

Body Evaluation

Table 14.25: SAR Values (WLAN - Body) - 802.11b 11Mbps (Fast SAR)

			Ambien	t Temperatu	re: 23.0 °C	Liquid Temperature: 22.5 °C				
Frequ	iencv	Test	Eiguro	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		3.	Figure No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	NO.	(dBm)	Power (dbm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Front	/	17.57	17.7	0.082	0.08	0.147	0.15	0.01
2462	11	Rear	/	17.57	17.7	0.110	0.11	0.158	0.16	0.02
2462	11	Right	/	17.57	17.7	0.104	0.11	0.19	0.20	0.04
2462	11	Тор	/	17.57	17.7	0.056	0.06	0.108	0.11	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

Table 14.26: SAR Values (WLAN - Body) – 802.11b 11Mbps (Full SAR)

		Aı	mbient T	emperature:	23.0 °C	Liquid Tem	perature: 2	22.5 °C		
Frequency		Toot	Ciaura	Conducted Max. tune-up		Measured	Reported	Measured	Reported	Power
		Test Figure				SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Rear	Fig.12	17.57	17.7	0.11	0.12	0.16	0.18	0.18

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 97.6% is achievable for WLAN in this project and the scaled reported SAR is presented as below.

Table 14.27: SAR Values (WLAN - Body) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambient Ter	nperature: 22.5	5°C Liquio	d Temperature: 22	.0°C
Freque	ency	Test	Actual duty	maximum duty	Reported SAR	Scaled reported SAR
MHz	Ch.	Position	factor	factor	(1g) (W/kg)	(1g) (W/kg)
2462	11	Rear	97.6%	100%	0.18	0.19

SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for GSM 850 Body With GPRS (1g)

Frequ	ency	Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
848.8	251	Rear	10	0.915	0.903	1.01	/

Table 15.2: SAR Measurement Variability for GSM 1900 Head with GPRS (1g)

F	Freque	uency		Test	Original	First	The	Second
N	MHz Ch		Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
18	850.2	512	Right	Touch	0.932	0.928	1.00	/

Table 15.3: SAR Measurement Variability for WCDMA 1700 Head (1g)

Frequ	ency		Test	Original	First	The	Second
MHz	Ch.	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1752.6	1513	Left	Touch	0.899	0.893	1.06	/

Table 15.4: SAR Measurement Variability for Body WCDMA 1700 (1g)

Frequ	ency	Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1752.6	1513	Rear	10	1.09	1.07	1.00	/

Table 15.5: SAR Measurement Variability for WCDMA 1900 Head (1g)

Frequ	ency		Test	Original	First	The	Second
MHz	Ch.	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1907.6	9538	Right	Touch	0.852	0.827	1.03	/

Table 15.6: SAR Measurement Variability for WCDMA 1900 Body (1g)

Frequency		Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1907.6	9538	Rear	10	0.975	0.959	1.01	/

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

			l	1						10.1 Measurement officertainty for Normal SAN Tests (300MHz~3GHz)										
No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom										
			Measure	ement system				(15)	(106)	necdoni										
1	Probe calibration	В	5.5	N	1	1	1	5.4	5.4	∞										
2	Isotropy	В	4.7	R	$\sqrt{3}$	1	1	1.6	1.6	∞										
3	hemisphere isotropy of the probe	В	2.8	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	0.85	0.85	∞										
4	spatial resolution	В	0	R	$\sqrt{3}$	1	1	0	0	∞										
5	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	6.4	6.4	∞										
6	Linearity	В	4.7	R	$\sqrt{3}$	1	1	0.5	0.5	∞										
7	Detection limit	В	1.0	N	1	1	1	1	1	∞										
8	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.6	0.6	∞										
9	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.0	0.0	∞										
10	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.0	1.0	∞										
11	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	1.7	1.7	∞										
12	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	1.7	1.7	∞										
13	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞										
	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞										
	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞										
16	Probe modulation response	В	2.3	R	$\sqrt{3}$	1	1	1.21	1.21	∞										
	Test sample related																			
1/	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	5										
1 10 1	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5										
19	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞										

	Phantom and set-up									
20	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
21	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
22	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1	0.28	9
23	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
24	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	0.31	0.25	9
25	Algorithm for corrceting SAR for deviations in permittivity and conductivity	В	1.9	N	1	1	1	1.9	1.9	8
Com	Combined standard uncertainty		$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					11.1	11.0	323
	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					22.3	22.1	

16.2 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

10.	16.2 Measurement Uncertainty for Fast SAR Tests (300MHZ~3GHZ)											
			Uncertainty	Probably		(Ci)	(Ci)	Std.	Std.	Degree		
No.	Error Description	Type	value	Distribution	Div.	1g	10g	Unc.	Unc.	of		
			value	Distribution		1g	Tog	(1g)	(10g)	freedom		
Mea	surement system											
1	Probe calibration	В	10.8	N	1	1	5.4	5.4	1	8		
2	Isotropy	В	2.8	R	1	1	1.6	1.6	1	8		
3	hemisphere isotropy	D	2.0	D	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	0.05	0.05	8		
3	of the probe	В	2.8	R	√3	νυ.5	νυ.5	0.85	0.85	&		
4	spatial resolution	В	0	R	$\sqrt{3}$	1	1	0	0	8		
5	Boundary effect	В	1.0	R	1	1	0.6	0.6	1	∞		
6	Linearity	В	4.7	R	1	1	2.7	2.7	1	∞		
7	Detection limit	В	1.0	R	1	1	0.6	0.6	1	8		
8	Readout electronics	В	0.3	R	1	1	0.3	0.3	1	8		
9	Response time	В	0.8	R	1	1	0.5	0.5	1	8		
10	Integration time	В	2.6	R	1	1	1.5	1.5	1	8		
11	RF ambient conditions-noise	В	0	R	1	1	0	0	1	8		
12	RF ambient conditions-reflection	В	0	R	1	1	0	0	1	8		
13	Probe positioned mech. Restrictions	В	0.4	R	1	1	0.2	0.2	1	8		
14	Probe positioning with respect to phantom shell	В	2.9	R	1	1	1.7	1.7	1	∞		
15	Post-processing	В	1.0	R	1	1	0.6	0.6	1	∞		
16	Fast SAR z-Approximation	В	7.0	R	1	1	4.0	4.0	1	8		

No.I15Z41179-SEM03 Page 45 of 134

17	Probe modulation response	В	2.3	R	$\sqrt{3}$	1	1	1.21	1.21	∞
	Test sample related									
18	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
19	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
20	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
	Phantom and set-up									
21	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
22	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
23	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
24	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
25	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	211
26	Algorithm for corrceting SAR for deviations in permittivity and conductivity	В	1.9	N	1	1	1	1.9	1.9	80
Combined standard uncertainty		<i>u</i> ' _c =	$= \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.1	12.4	843
Expanded uncertainty (confidence interval of 95 %)		1	$u_e = 2u_c$					26.2	25.9	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	Agilent E5071C	MY46103759	December 17,2014	One year	
02	Power meter	NRVD	101253	Marsh 5 2045	One year	
03	Power sensor	NRV-Z5	100333	March 5,2015	One year	
04	Signal Generator	E4438C	MY45095825	January 13, 2015	One year	
05	Amplifier	VTL5400	0404	No Calibration Requested		
06	BTS	E5515C	GB47460133	September 4, 2014	One year	
07	E-field Probe	SPEAG ES3DV3	3151	September 1, 2014	One year	
08	DAE	SPEAG DAE4	786	November 20, 2014	One year	
09	Dipole Validation Kit	SPEAG D900V2	1d054	November 5, 2014	One year	
10	Dipole Validation Kit	SPEAG D1800V2	2d147	November 6, 2014	One year	
11	Dipole Validation Kit	SPEAG D1900V2	5d088	November 5, 2014	One year	
12	Dipole Validation Kit	SPEAG D2450V2	5d088	November 3, 2014	One year	

^{***}END OF REPORT BODY***

ANNEX A Graph Results

GSM 850 Head Right

Date/Time: 2015-7-6 Electronics: DAE4 Sn786 Medium: Head 900 MHz

Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.94 S/m; ϵ_r = 41.17; ρ =

1000 kg/m³

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3151 ConvF(6.04, 6.04, 6.04);

Cheek High/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.454 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=10mm, dy=10mm, dz=5mm

Reference Value = 8.133 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.527 W/kg

SAR(1 g) = 0.416 W/kg; SAR(10 g) = 0.307 W/kg Maximum value of SAR (measured) = 0.425 W/kg

Fig.1 850MHz CH251

Fig. 1-1 Z-Scan at power reference point (850 MHz CH251)

GSM 850 Body Rear

Date/Time: 2015-7-10 Electronics: DAE4 Sn786 Medium: Body850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.984 S/m; ϵ_r = 53.419; ρ =

1000 kg/m³

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: 4 slot GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.08018

Probe: ES3DV3 - SN3151 ConvF(6.14, 6.14, 6.14);

Rear side High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.931 W/kg

Rear side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.149 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.915 W/kg; SAR(10 g) = 0.663 W/kg Maximum value of SAR (measured) = 0.923 W/kg

Fig.2 850 MHz CH251

Fig. 2-1 Z-Scan at power reference point (850 MHz CH251)

GSM 1900 Head Right

Date/Time: 2015-7-6 Electronics: DAE4 Sn786 Medium: 1900 Head

Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.395 S/m; ϵ_r = 40.569; ρ

 $= 1000 \text{ kg/m}^3$

0.011

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: GSM Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3151 ConvF(5.16, 5.16, 5.16);

Cheek Low/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.23 W/kg

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.257 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.932 W/kg; SAR(10 g) = 0.479 W/kg Maximum value of SAR (measured) = 1.26 W/kg

1.260
1.010
0.761
0.511
0.261

Fig.3 1900 MHz CH512

Fig. 3-1 Z-Scan at power reference point (1900 MHz CH512)

GSM 1900 Body Rear

Date/Time: 2015-7-10 Electronics: DAE4 Sn786 Medium: Body 1800

Medium parameters used: f = 1910 MHz; σ = 1.62 S/m; ε_r = 53.019; ρ = 1000 kg/m³

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: 4 slot GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2

Probe: ES3DV3 - SN3151 ConvF(4.77, 4.77, 4.77);

Rear side Low/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.744 W/kg

Rear side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.211 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.646 W/kg; SAR(10 g) = 0.394 W/kg Maximum value of SAR (measured) = 0.703 W/kg

Fig.4 1900 MHz CH512

Fig.4-1 Z-Scan at power reference point (1900 MHz CH512)

WCDMA 850 Head Right

Date/Time: 2015-7-6 Electronics: DAE4 Sn786 Medium: Head 900 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.938$ S/m; $\varepsilon_r = 41.195$; $\rho =$

1000 kg/m³

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: WCDMA Frequency: 846.6 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(6.04, 6.04, 6.04);

Cheek High/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.702 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.320 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.814 W/kg

SAR(1 g) = 0.637 W/kg; SAR(10 g) = 0.470 W/kg Maximum value of SAR (measured) = 0.660 W/kg

Fig.5 WCDMA 850 CH

Fig. 5-1 Z-Scan at power reference point (WCDMA 850 CH)

WCDMA 850 Body Rear

Date/Time: 2015-7-10 Electronics: DAE4 Sn786 Medium: Body850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.982 \text{ S/m}$; $\epsilon_r = 53.433$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: WCDMA Frequency: 846.6 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(6.14, 6.14, 6.14);

Rear side High/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.710 W/kg

Rear side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.239 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.794 W/kg; SAR(10 g) = 0.537 W/kg

Maximum value of SAR (measured) = 0.679 W/kg

Fig.5 WCDMA 850 CH4233

Fig. 5-1 Z-Scan at power reference point (WCDMA 850 CH4233)

WCDMA 1700 Head Left

Date/Time: 2015-7-7 Electronics: DAE4 Sn786 Medium: 1900 Head

Medium parameters used (interpolated): f = 1732.6 MHz; $\sigma = 1.289$ S/m; $\epsilon_r =$

41.089; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: WCDMA Frequency: 1732.6 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(5.44, 5.44, 5.44);

Cheek Middle/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.15 W/kg

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.561 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.841 W/kg; SAR(10 g) = 0.525 W/kg

Maximum value of SAR (measured) = 0.876 W/kg

Fig.7 WCDMA 1700 CH1413

Fig. 7-1 Z-Scan at power reference point (WCDMA 1700 CH1413)

WCDMA 1700 Body Rear

Date/Time: 2015-7-10 Electronics: DAE4 Sn786 Medium: Body 1800

Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.473$ S/m; $\epsilon_r =$

53.468; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: WCDMA Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(5.03, 5.03, 5.03);

Rear side High/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.03 W/kg

Rear side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.726 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.680 W/kg Maximum value of SAR (measured) = 1.26 W/kg

Fig.8 WCDMA 1700 CH1513

Fig. 8-1 Z-Scan at power reference point (WCDMA1700 CH1513)

WCDMA 1900 Head Right

Date/Time: 2015-7-6 Electronics: DAE4 Sn786 Medium: 1900 Head

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.397 \text{ S/m}$; $\epsilon_r = 40.561$; $\rho = 1000$

kg/m³

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: WCDMA Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(5.16, 5.16, 5.16);

Cheek High/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.13 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.145 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 2.17 W/kg

SAR(1 g) = 0.852 W/kg; SAR(10 g) = 0.430 W/kg

Maximum value of SAR (measured) = 0.894 W/kg

Fig.9 WCDMA1900 CH9538

Fig. 9-1 Z-Scan at power reference point (WCDMA1900 CH9538)

WCDMA 1900 Body Rear

Date/Time: 2015-7-10 Electronics: DAE4 Sn786

Medium: 1900 Body

Medium parameters used: f = 1880 MHz; $\sigma = 1.522$ S/m; $\epsilon_r = 50.841$; $\rho = 1000$

kg/m³

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: WCDMA Frequency: 1880 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(4.77, 4.77, 4.77);

Rear side High/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.885 W/kg

Rear side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.418 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.975 W/kg; SAR(10 g) = 0.545 W/kg

Maximum value of SAR (measured) = 0.946 W/kg

Fig.10 WCDMA1900 CH9538

Fig. 10-1 Z-Scan at power reference point (WCDMA1900 CH9538)

Wifi 802.11b Head Left

Date/Time: 2015-7-11 Electronics: DAE4 Sn786 Medium: Head 2450

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.863 \text{ S/m}$; $\epsilon_r = 39.377$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: WiFi Frequency: 2437 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(4.71, 4.71, 4.71);

Cheek High/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.397 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.040 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.692 W/kg

SAR(1 g) = 0.324 W/kg; SAR(10 g) = 0.173 W/kg

Maximum value of SAR (measured) = 0.333 W/kg

Fig.11 2450 MHz CH11

Fig. 11-1 Z-Scan at power reference point (2450 MHz CH11)

Wifi 802.11b Body Rear

Date/Time: 2015-7-8 Electronics: DAE4 Sn786 Medium: Body 2450

Medium parameters used: f = 2462 MHz; σ = 1.993 S/m; ϵ $_{r}$ = 51.249; ρ = 1000

kg/m³

Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: WiFi Frequency: 2462 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(4.42, 4.42, 4.42);

Rear side High/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.221 W/kg

Rear side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.846 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.198 W/kg; SAR(10 g) = 0.110 W/kg

Maximum value of SAR (measured) = 0.216 W/kg

Fig.12 2450 MHz CH11

Fig. 12-1 Z-Scan at power reference point (2450 MHz CH11)

ANNEX B System Verification Results

835MHz

Date/Time: 2015-7-6 Electronics: DAE4 Sn786 Medium: Head 900 MHz

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.928$ S/m; $\varepsilon_r = 41.364$; $\rho = 1000$ kg/m³

Ambient Temperature:23.3°C Liquid Temperature:22.8°C

Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(6.04, 6.04, 6.04);

GSM835 Head/Area Scan (61x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Fast SAR: SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.56 W/kg

Maximum value of SAR (interpolated) = 2.68 W/kg

GSM835 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.127 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.88 W/kg

SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 2.68 W/kg

Fig.B.1 validation 835MHz 250mW

Date/Time: 2015-7-10 Electronics: DAE4 Sn786 Medium: Body 900 MHz

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.933$ S/m; $\varepsilon_r = 53.231$; $\rho = 1000$ kg/m³

Ambient Temperature:23.0°C Liquid Temperature:22.5°C

Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(6.14, 6.14, 6.14);

Configuration/ GSM835 Body/Area Scan (61x181x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Fast SAR: SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.48 W/kg

Maximum value of SAR (interpolated) = 2.57 W/kg

Configuration/ GSM835 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 52.375 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.62 W/kg

Fig.B.2 validation 835MHz 250mW

Date/Time: 2015-7-7 Electronics: DAE4 Sn786 Medium: Head 1800 MHz

Medium parameters used: f = 1800 MHz; σ = 1.41 S/m; ε_r = 40.652; ρ = 1000 kg/m³

Ambient Temperature:23.5°C Liquid Temperature:23.0°C

Communication System: CW_TMC Frequency: 1800 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(5.44, 5.44, 5.44);

GSM1800 Head/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Fast SAR: SAR(1 g) = 9.38 W/kg; SAR(10 g) = 4.91 W/kg

Maximum value of SAR (interpolated) = 11.5 W/kg

GSM1800 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.632 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.42 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 10.6 W/kg

Fig.B.3 validation 1900MHz 250mW

Date/Time: 2015-7-10 Electronics: DAE4 Sn786 Medium: Body 1800 MHz

Medium parameters used: f = 1800 MHz; σ = 1.494 S/m; ϵ_r = 52.172; ρ = 1000 kg/m³

Ambient Temperature:23.2°C Liquid Temperature:22.5°C

Communication System: CW_TMC Frequency: 1800 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(5.03, 5.03, 5.03);

GSM1800 Body/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Fast SAR: SAR(1 g) = 9.89W/kg; SAR(10 g) = 5.13W/kg

Maximum value of SAR (interpolated) = 11.7 W/kg

GSM1800 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.133 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.21 W/kg Maximum value of SAR (measured) = 10.9 W/kg

Fig.B.4 validation 1900MHz 250mW

Date/Time: 2015-7-6 Electronics: DAE4 Sn786 Medium: 1900 Head

Medium parameters used: f = 1900 MHz; $\sigma = 1.409 \text{ S/m}$; $\varepsilon_r = 40.368$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:23.5°C Liquid Temperature:23.0°C

Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(5.16, 5.16, 5.16);

GSM1900 Head/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Fast SAR: SAR(1 g) = 10.0 W/kg; SAR(10 g) = 5.09 W/kg

Maximum value of SAR (interpolated) = 10.5 W/kg

GSM1900 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.703 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 11.5 W/kg

Fig.B.3 validation 1900MHz 250mW

Date/Time: 2015-7-10 Electronics: DAE4 Sn786 Medium: 1900 Head

Medium parameters used: f = 1900 MHz; σ = 1.556 S/m; ϵ_r = 51.187; ρ = 1000 kg/m³

Ambient Temperature:23.0°C Liquid Temperature:22.5°C

Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(4.77, 4.77, 4.77);

GSM1900 Body/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Fast SAR: SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.06 W/kg

Maximum value of SAR (interpolated) = 10.9 W/kg

GSM1900 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.341 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 19.5 W/kg

SAR(1 g) = 9.91 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 11.1 W/kg

Fig.B.4 validation 1900MHz 250mW

Date/Time: 2015-7-11 Electronics: DAE4 Sn786 Medium: Head 2450

Medium parameters used: f = 2450 MHz; σ = 1.874 S/m; ϵ_r = 37.816; ρ = 1000 kg/m³

Ambient Temperature:22.6°C Liquid Temperature:22.1°C

Communication System: CW_TMC Frequency: 2450 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(4.71, 4.71, 4.71);

Wifi 2450 Head/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Fast SAR: SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.98 W/kg

Maximum value of SAR (interpolated) = 15.4 W/kg

Wifi 2450 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.057 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 15.0 W/kg

Fig.B.5 validation 2450MHz 250mW

Date/Time: 2015-7-8 Electronics: DAE4 Sn786 Medium: Head 2450

Medium parameters used: f = 2450 MHz; σ = 1.976 S/m; ϵ_r = 51.275; ρ = 1000 kg/m³

Ambient Temperature:22.6°C Liquid Temperature:22.1°C

Communication System: CW_TMC Frequency: 2450 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF(4.42, 4.42, 4.42);

Wifi 2450 Body/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Fast SAR: SAR(1 g) = 12.89 W/kg; SAR(10 g) = 5.85 W/kg

Maximum value of SAR (interpolated) = 15.7 W/kg

Wifi 2450 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.365 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.05 W/kgMaximum value of SAR (measured) = 15.0 W/kg

Fig.B.6 validation 2450MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification

Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
835	Head	2.46	2.47	-0.40
835	Body	2.40	2.41	-0.41
1800	Head	9.39	9.41	-0.21
1800	Body	9.59	9.65	-0.62
1900	Head	10.1	10.2	-0.98
1900	Body	9.81	9.89	-0.81
2450	Head	13.1	13.2	-0.76
2450	Body	12.89	13	-0.85

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.