	IV2 - SN: 5d088	12/17/1
Calibration Procedure(s)	TMC-C	DS-E-02-194	
	Calibra	ation Procedures for dipole validation kits	
Calibration date:	Novem	nber 5, 2014	
All calibrations have been	conducted in	the closed laboratory facility: environment	t temperature(22±3)° an
humidity<70%. Calibration Equipment used Primary Standards		the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.)	t temperature(22±3) [*] C an Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	I (M&TE critical f ID # 101919	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146)	
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146)	Scheduled Calibration Jun-15 Jun-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146)	Scheduled Calibration Jun-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	ID # 101919 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ID # 101919 101547 SN 3617 SN 1331 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Scheduled Calibration Jun-15 Jun-15 Aug-15
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15 Signature
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical f ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15 Signature
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	I (M&TE critical f ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15 Signature
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	I (M&TE critical f ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15 Signature

Certificate No: Z14-97130

Page 1 of 8

No.I15Z41179-SEM03 Page 119 of 134

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97130

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	122.22	

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.97 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.5 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.18 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.9 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.1 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.35 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.5 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97130

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.0Ω+ 6.31jΩ
Return Loss	- 22.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5Ω+ 6.01jΩ
Return Loss	- 24.1dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.299 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

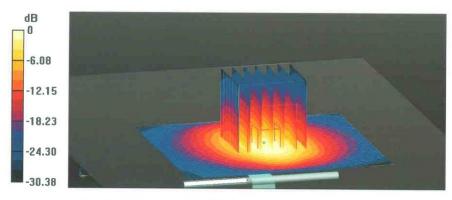
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	Manufactured by	SPEAG
1		

Certificate No: Z14-97130

Page 4 of 8


DASY5 Validation Report for Head TSL

Date: 05.11.2014

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088** Communication System: UID 0, CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.365$ S/m; $\epsilon_r = 39.92$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.9, 7.9, 7.9); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

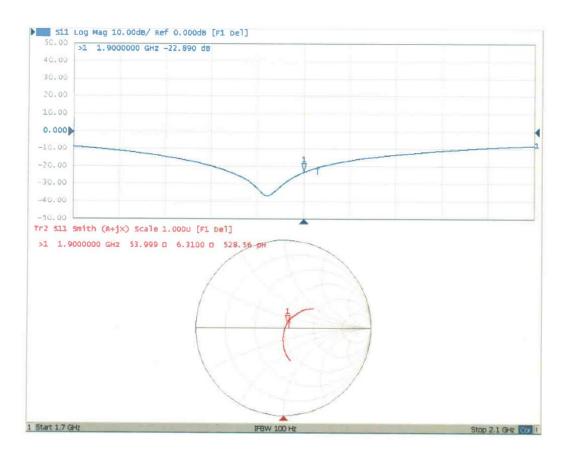
System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.0 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 14.5 W/kg

0 dB = 15.3 W/kg = 11.84 dBW/kg

Certificate No: Z14-97130

Page 5 of 8

No.I15Z41179-SEM03 Page 123 of 134



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Page 6 of 8