

Schweitzer Engineering Laboratories, Inc.

SEL-FT50 FCC 15.207:2017 FCC 15.247:2017 902 - 928 MHz DTS Transceiver

Report # SCHW0215

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

Last Date of Test: March 7, 2017 Schweitzer Engineering Laboratories, Inc. Model: SEL-FT50

Radio Equipment Testing

 Standards
 Method

 Specification
 Method

 FCC 15.207:2017
 ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
7.8.2	Carrier Frequency Separation	No	N/A	Not required for DTS devices.
7.8.3	Number of Hopping Frequencies	No	N/A	Not required for DTS devices.
7.8.4	Dwell Time	No	N/A	Not required for DTS devices.
7.8.6	Band Edge Compliance - Hopping Mode	No	N/A	Not required for DTS devices.
11.6	Duty Cycle	Yes	Pass	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.2.2.4	Output Power	Yes	Pass	
11.10.3	Power Spectral Density	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	

Deviations From Test Standards

None

Approved By:

a

Rod Munro, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission – Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://portlandcustomer.element.com/ts/scope/scope.htm</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

FACILITIES

California	Minnesota	New York	Oregon	Texas	Washington			
Labs OC01-13	Labs MN01-08, MN10	Labs NY01-04	Labs EV01-12	Labs TX01-09	Labs NC01-05			
41 Tesla	9349 W Broadway Ave.	4939 Jordan Rd.	22975 NW Evergreen Pkwy	3801 E Plano Pkwy	19201 120 th Ave NE			
Irvine, CA 92618	Brooklyn Park, MN 55445	Elbridge, NY 13060	Hillsboro, OR 97124	Plano, TX 75074	Bothell, WA 98011			
(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600			
		NV	LAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
Innovation, Science and Economic Development Canada								
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1			
		BS	MI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
	VCCI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	N/A	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	0	0
AC Powerline Conducted Emissions (dB)	0	0

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Schweitzer Engineering Laboratories, Inc.
Address:	2350 NE Hopkins Court
City, State, Zip:	Pullman, WA 99163
Test Requested By:	Miralem Cosic
Model:	SEL-FT50
First Date of Test:	March 6, 2017
Last Date of Test:	March 7, 2017
Receipt Date of Samples:	March 6, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The FT50 Power Line Overhead Fault Detection sensor with a DTS radio operating in the 902 - 928 MHz band. If there is a fault on the power line the transmitter will send a message to an FR12 receiver. One FR12 receiver can listen to 12 FR50 units at a time. Each FT50 unit has its center frequency at a different frequency in the band. The center frequency is determined by the Unit ID and Network ID of the unit. FT50 also sends out a heartbeat message every 15-30 seconds.

Testing Objective:

Seeking to demonstrate compliance of the DTS radio under FCC 15.247:2017 for operation in the 902 - 928 MHz Band.

CONFIGURATIONS

Configuration SCHW0215-1

Software/Firmware Running during test				
Description	Version			
Energia MT	1.6.10E18			

EUT								
Description	Manufacturer	Model/Part Number	Serial Number					
Overhead Current Fault Indicator	Schweitzer Engineering Laboratories, Inc.	SEL-FT50	A01951775					

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
DC Power Supply	Schweitzer Engineering Laboratories, Inc.	SEL-9322	1130930786			

Remote Equipment Outside of Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop	Dell	Latitude E6540	None			
Development Board	Texas Instruments	None	None			

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
DC Power	No	1.0m	No	DC Power Supply	Overhead Current Fault Indicator			
AC Power	No	1.6m	No	AC Mains	DC Power Supply			
USB Cable	No	0.6m	No	Laptop	Development Board			

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT	
			Tested as	No EMI suppression	EUT remained at	
1	3/6/2017	Output Power	delivered to	devices were added or	Element following	
			Test Station.	modified during this test.	the test.	
		Band Edgo	Tested as	No EMI suppression	EUT remained at	
2	3/6/2017	Compliance	delivered to	devices were added or	Element following	
		Compliance	Test Station.	modified during this test.	the test.	
		Occupied	Tested as	No EMI suppression	EUT remained at	
3	3/6/2017	Bandwidth	delivered to	devices were added or	Element following	
		Danuwiutii	Test Station.	modified during this test.	the test.	
		Spurious	Tested as	No EMI suppression	EUT remained at	
4	3/6/2017	Conducted	delivered to	devices were added or	Element following	
		Emissions	Test Station.	modified during this test.	the test.	
		Power Speetral	Tested as	No EMI suppression	EUT remained at	
5	3/6/2017	Power Spectral	delivered to	devices were added or	Element following	
		Density	Test Station.	modified during this test.	the test.	
		Sourious Padiated	Tested as	No EMI suppression	EUT remained at	
6	3/6/2017		delivered to	devices were added or	Element following	
		LIIISSIOIIS	Test Station.	modified during this test.	the test.	
		Powerline	Tested as	No EMI suppression	Schodulod tecting	
7	3/7/2017	Conducted	delivered to	devices were added or	Scheduled testing	
		Emissions	Test Station.	modified during this test.	was completed.	

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
LISN	Solar Electronics	9252-50-R-24-BNC	LIM	9/23/2016	9/23/2017
Cable - Conducted Cable Assembly	Element	NC4, HHF, TYL	NC4A	5/6/2016	5/6/2017
Receiver	Rohde & Schwarz	ESCI	ARE	8/8/2016	8/8/2017

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

SCHW0215-1

MODES INVESTIGATED

Transmitting 100% Duty Cycle, FSK Modulation, Mid Channel 4, 917 MHz

EUT:	SEL-FT50				Work Order:	SCHW0215			
Serial Number:	A01951775				Date:	03/07/2017			
Customer:	Schweitzer E	ingineering	Laboratories, Inc.		Temperature:	25.8°C			
Attendees:	Miralem Cosi	ic			Relative Humidity:	24.1%			
Customer Project:	None			Bar. Pressure:	1018 mb				
Tested By:	Richard Mell	roth		Job Site:	NC05				
Power:	15VDC via 1	10VAC/60H	lz	Configuration:	SCHW0215-1				
TEST SPECIFICATIONS									
Specification:	Specification: Method:								
FCC 15.207:2017	FCC 15.207:2017 ANSI C63.10:2013								
TEST PARAMETERS									
Run #: 8		Line:	High Line		Add. Ext. Attenuation (dB): 0			
COMMENTS									
None									
EUT OPERATING MODES									
Transmitting 100%	Duty Cycle, FS	SK Modulati	on, Mid Channel 4, 917	' MHz					
DEVIATIONS FROM TEST STANDARD									
None									

Average Data - vs - Average Limit

RESULTS - Run #8

Quasi Peak Data - vs - Quasi Peak Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
0.260	17.1	20.6	37.7	61.4	-23.7					
0.153	20.1	20.8	40.9	65.8	-24.9					
29.529	10.0	22.9	32.9	60.0	-27.1					
7.131	8.8	21.0	29.8	60.0	-30.2					
24.501	6.6	22.4	29.0	60.0	-31.0					
0.389	6.2	20.6	26.8	58.1	-31.3					

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
29.529	6.5	22.9	29.4	50.0	-20.6
7.131	7.3	21.0	28.3	50.0	-21.7
24.501	4.4	22.4	26.8	50.0	-23.2
0.260	6.6	20.6	27.2	51.4	-24.2
0.389	1.7	20.6	22.3	48.1	-25.8
0.153	6.1	20.8	26.9	55.8	-28.9

CONCLUSION

Pass

Tested By

EUT:	SEL-FT50				Work Order:	SCHW0215			
Serial Number:	A01951775				Date:	03/07/2017			
Customer:	Schweitzer E	ingineering	Laboratories, Inc.		Temperature:	25.8°C			
Attendees:	Miralem Cos	ic			Relative Humidity:	24.1%			
Customer Project:	None				Bar. Pressure:	1018 mb			
Tested By:	Richard Mell	roth			Job Site:	NC05			
Power:	15VDC via 1	10VAC/60H	Ηz		Configuration:	SCHW0215-1			
TEST SPECIFICATIONS									
Specification: Method:									
FCC 15.207:2017 ANSI C63.10:2013									
TEST PARAME	TERS								
Run #: 9		Line:	Neutral	A	Add. Ext. Attenuation (dB): 0			
COMMENTS									
EUT OPERATING MODES									
Transmitting 100%	Duty Cycle, FS	SK Modulat	ion, Mid Channel 4, 91	7 MHz					
DEVIATIONS F	ROM TEST	STAND	ARD						

None

RESULTS - Run #9

	Peak Data - vs - Quasi Peak Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)						
2.582	12.9	20.7	33.6	56.0	-22.4						
0.799	12.1	20.7	32.8	56.0	-23.2						
0.698	12.0	20.7	32.7	56.0	-23.3						
3.034	11.8	20.8	32.6	56.0	-23.4						
2.269	11.7	20.7	32.4	56.0	-23.6						
4.183	11.5	20.8	32.3	56.0	-23.7						
1.956	11.5	20.7	32.2	56.0	-23.8						
2.068	11.5	20.7	32.2	56.0	-23.8						
2.351	11.5	20.7	32.2	56.0	-23.8						
4.082	11.4	20.8	32.2	56.0	-23.8						
4.250	11.4	20.8	32.2	56.0	-23.8						
2.948	11.3	20.8	32.1	56.0	-23.9						
4.605	11.3	20.8	32.1	56.0	-23.9						
2.112	11.3	20.7	32.0	56.0	-24.0						
0.725	11.2	20.7	31.9	56.0	-24.1						
3.086	11.1	20.8	31.9	56.0	-24.1						
3.437	11.2	20.7	31.9	56.0	-24.1						
1.042	11.2	20.6	31.8	56.0	-24.2						
1.269	11.1	20.7	31.8	56.0	-24.2						
1.366	11.1	20.7	31.8	56.0	-24.2						
3.702	11.0	20.8	31.8	56.0	-24.2						
0.463	11.8	20.6	32.4	56.6	-24.2						
3.403	11.0	20.7	31.7	56.0	-24.3						
1.307	10.9	20.7	31.6	56.0	-24.4						
2.407	10.9	20.7	31.6	56.0	-24.4						
2.441	10.9	20.7	31.6	56.0	-24.4						

Peak Data - vs - Average Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
2.582	12.9	20.7	33.6	46.0	-12.4					
0.799	12.1	20.7	32.8	46.0	-13.2					
0.698	12.0	20.7	32.7	46.0	-13.3					
3.034	11.8	20.8	32.6	46.0	-13.4					
2.269	11.7	20.7	32.4	46.0	-13.6					
4.183	11.5	20.8	32.3	46.0	-13.7					
1.956	11.5	20.7	32.2	46.0	-13.8					
2.068	11.5	20.7	32.2	46.0	-13.8					
2.351	11.5	20.7	32.2	46.0	-13.8					
4.082	11.4	20.8	32.2	46.0	-13.8					
4.250	11.4	20.8	32.2	46.0	-13.8					
2.948	11.3	20.8	32.1	46.0	-13.9					
4.605	11.3	20.8	32.1	46.0	-13.9					
2.112	11.3	20.7	32.0	46.0	-14.0					
0.725	11.2	20.7	31.9	46.0	-14.1					
3.086	11.1	20.8	31.9	46.0	-14.1					
3.437	11.2	20.7	31.9	46.0	-14.1					
1.042	11.2	20.6	31.8	46.0	-14.2					
1.269	11.1	20.7	31.8	46.0	-14.2					
1.366	11.1	20.7	31.8	46.0	-14.2					
3.702	11.0	20.8	31.8	46.0	-14.2					
0.463	11.8	20.6	32.4	46.6	-14.2					
3.403	11.0	20.7	31.7	46.0	-14.3					
1.307	10.9	20.7	31.6	46.0	-14.4					
2.407	10.9	20.7	31.6	46.0	-14.4					
2.441	10.9	20.7	31.6	46.0	-14.4					

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 100% Duty Cycle, FSK Modulation

CHANNELS TESTED

Low Channel 1, 904 MHz Mid Channel 4, 917 MHz High Channel 12, 926 MHz

POWER SETTINGS INVESTIGATED

15 VDC

CONFIGURATIONS INVESTIGATED

SCHW0215 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 12500 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFE	6/23/2016	12 mo
Filter - Low Pass	Micro-Tronics	LPM50003	LFE	10/27/2016	12 mo
Filter - Band Pass/Notch	K&L Microwave	3TNF-500/1000-N/N	HHO	5/6/2016	12 mo
Filter - Low Pass	Micro-Tronics	LPM50004	LFF	12/27/2016	12 mo
Filter - High Pass	Micro-Tronics	HPM50114	HFN	12/27/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYL	7/30/2015	24 mo
Antenna - Double Ridge	EMCO	3115	AHM	6/10/2016	24 mo
Antenna - Standard Gain	EMCO	3160-07	AHP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	PAB	7/15/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVZ	6/6/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOK	9/20/2016	12 mo
Cable	Element	Bilog Cables	NC1	8/3/2016	12 mo
Cable	Element	3115 Horn Cable	NC2	5/23/2016	12 mo
Cable	Element	Standard Gain Horn Cable	NC3	5/23/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHZ)	(KHZ)	(KHZ)	(KHZ)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

SPURIOUS RADIATED EMISSIONS

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
8138.117	37.2	15.2	1.0	168.0	3.0	0.0	Vert	AV	0.0	52.4	54.0	-1.6	Low Ch 1, EUT Flat
8138.233	35.7	15.2	2.5	166.0	3.0	0.0	Vert	AV	0.0	50.9	54.0	-3.1	Low Ch 1, EUT Horz
8134.175	35.2	15.2	2.4	138.0	3.0	0.0	Vert	AV	0.0	50.4	54.0	-3.6	Low Ch 1, EUT Vertical
8138.175	35.0	15.2	2.4	184.0	3.0	0.0	Horz	AV	0.0	50.2	54.0	-3.8	Low Ch 1, EUT Vertical
8138.150	34.8	15.2	1.6	203.0	3.0	0.0	Horz	AV	0.0	50.0	54.0	-4.0	Low Ch 1, EUT Horz
8134.175	33.2	15.2	3.0	278.0	3.0	0.0	Horz	AV	0.0	48.4	54.0	-5.6	Low Ch 1, EUT Flat
8251.467	51.6	-5.4	2.0	171.0	3.0	0.0	Horz	AV	0.0	46.2	54.0	-7.8	Mid Ch 4, EUT Flat
8251.125	50.6	-5.4	1.6	268.0	3.0	0.0	Vert	AV	0.0	45.2	54.0	-8.8	Mid Ch 4, EUT Vertical
8332.292	50.2	-5.3	1.6	277.0	3.0	0.0	Vert	AV	0.0	44.9	54.0	-9.1	High Ch 12, EUT Flat
2712.050	45.3	-0.5	1.0	323.0	3.0	0.0	Vert	AV	0.0	44.8	54.0	-9.2	Low Ch 1, EUT Flat
8332.200	49.3	-5.3	1.9	176.0	3.0	0.0	Horz	AV	0.0	44.0	54.0	-10.0	High Ch 12, EUT Vertical
7337.908	29.3	13.5	1.6	27.0	3.0	0.0	Vert	AV	0.0	42.8	54.0	-11.2	Mid Ch 4, EUT Flat
9042.300	47.0	-4.4	2.4	303.0	3.0	0.0	Horz	AV	0.0	42.6	54.0	-11.4	Low Ch 1, EUT Vertical
7337.867	29.1	13.5	1.7	167.0	3.0	0.0	Horz	AV	0.0	42.6	54.0	-11.4	Mid Ch 4, EUT Vertical
2711.958	42.7	-0.5	2.8	128.0	3.0	0.0	Horz	AV	0.0	42.2	54.0	-11.8	Low Ch 1, EUT Vertical
2751.008	42.3	-0.5	1.0	337.0	3.0	0.0	Vert	AV	0.0	41.8	54.0	-12.2	Mid Ch 4, EUT Flat
2777.400	40.9	-0.3	1.2	341.0	3.0	0.0	Vert	AV	0.0	40.6	54.0	-13.4	High Ch 12, EUT Flat
8134.217	45.0	15.2	1.0	168.0	3.0	0.0	Vert	PK	0.0	60.2	74.0	-13.8	Low Ch 1, EUT Flat

						External	Polarity/		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	0
2751 125	40.7	0.5	22	246.0	2.0	0.0	Horz	۸\/	0.0	40.2	54.0	12.9	Mid Ch 4 ELIT Vertical
8138 200	40.7	15.2	2.2	138.0	3.0	0.0	Vort	PK	0.0	40.2 59.0	74.0	-15.0	Low Ch 1 ELIT Vertical
8138 075	43.7	15.2	2.5	166.0	3.0	0.0	Vert	PK	0.0	58.9	74.0	-15.0	Low Ch 1, EUT Horz
8134.267	43.5	15.2	2.4	184.0	3.0	0.0	Horz	PK	0.0	58.7	74.0	-15.3	Low Ch 1, EUT Vertical
8136.675	43.0	15.2	1.6	203.0	3.0	0.0	Horz	PK	0.0	58.2	74.0	-15.8	Low Ch 1, EUT Horz
8136.083	42.9	15.2	3.0	278.0	3.0	0.0	Horz	PK	0.0	58.1	74.0	-15.9	Low Ch 1, EUT Flat
9042,300	40.4	-4.4	1.5	97.0	3.0	0.0	Vert	AV	0.0	36.0	54.0	-18.0	Low Ch 1, EUT Flat
2777.958	35.9	-0.3	1.6	342.0	3.0	0.0	Horz	AV	0.0	35.6	54.0	-18.4	High Ch 12, EUT Vertical
4631.200	27.7	7.7	3.1	183.0	3.0	0.0	Vert	AV	0.0	35.4	54.0	-18.6	High Ch 12, EUT Flat
4520.383	28.2	7.1	1.6	193.0	3.0	0.0	Horz	AV	0.0	35.3	54.0	-18.7	Low Ch 1, EUT Vertical
4585.308	27.7	7.4	1.6	182.0	3.0	0.0	Horz	AV	0.0	35.1	54.0	-18.9	Mid Ch 4, EUT Vertical
4631.417	27.2	7.7	1.6	5.0	3.0	0.0	Horz	AV	0.0	34.9	54.0	-19.1	High Ch 12, EUT Vertical
4585.975	27.4	7.4	1.6	134.0	3.0	0.0	Vert	AV	0.0	34.8	54.0	-19.2	Mid Ch 4, EUT Flat
4519.058	27.4	7.1	1.6	258.0	3.0	0.0	Vert	AV	0.0	34.5	54.0	-19.5	Low Ch 1, EUT Flat
7337.842	40.6	13.5	1.6	27.0	3.0	0.0	Vert	PK	0.0	54.1	74.0	-19.9	Mid Ch 4, EUT Flat
7336.733	40.0	13.5	1.7	167.0	3.0	0.0	Horz	PK	0.0	53.5	74.0	-20.5	Mid Ch 4, EUT Vertical
8251.342	57.6	-5.4	2.0	171.0	3.0	0.0	Horz	PK	0.0	52.2	74.0	-21.8	Mid Ch 4, EUT Flat
8251.133	56.8	-5.4	1.6	268.0	3.0	0.0	Vert	PK	0.0	51.4	74.0	-22.6	Mid Ch 4, EUT Vertical
8331.800	56.5	-5.3	1.6	277.0	3.0	0.0	Vert	PK	0.0	51.2	74.0	-22.8	High Ch 12, EUT Flat
8335.933	55.7	-5.4	1.9	176.0	3.0	0.0	Horz	PK	0.0	50.3	74.0	-23.7	High Ch 12, EUT Vertical
2711.550	50.0	-0.5	1.0	323.0	3.0	0.0	Vert	PK	0.0	49.5	74.0	-24.5	Low Ch 1, EUT Flat
9042.258	53.8	-4.4	2.4	303.0	3.0	0.0	Horz	PK	0.0	49.4	74.0	-24.6	Low Ch 1, EUT Vertical
2711.617	47.8	-0.5	2.8	128.0	3.0	0.0	Horz	PK	0.0	47.3	74.0	-26.7	Low Ch 1, EUT Vertical
2750.400	47.8	-0.5	1.0	337.0	3.0	0.0	Vert	PK	0.0	47.3	74.0	-26.7	Mid Ch 4, EUT Flat
2777.250	46.9	-0.3	1.2	341.0	3.0	0.0	Vert	PK	0.0	46.6	74.0	-27.4	High Ch 12, EUT Flat
2750.508	46.5	-0.5	2.2	246.0	3.0	0.0	Horz	PK	0.0	46.0	74.0	-28.0	Mid Ch 4, EUT Vertical
4631.433	38.2	7.7	1.6	5.0	3.0	0.0	Horz	PK	0.0	45.9	74.0	-28.1	High Ch 12, EUT Vertical
4627.917	38.0	7.6	3.1	183.0	3.0	0.0	Vert	PK	0.0	45.6	74.0	-28.4	High Ch 12, EUT Flat
4517.125	38.4	7.1	1.6	258.0	3.0	0.0	Vert	PK	0.0	45.5	74.0	-28.5	Low Ch I, EUT Flat
4584.742	38.1	7.4	1.6	134.0	3.0	0.0	vert	PK	0.0	45.5	74.0	-28.5	Mid Ch 4, EUT Fial
4585.033	38.0	7.4	1.6	102.0	3.0	0.0	Horz	PK	0.0	45.4	74.0	-28.6	wild GI 4, EUT Vertical
4520.192	38.2	7.1	1.6	193.0	3.0	0.0	HOTZ	PK	0.0	45.3	74.0	-28.7	Low Ch 1, EUT Vertical
9038.058	49.3	-4.4	1.5	97.0	3.0	0.0	vert	PK	0.0	44.9	74.0	-29.1	Low Chill, EUT Plat
2///.183	44.3	-0.3	1.6	342.0	3.0	0.0	Horz	PK	0.0	44.0	74.0	-30.0	night off 12, EUT vertical

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

XMit 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFE	6/23/2016	6/23/2017
Attenuator	Weinschel	54A-20	TYR	11/18/2016	11/18/2017
Block - DC	Weinschel Corp.	7006	AMS	11/18/2016	11/18/2017
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	6/7/2016	6/7/2017
Generator - Signal	Agilent	N5183A	TIA	4/6/2016	4/6/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.

						NweTx 2016.09.14.2	XMit 2017.01.26
EUT:	SEL-FT50				Work Order:	SCHW0215	
Serial Number:	A01951775				Date:	03/06/17	
Customer:	Schweitzer Engineering Laboratories, Inc.			Temperature:	22.2 °C		
Attendees:	Miralem Cosic			Humidity:	28% RH		
Project:	None				Barometric Pres.:	1011 mbar	
Tested by:	Richard Mellroth		Power:	15 VDC	Job Site:	NC01	
TEST SPECIFICAT	IONS			Test Method	•		
FCC 15.247:2017				ANSI C63.10:2013			
COMMENTS							
None							
DEVIATIONS FROM	M TEST STANDARD						
None							
			OI X				
Configuration #	1		VASI				
		Signature	pre				
						Limit	
					Value	(≥)	Result
FSK Modulation							
	Low Channel 1, 904 MHz				668.842 kHz	500 kHz	Pass
	Mid Channel 3, 917 MHz				667.712 kHz	500 kHz	Pass
	High Channel 12, 926 MHz				666.339 kHz	500 kHz	Pass

NweTx 2016.09.14.2 XMit 2017.01.26

XMit 2017.01.26

weTx 2016.09.14.2

FSK Modulation, High Channel 12, 926 MHz Limit **(≥)** 500 kHz Value Result 666.339 kHz Pass Agilent 09:08:31 Mar 6, 2017 R T ** Northwest EMC, Inc Ref 30.88 dBm #Peak #Atten 20 dB Log \rightarrow ÷ dB/ 0ffst 20.9 dB ٥ ٥ #LgAv M1 S2 Center 926.000 0 MHz #Res BW 100 kHz Span 1.5 MHz #VBW 300 kHz Sweep 999.7 µs (3000 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % 775.6334 kHz x dB -6.00 dB Transmit Freq Error Occupied Bandwidth 18.178 kHz 666.339 kHz

XMit 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFE	6/23/2016	6/23/2017
Attenuator	Weinschel	54A-20	TYR	11/18/2016	11/18/2017
Block - DC	Weinschel Corp.	7006	AMS	11/18/2016	11/18/2017
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	6/7/2016	6/7/2017
Generator - Signal	Agilent	N5183A	TIA	4/6/2016	4/6/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method AVGSA-2 in section 11.9.2.2.4 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36 dBm.

							INWEIX 2016.09.14.2	AMIL 2017.01.26
EUT	SEL-FT50					Work Order:	SCHW0215	
Serial Number:	A01951775					Date:	03/06/17	
Customer	Schweitzer Engineering Lab	ooratories, Inc.				Temperature:	22.2 °C	
Attendees	Attendees: Miralem Cosic					Humidity:	28.1% RH	
Project	None					Barometric Pres.:	1012 mbar	
Tested by:	Richard Mellroth	Power: 15 V	DC		Job Site:	NC01		
TEST SPECIFICAT	IONS Test Method							
FCC 15.247:2017			ANS	GI C63.10:201	3			
COMMENTS								
None								
DEVIATIONS FROM	M TEST STANDARD							
None								
			n n					
Configuration #	1		VIAN					
		Signature	por le					
				Avg Cond	Duty Cycle	Value	Limit	
				Pwr (mW)	Factor (dB)	(mW)	(W)	Results
FSK Modulation								
	Low Channel 1, 904 MHz			428.3	0	428.3	1	Pass
	Mid Channel 3, 917 MHz			409.7	0	409.7	1	Pass
	High Channel 12, 926 MHz			394.1	0	394.1	1	Pass

NweTx 2016.09.14.2 XMit 2017.01.26

FSK Modulation, Mid Channel 3, 917 MHz Avg Cond Duty Cycle Value Limit Pwr (mW) Factor (dB) (mW) (W) Results 409.7 0 409.7 1 Pass

XMit 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFE	6/23/2016	6/23/2017
Attenuator	Weinschel	54A-20	TYR	11/18/2016	11/18/2017
Block - DC	Weinschel Corp.	7006	AMS	11/18/2016	11/18/2017
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	6/7/2016	6/7/2017
Generator - Signal	Agilent	N5183A	TIA	4/6/2016	4/6/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10 the power spectral density was measured in a 3 kHz RBW. Method AVGPSD-1 of FCC KDB 558074 v03r05, section 10.3 was used to determine the maximum power spectral density.

						NweTx 2016.09.14.2	XMit 2017.01.26
EUT	: SEL-FT50				Work Order:	SCHW0215	
Serial Number	: A01951775				Date:	03/06/17	
Customer	Schweitzer Engineering Lat	Schweitzer Engineering Laboratories, Inc.			Temperature:	22.2 °C	
Attendees	Miralem Cosic				Humidity:	28.1% RH	
Project	None			Barometric Pres.:	1012 mbar		
Tested by	Bichard Mellroth Power: 15 VDC			Job Site:	NC01		
TEST SPECIFICA	TIONS						
FCC 15.247:2017				ANSI C63.10:2013			
COMMENTS							
None							
DEVIATIONS FRO	M TEST STANDARD						
None							
			Di h				
Configuration #	1		VIAN				
		Signature	hacir				
					Value	Limit	
					dBm/3kHz	< dBm/3kHz	Results
FSK Modulation							
	Low Channel 1, 904 MHz				6.064	8	Pass
	Mid Channel 3, 917 MHz				6.102	8	Pass
	High Channel 12, 926 MHz				5.908	8	Pass

weTx 2016.09.14.2 XMit 2017.01.26

XMit 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFE	6/23/2016	6/23/2017
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	6/7/2016	6/7/2017
Attenuator	Weinschel	54A-20	TYR	11/18/2016	11/18/2017
Block - DC	Weinschel Corp.	7006	AMS	11/18/2016	11/18/2017
Generator - Signal	Agilent	N5183A	TIA	4/6/2016	4/6/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

FUT						NweTx 2016.09.14.2	XMit 2017.01.26		
LOI.	SEL-FT50				Work Ore	der: SCHW0215			
Serial Number:	A01951775				D	ate: 03/06/17			
Customer:	Schweitzer Engineering Laboratories, Ir	nc.			Temperat	ure: 22.3 °C			
Attendees:	Miralem Cosic				Humidity: 28.1% RH				
Project:	None				Barometric Pres.: 1011 mbar				
Tested by:	Richard Mellroth		Power:	15 VDC	Job S	ite: NC01			
TEST SPECIFICATI	ICATIONS Test Method								
FCC 15.247:2017				ANSI C63.10:2013					
COMMENTS									
None									
DEVIATIONS FROM	I TEST STANDARD								
None									
Configuration #	1		21.2						
o o i i i gui a i o i i i		Cinneture	Mel						
		Sionaiure							
		Signature	1	Frequency	Max Value	Limit			
		Signalure		Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
FSK Modulation		Signature		Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
FSK Modulation	Low Channel 1, 904 MHz	Signature		Frequency Range Fundamental	Max Value (dBc) N/A	Limit ≤ (dBc) N/A	Result N/A		
FSK Modulation	Low Channel 1, 904 MHz Low Channel 1, 904 MHz	Signature	1	Frequency Range Fundamental 30 MHz - 12.5 GHz	Max Value (dBc) N/A -61.85	Limit ≤ (dBc) N/A -30	Result N/A Pass		
FSK Modulation	Low Channel 1, 904 MHz Low Channel 1, 904 MHz Low Channel 1, 904 MHz	Signature		Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	Max Value (dBc) N/A -61.85 -69.51	Limit ≤ (dBc) N/A -30 -30	Result N/A Pass Pass		
FSK Modulation	Low Channel 1, 904 MHz Low Channel 1, 904 MHz Low Channel 1, 904 MHz Mid Channel 3, 917 MHz	Signature		Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	Max Value (dBc) N/A -61.85 -69.51 N/A	Limit ≤ (dBc) N/A -30 -30 N/A	Result N/A Pass Pass N/A		
FSK Modulation	Low Channel 1, 904 MHz Low Channel 1, 904 MHz Low Channel 1, 904 MHz Mid Channel 3, 917 MHz Mid Channel 3, 917 MHz			Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz Fundamental 30 MHz - 12.5 GHz	Max Value (dBc) N/A -61.85 -69.51 N/A -65.97	Limit ≤ (dBc) N/A -30 -30 N/A -30	Result N/A Pass Pass N/A Pass		
FSK Modulation	Low Channel 1, 904 MHz Low Channel 1, 904 MHz Low Channel 1, 904 MHz Mid Channel 3, 917 MHz Mid Channel 3, 917 MHz	Signalure		Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	Max Value (dBc) -61.85 -69.51 N/A -65.97 -69.66	Limit ≤ (dBc) -30 -30 N/A -30 -30 -30	Result N/A Pass Pass N/A Pass Pass		
FSK Modulation	Low Channel 1, 904 MHz Low Channel 1, 904 MHz Low Channel 1, 904 MHz Mid Channel 3, 917 MHz Mid Channel 3, 917 MHz Mid Channel 3, 917 MHz High Channel 12, 926 MHz	Signature	3 	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	Max Value (dBc) N/A -61.85 -69.51 N/A -65.97 -69.66 N/A	Limit ≤ (dBc) -30 -30 N/A -30 -30 -30 N/A	Result N/A Pass Pass N/A Pass Pass N/A		
FSK Modulation	Low Channel 1, 904 MHz Low Channel 1, 904 MHz Low Channel 1, 904 MHz Mid Channel 3, 917 MHz Mid Channel 3, 917 MHz Mid Channel 3, 917 MHz High Channel 12, 926 MHz High Channel 12, 926 MHz	Signalure		Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	Max Value (dBc) N/A -61.85 -69.51 N/A -65.97 -69.66 N/A -68.27	Limit ≤ (dBc) N/A -30 -30 N/A -30 -30 N/A -30 -30	Result N/A Pass N/A Pass N/A Pass N/A Pass		
FSK Modulation	Low Channel 1, 904 MHz Low Channel 1, 904 MHz Low Channel 1, 904 MHz Mid Channel 3, 917 MHz			Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	Max Value (dBc) N/A -61.85 -69.51 N/A	Limit ≤ (dBc) N/A -30 -30 N/A	Result N/A Pass Pass N/A		

NweTx 2016.09.14.2 XMit 2017.01.26

BAND EDGE COMPLIANCE

XMit 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFE	6/23/2016	6/23/2017
Attenuator	Weinschel	54A-20	TYR	11/18/2016	11/18/2017
Block - DC	Weinschel Corp.	7006	AMS	11/18/2016	11/18/2017
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	6/7/2016	6/7/2017
Generator - Signal	Agilent	N5183A	TIA	4/6/2016	4/6/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

An RMS detector was used to match the method called out for Output Power. Because the reference level was taken with an RMS detector, the attenuation requirement is -30 dBc.

BAND EDGE COMPLIANCE

					NweTx 2016.09.14.2	XMit 2017.01.26
EUT:	SEL-FT50			Work Order:	SCHW0215	
Serial Number:	A01951775			Date:	03/06/17	
Customer:	Schweitzer Engineering Laboratories, Inc.			Temperature:	22.2 °C	
Attendees:	Miralem Cosic			Humidity:	27.9% RH	
Project:	None			Barometric Pres.:	1011 mbar	
Tested by:	Richard Mellroth	Power:	15 VDC	Job Site:	NC01	
TEST SPECIFICAT	ONS		Test Method			
FCC 15.247:2017			ANSI C63.10:2013			
COMMENTS						
None						
DEVIATIONS FROM	I TEST STANDARD					
None						
		Di b	N			
Configuration #	1	VIA				
	Signature	paci				
				Value	Limit	
				(dBc)	≤ (dBc)	Result
FSK Modulation						
	Low Channel 1, 904 MHz			-68.73	-30	Pass
	High Channel 12, 926 MHz			-63.93	-30	Pass
	-					

BAND EDGE COMPLIANCE

