Schweitzer Engineering Laboratories, Inc.

RadioRanger SEL-8310

February 20, 2007

Report No. SCHW0069.3

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2007 Northwest EMC, Inc

Certificate of Test

Issue Date: February 20, 2007 Schweitzer Engineering Laboratories, Inc. Model: RadioRanger SEL-8310

Emissions				
Test Description	Specification	Test Method	Pass	Fail
Field Strength of Fundamental	FCC 15.249:2006	ANSI C63.4:2003	\boxtimes	
Field Strength of Spurious Emissions	FCC 15.249:2006	ANSI C63.4:2003	\boxtimes	

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
ADU.K.P
Greg Kiemel, Director of Engineering

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

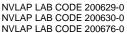
Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.


CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TUV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland, This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

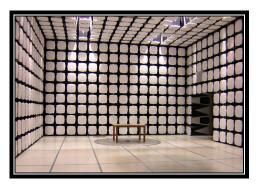
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: C-2094 and R-1943, Sultan: R-871, C-1784, and T-294).*

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>

BSMI



NEMKO

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Schweitzer Engineering Laboratories, Inc.	
Address:	2350 NE Hopkins Court	
City, State, Zip:	Pullman, WA 99163	
Test Requested By:	Witold Teller	
Model:	RadioRanger SEL-8310	
First Date of Test:	February 8, 2007	
Last Date of Test:	February 13, 2007	
Receipt Date of Samples:	February 7, 2007	
Equipment Design Stage:	Production	
Equipment Condition:	No Damage	

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

The RadioRanger 8310 is a 915 MHz radio transceiver, which uses either a short coaxial monopole, or a detachable 1/4 wave stub antenna with magnet that can be mounted on a truck roof-top.

Testing Objective:

Seeking TCB authorization under 15.249.

CONFIGURATION 3 SCHW0069

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT - 8310 integral antenna	Schweitzer Engineering Laboratories, Inc.	RadioRanger SEL-8310	NWEMC-7		

CONFIGURATION 4 SCHW0069

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT - 8310 integral antenna	Schweitzer Engineering Laboratories, Inc.	RadioRanger SEL-8310	NWEMC-7		
1/4 wave stub mobile antenna	Schweitzer Engineering Laboratories, Inc.	Unknown	Unknown		

	Equipment modifications				
Item	Date	Test	Modification	Note	Disposition of EUT
1	2/8/2007	Field Strength of Fundamental	Modified from delivered configuration. Initial or No Modification	Adjusted power down to a customer power setting of 6. Modification done by Customer.	EUT remained at Northwest EMC following the test.
2	2/13/2007	Field Strength of Spurious Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

EMC FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION
SEL-8310 with Integral antenna, Typical modulation, Low Channel
SEL-8310 with Integral antenna, Typical modulation, Mid Channel
SEL-8310 with Integral antenna, Typical modulation, High Channel
SEL-8310 with External antenna, Typical modulation, Low Channel
SEL-8310 with External antenna, Typical modulation, Mid Channel
SEL-8310 with External antenna, Typical modulation, High Channel

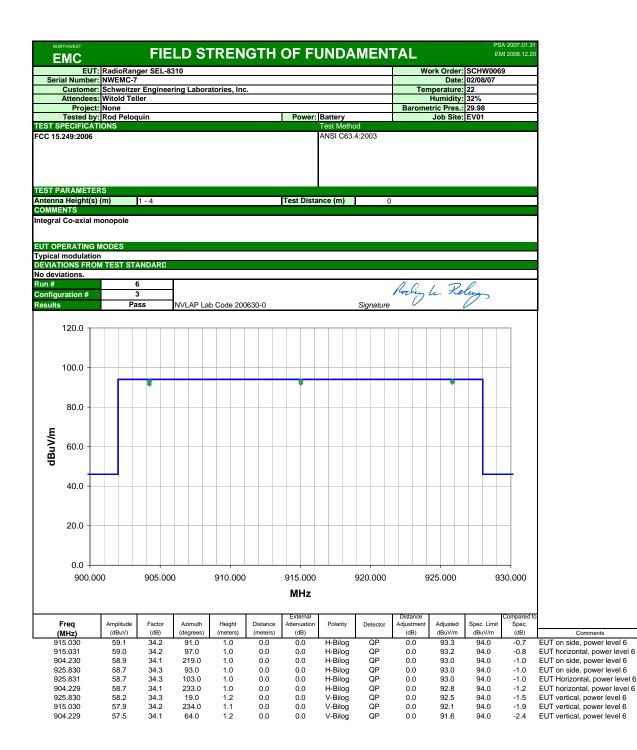
POWER SETTINGS INVESTIGATED

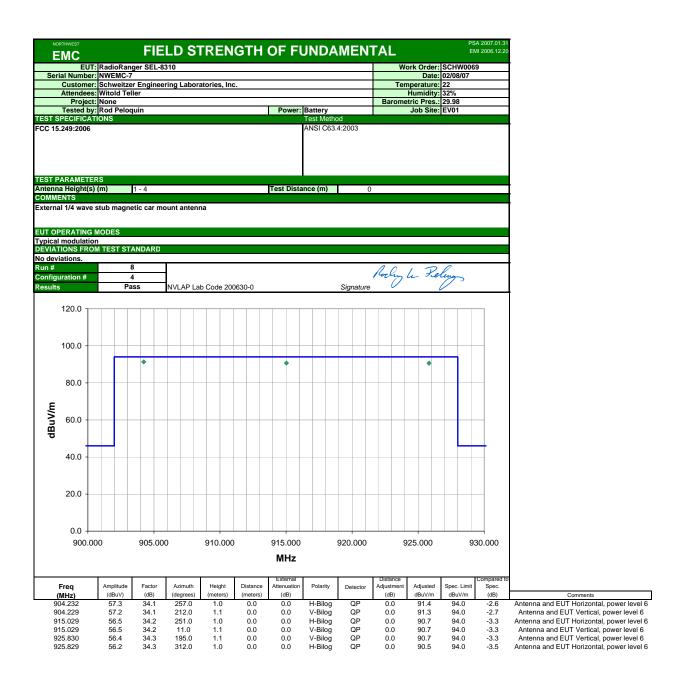
Battery

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
EV01 cables c,g, h			EVA	12/29/2006	13

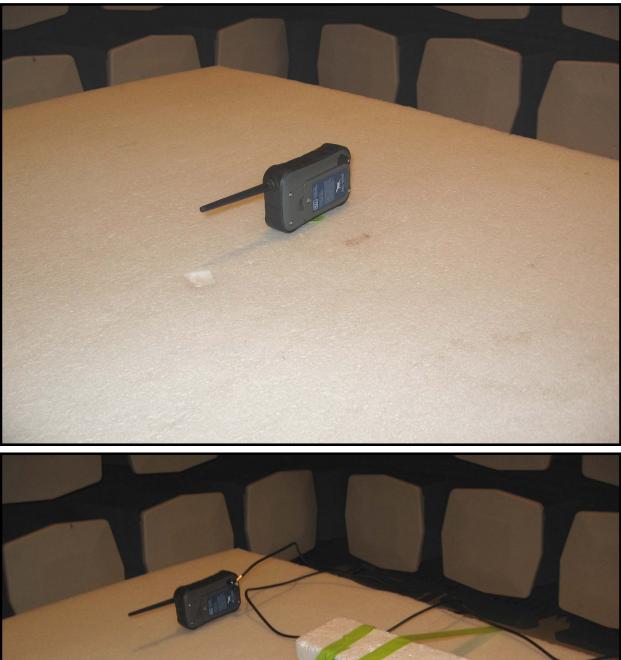

Fre	equency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
Measurer	Above 1000 1000.0 N/A 1000.0 Measurements were made using the bandwidths and detectors specified. No video filter was used.			


MEASUREMENT UNCERTAINTY

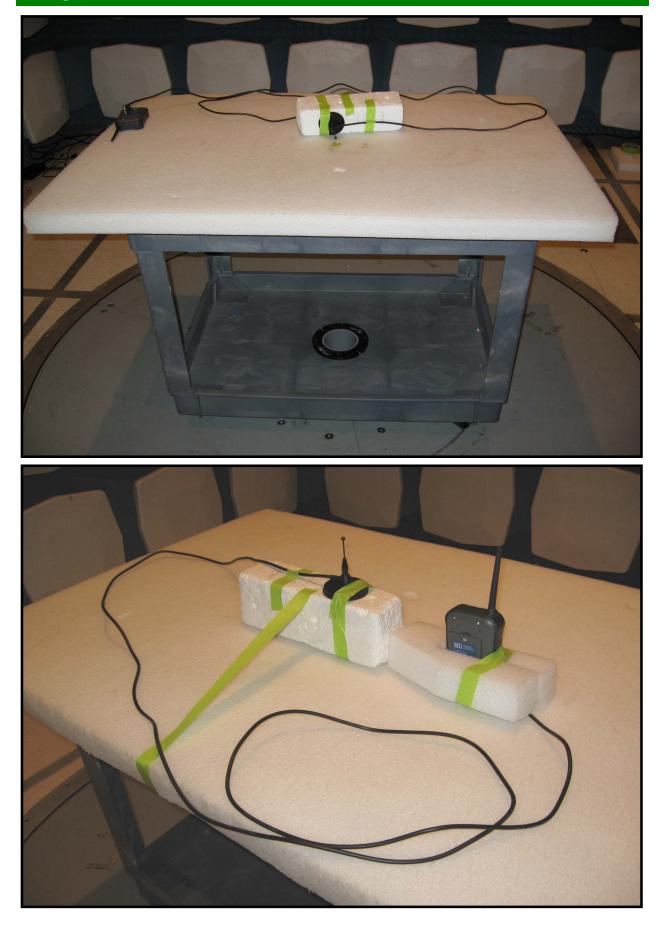
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

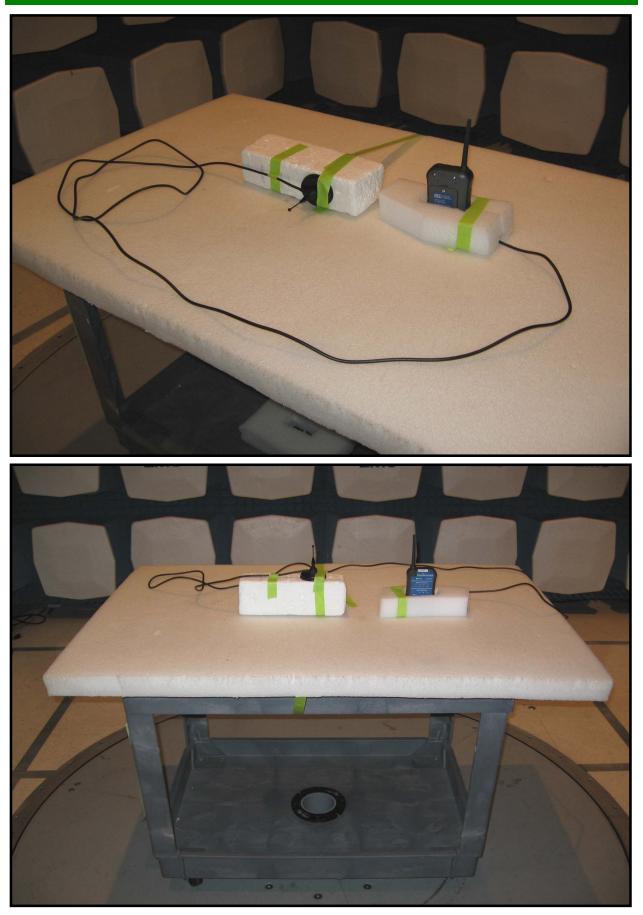
The antennas to be used with the EUT were tested. The EUT was transmitting and/or receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).

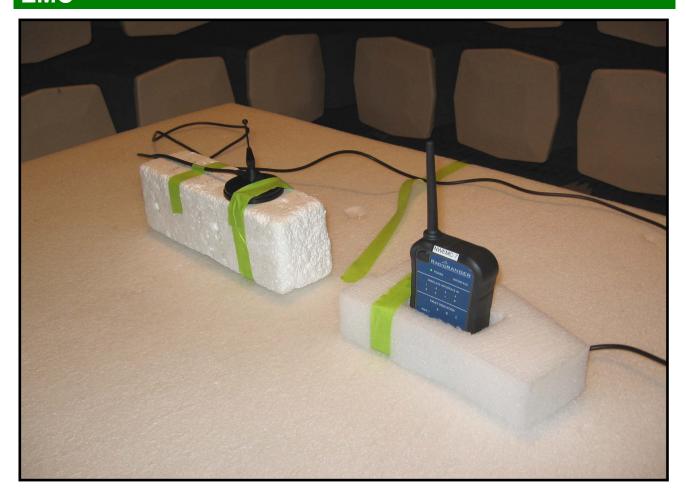


FIELD STRENGTH OF FUNDAMENTAL



FIELD STRENGTH OF FUNDAMENTAL




FIELD STRENGTH OF FUNDAMENTAL

FIELD STRENGTH OF FUNDAMENTAL

FIELD STRENGTH OF FUNDAMENTAL

EMC FIELD STRENGTH OF SPURIOUS EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Integral antenna, typical modulation, high channel	
Integral antenna, typical modulation, low channel	
Integral antenna, typical modulation, mid channel	
External antenna, typical modulation, high channel	
External antenna, typical modulation, low channel	
External antenna, typical modulation, mid channel	

POWER SETTINGS INVESTIGATED

Battery

FREQUENCY RANGE INVESTIGATED				
Start Frequency	30 MHz	Stop Frequency	10 GHz	

SAMPLE CALCULATIONS

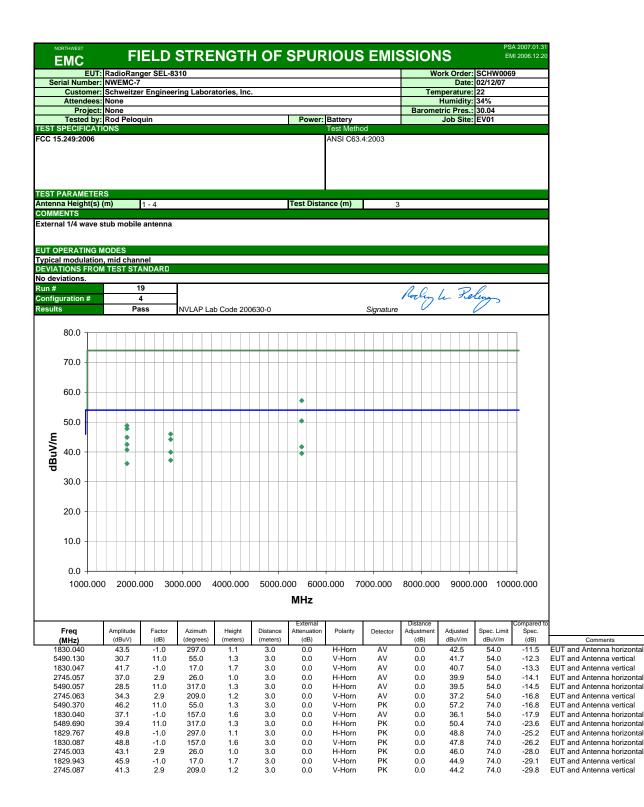
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

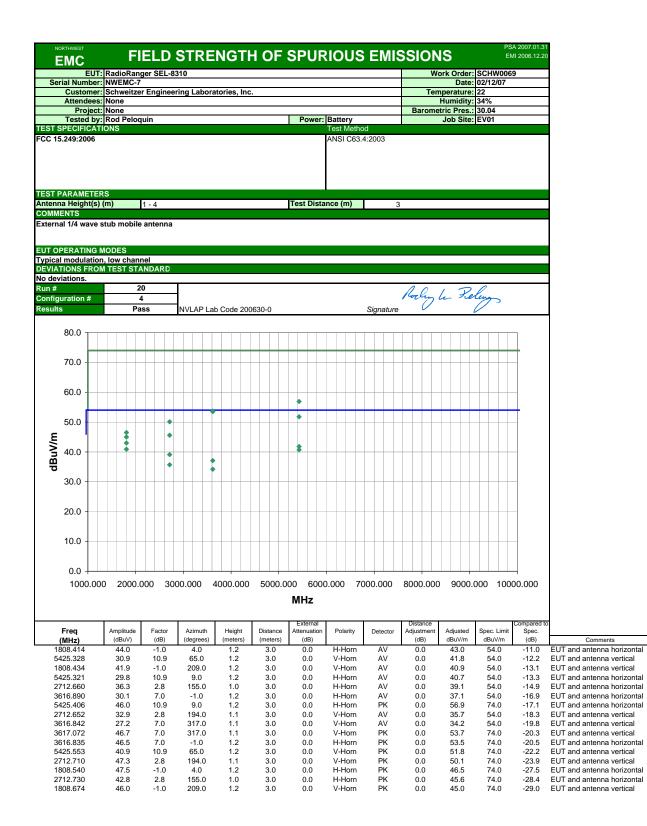
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	8/29/2006	13
Low Pass Filter 0-425 MHz	Micro-Tronics	LPM50003	LFB	12/29/2006	13
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
Pre-Amplifier	Miteq	AM-1616-1000	AOL	12/29/2006	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	12/29/2006	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	12
High Pass Filter 1.2 - 18 GHz	Micro-Tronics	HPM50108	HFV	12/29/2006	13
EV01 cables c,g, h			EVA	12/29/2006	13
EV01 cables g,h,j			EVB	12/29/2006	13

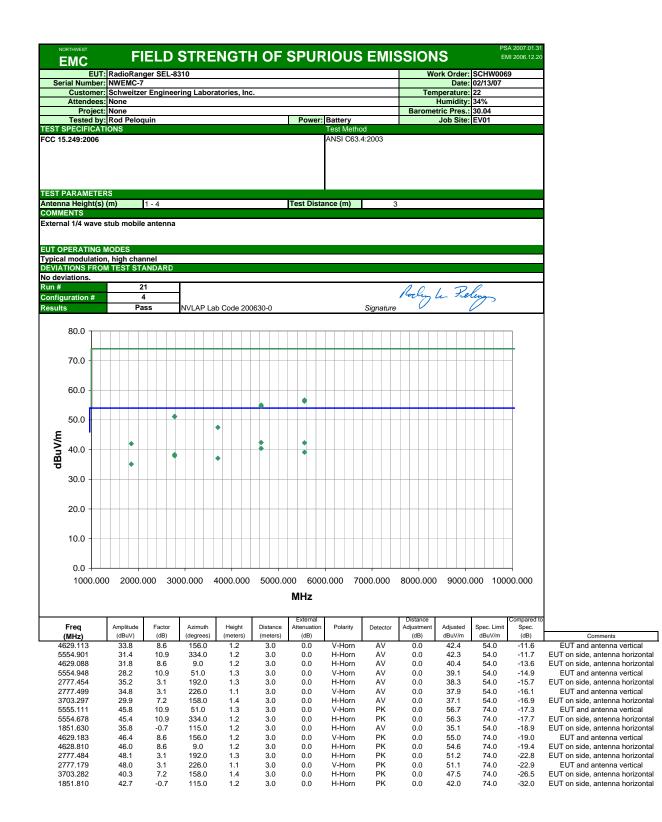
MEASUREMENT BANDWIDTHS

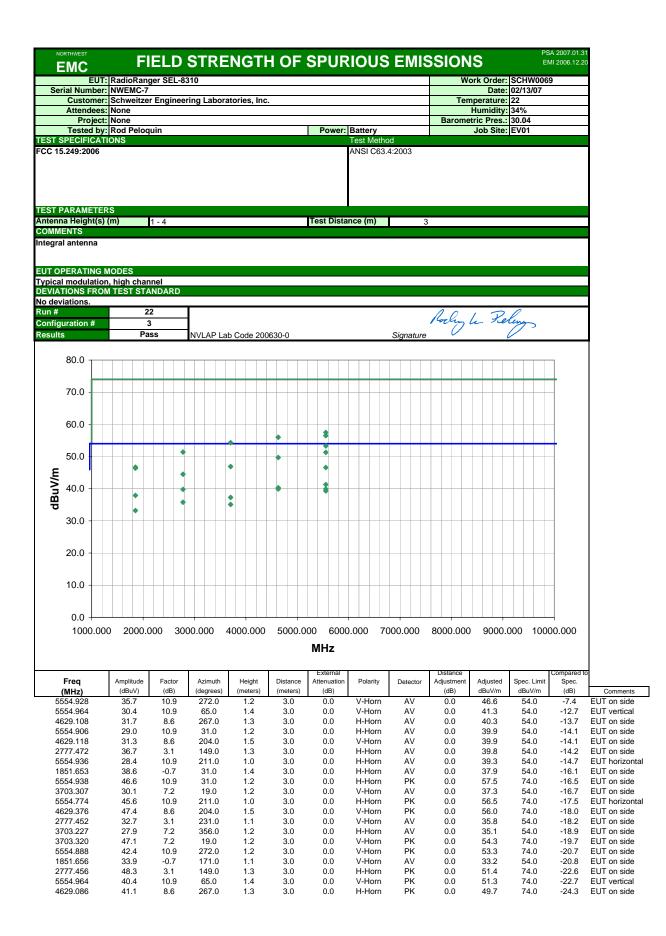
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
	(MHz)	(kHz)	(kHz)	(kHz)		
	0.01 - 0.15	1.0	0.2	0.2		
	0.15 - 30.0	10.0	9.0	9.0		
	30.0 - 1000	100.0	120.0	120.0		
	Above 1000	1000.0	N/A	1000.0		
М	easurements were made usir	ng the bandwidths and det	ectors specified. No video filte	r was used.		

MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.


	THWEST MC		F	IELD	ST	RE	NGT	H OF	SPl	JRIOL	JS EMI	SSION	IS		SA 2007.01.31 MI 2006.12.20
		T: Rad	ioRan	ger SEL-8	3310							W	ork Order:	SCHW006	59
	al Numbe	er: NWI	EMC-7			_	-						Date	02/12/07	
				er Enginee	ering La	abora	atories, In	C.				Ten	nperature:		
	Attendee	es: Non										Barome	Humidity: etric Pres.:		
	Tested b			nuin					Pov	ver: Battery	/	Baronie	Job Site:		
	PECIFICA			14111					101	Test M			UCD ONC		
CC 15.:	249:2006	3								ANSI C	63.4:2003				
	ARAMET Height(1 - 4					Test D	istance (m)	3			
OMME		-/(/										-			
tegral	antenna														
	ERATING		S												
	modulati														
EVIATI	IONS FR		ST ST	ANDARD											
o devia	ations.			7	-							1		0	
un #	notion "	_		17 3	-							Rocky	4 Re	lena	
onfigu esults	ration #			3 ASS			b Code 20	0630.0			Signature	0		\square	
suits			Ρà	100	INVLA	ur Läl		0030-0			Signature	-		V	
	120.0														
	120.0														
	100.0 +														
	80.0 -	_				-								+	
Е															
dBuV/m	60.0 -														
ВС	00.0														
Р															
	- +	_													
	40.0 +														
		•												*	
	20.0 +														
	0.0 +														
		000		005 00	0		010 00	h	015 0	00	020 000	<i>.</i>	25 000	·	20,000
	900.0	000		905.00	0		910.00	J	915.0	100	920.000	5	925.000	5	30.000
									MH	z					
				r	1				Exterr			Distance		1	Compared to
								Distance	Attenua	tion Polari	ty Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	req		olitude	Factor	Azim		Height				-	(ID	10.111	/ ·=·
(N	/Hz)	(d	BuV)	(dB)	(degr	rees)	(meters)	(meters)	(dB)		(dB)	dBuV/m	dBuV/m	(dB)
(N 92	MHz) 8.688	(d	BuV) 9.2	(dB) 13.1	(degr 254	rees) 4.0	(meters) 1.6	(meters) 3.0	(dB)	H-Bild	og QP	0.0	32.3	46.0	-13.7
<u>(N</u> 92 90	/Hz)	(d 1 1	BuV)	(dB)	(degr	rees) 4.0 3.0	(meters)	(meters)	(dB	H-Bild	og QP og QP				

	THWEST MC		F	-IE	LD	ST	RE	NG	STH	10	F	SP	UF	RIOU	S E	MI	SSION	IS		PSA 2007.01.3 ⁻ EMI 2006.12.20
		T: Ra	dioRa	inger \$	SEL-83	310											W	ork Order	: SCHW0	069
Seria	I Numbe																		: 02/12/07	
	Custome				gineer	ring La	abora	atories	s, Inc.								Ter	nperature		
ŀ	Attendee																	Humidity		
	Projec																Barome	etric Pres.		
	Tested b			oquin								Pe	ower:	Battery				Job Site	: EV01	
	ECIFICA 49:2006		s											Test Met						
56 13.2	.49.2000													ANSI C6	5.4.20	03				
	RAMET			1 - 4	1							Test	Diete	ince (m)			2			
OMMEN	Height(s	s) (m)		1 - 2	ł							Test	DISta	ince (m)			3			
xternal	magneti			obile a	antenn	a														
ypical n	RATING	on																		
o devia			313	TAND	AKU															
un #				18													10	1 0	0	
	ation #			4		1											Rochy	he he	leng	
esults			F	Pass		NVLA	PLa	b Cod	e 200	630-0					Sia	nature	, 0		V	
Joanno							∟a		00	2000					oig				-	
4	120.0 -																			
	120.0 T																			
1	100.0 +										_									
			-												_					
	80.0 +		-		_			_			-	_								+
c																				
dBuV/m																				
3	60.0 +									_										
<u>m</u>																				
0																				
	Ť																			
	40.0 +		-								+	-								+ 1
																				₹
	20.0 +						-				1									
	0.0 +			-									-							
	900.0	000		90	05.000)		910	.000			915	.000		920	0.000	ç	25.000		930.000
												м	Hz							
	<u>.</u>																			
F	req	Δ,	nplitude	, F	actor	Azin	nuth	Hei	aht	Distar	nce		ernal uation	Polarity	P	etector	Distance Adjustment	Adjusted	Spec. Lin	Compared to nit Spec.
	IHz)		dBuV)		(dB)	(degi		(met		(mete			iB)	. Sidirity		CIECIUI	(dB)	dBuV/m	dBuV/m	
	9.022		17.7		3.1	69		1.		3.0			.0	V-Bilog	1	QP	0.0	30.8	46.0	-15.2
	.550		17.4		3.0	25		1.		3.0			.0	V-Bilog		QP	0.0	30.4	46.0	-15.6
901	1.550		17.4	1	3.0	239	9.0	1.	2	3.0)	0	.0	H-Bilog	3	QP	0.0	30.4	46.0	-15.6
	9.043		16.8		3.1	11		2.		3.0			.0	H-Bilog		QP	0.0	29.9	46.0	-16.1
															•					

	ORTHWEST	F	ELD	STRE	NGT	H OF	SPUR	RIOUS		SSION	S		SA 2007.01.31 MI 2006.12.20
		RadioRan	ger SEL-8	310						Wo	ork Order:	SCHW006	69
Se	rial Number:									Date: 02/13/07 Temperature: 22			
	Attendees:		er ⊨nginee	ring Labora	atories, ind	J.					perature: Humidity:		
	Project:	None									tric Pres.:	30.04	
1-81-	Tested by: SPECIFICAT	Eric Gree	nwood				Power:	Battery	ad		Job Site:	EV01	
	SPECIFICAT 5.249:2006							Test Mether ANSI C63					
	PARAMETER na Height(s)		1 - 4				Test Dista	ance (m)	3	3			
COMM		()	1 - 4				Tool Diole			,			
Integra	al antenna												
EUT O	PERATING I	MODES											
Туріса	al modulation	n, mid char											
	TIONS FROM viations.	M TEST ST	ANDARD										
Run #		2	3										
	guration #		3										
Result	ts	Pa	ISS	NVLAP La	b Code 200	0630-0			Signature				
	80.0												_
	70.0												
1	10.0]
1	60.0												\neg
1													4
	50.0	+					*						_
٦						*							
l X	10.0												
dBuV/m	40.0	•				•							
σ													
1	30.0												-
1													
	20.0												_
	10.0												
1	10.0												
1													
	0.0												
	1000.00	0 2000.0	000 300	00.000 4	4000.000	5000.0	00 6000 MHz	0.000 70	000.000	8000.000	9000.	UUU 100	000.000
	Freq	Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	490.138 490.095	29.2 29.0	11.0 11.0	-1.0 128.0	1.7 0.9	3.0 3.0	0.0 0.0	H-Horn V-Horn	AV AV	0.0 0.0	40.2 40.0	54.0 54.0	-13.8 -14.0
2	745.075	36.3	2.9	126.0	1.0	3.0	0.0	H-Horn	AV	0.0	39.2	54.0	-14.8
	575.148	29.9	8.2	192.0	1.3	3.0	0.0	H-Horn	AV	0.0	38.1	54.0	-15.9
	575.118 745.080	29.8 34.1	8.2 2.9	204.0 191.0	1.2 1.6	3.0 3.0	0.0 0.0	V-Horn V-Horn	AV AV	0.0 0.0	38.0 37.0	54.0 54.0	-16.0 -17.0
1	830.042	35.5	-1.0	154.0	1.6	3.0	0.0	V-Horn	AV	0.0	34.5	54.0	-19.5
	489.952 489.998	40.1 38.5	11.0 11.0	128.0 -1.0	0.9 1.7	3.0 3.0	0.0 0.0	V-Horn H-Horn	PK PK	0.0 0.0	51.1 49.5	74.0 74.0	-22.9 -24.5
	469.996 574.998	40.3	8.2	204.0	1.7	3.0	0.0	V-Horn	PK	0.0	49.5 48.5	74.0	-24.5
4	575.030	39.3	8.2	192.0	1.3	3.0	0.0	H-Horn	PK	0.0	47.5	74.0	-26.5
	829.905 745.068	27.6 41.9	-1.0 2.9	338.0 126.0	1.0 1.0	3.0 3.0	0.0 0.0	H-Horn H-Horn	AV PK	0.0 0.0	26.6 44.8	54.0 74.0	-27.4 -29.2
	745.068	41.9	2.9 2.9	126.0	1.6	3.0	0.0	V-Horn	PK	0.0	44.8 44.1	74.0 74.0	-29.2 -29.9
	829.835	42.0	-1.0	154.0	1.6	3.0	0.0	V-Horn	PK	0.0	41.0	74.0	-33.0

-1.0

39.2

1830.148

1.0

338.0

3.0

0.0

0.0

38.2

74.0

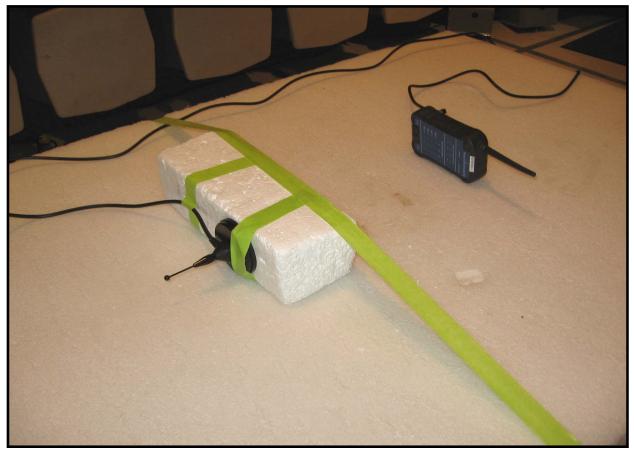
-35.8

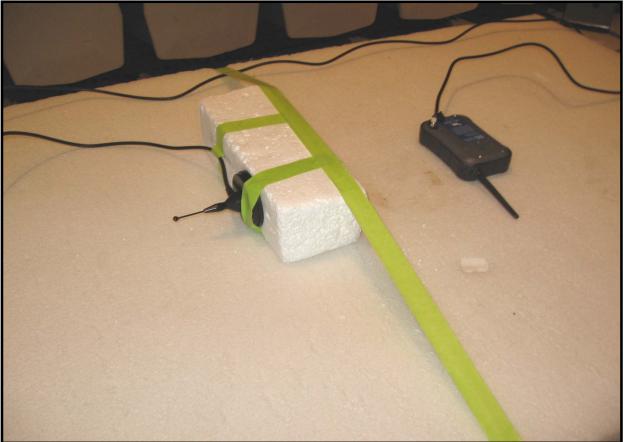
PK PK PK PK

H-Horn

	DRTHWEST	FI	ELD	STRE	NGT	H OF	SPUR		S EMI	SSION	IS		SA 2007.01.31 VI 2006.12.20
	EUT	RadioRang	ger SEL-8	3310						W	ork Order:	SCHW006	9
Ser	ial Number	: NWEMC-7										02/13/07	-
		r: Schweitzer	r Enginee	ering Labora	atories, Inc) .				Ter	nperature		
	Attendees									Damana	Humidity		
		t: None /: Eric Green	wood				Power	Battery		Barome	etric Pres.: Job Site:		
TEST S	SPECIFICA		wood				Tower.	Test Meth	od		JOD OILE.		
	5.249:2006							ANSI C63					
TEST P	PARAMETE	.PS											
	a Height(s		1 - 4				Test Dista	nce (m)		3			
COMM		/ (/								5			
Integra	l antenna												
EUT OF	PERATING	MODES											
		on, low chan	nel										
DEVIAT	TIONS FRO	M TEST STA											
	iations.										~		
Run #		24		_						E82			
Results	uration #	3 Pas							0	E84	Same		
Results	5	Fd	55	NVLAP La	b Code 200	0630-0			Signature) (
	100.0												
	120.0												
	100.0 -												
	80.0												_
													+
З.													
≥	60.0 -												
dBuV/m	00.0												
р										*			
				*		٠		•		•			
	40.0 -			i		•		•		•			-
						•		·					
	20.0												
	20.0												
	0.0 +												-
	1000.0	000										100	00.000
							NAL 1-						
							MHz						
							-						
	Freq	Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	-		(dB)	dBuV/m	dBuV/m	(dB)
	125.346	35.4	10.9	19.0	1.4	3.0	0.0	V-Horn	AV	0.0	46.3	54.0	-7.7
	125.324	31.5	10.9	19.0	1.1	3.0	0.0	H-Horn	AV	0.0	42.4	54.0 54.0	-11.6
	308.470 308.457	41.1 39.1	-1.0 -1.0	69.0 324.0	1.1 2.2	3.0 3.0	0.0 0.0	H-Horn V-Horn	AV AV	0.0 0.0	40.1 38.1	54.0 54.0	-13.9 -15.9
	712.664	34.9	2.8	211.0	1.1	3.0	0.0	V-Horn	AV	0.0	37.7	54.0	-16.3
	616.888	30.6	7.0	78.0	1.1	3.0	0.0	V-Horn	AV	0.0	37.6	54.0	-16.4
	125.411	40.4	10.9	19.0	1.1	3.0	0.0	H-Horn	PK	0.0	51.3	74.0	-22.7
	125.210	39.0	10.9	19.0	1.4	3.0	0.0	V-Horn	PK	0.0	49.9	74.0	-24.1
	616.902 712.734	40.3 42.1	7.0 2.8	78.0 211.0	1.1 1.1	3.0 3.0	0.0 0.0	V-Horn V-Horn	PK PK	0.0 0.0	47.3 44.9	74.0 74.0	-26.7 -29.1
	308.584	42.1 45.4	2.8 -1.0	211.0 69.0	1.1	3.0 3.0	0.0 0.0	V-Horn H-Horn	PK PK	0.0	44.9 44.4	74.0 74.0	-29.1 -29.6
	308.492	43.9	-1.0	324.0	2.2	3.0	0.0	V-Horn	PK	0.0	42.9	74.0	-31.1

FIELD STRENGTH OF SPURIOUS EMISSIONS


FIELD STRENGTH OF SPURIOUS EMISSIONS



FIELD STRENGTH OF SPURIOUS EMISSIONS

Attestation by the Responsible Party

Regulatory authorities require the "Responsible Party" to retain the test report. The test report must include the name and signature of an official of the Responsible Party.

To satisfy this requirement, the Responsible Party should complete the following attestation and maintain a copy with the test report:

Test Report #:	Test Date(s):
Model(s):	Responsible Party:

As an official of the Responsible Party, I attest that the product tested is representative of all production units bearing the same Model number(s)

Name:	 Position:	
Signature:	 Date:	

Additional information regarding product labeling and user manual information can be found at www.nwemc.com.