

MPE Calculations

FCC ID:R33D1 IC ID: 7848A-D1

1.0	SCOPE	3
2.0	REVISION LEVEL	3
3.0	REFERENCE DOCUMENTS	3
4.0	CALCULATIONS	4
5.0	CONCLUSION	4

1.0 SCOPE:

This Report Demonstrates Evaluation and Compliance to the following standards:

- 1. Code of Federal Regulations Title 47, Volume 1, Section 1.1310.
- 2. Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) - RSS-102 Issue 3

2.0 REVISION LEVEL:

DATE	COMMENTS	REVISION
10/10/08	Created.	1.0
08/16/10	Added RSS-102 references	2.0

3.0 REFERANCE DOCUMENTS:

- (A) Limits for Maximum Permissible Exposure (MPE). Code of Federal Regulations Title 47, Volume 1, Section 1.1310.
- (B) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. OET Bulletin 67 Edition 97-01.
- (C) Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) - RSS-102 Issue 3

4.0 CALCULATIONS:

The following worst case emissions can be calculated by two methods

Method 1: Based on a PPt (Peak Power Total) measurement of the total power into the antenna and the worst case antenna gain.

Effective/Equivalent Isotropic Radiated Power [EIRP] dBm = Total power into the antenna [dBm] + antenna gain [dBi]

To convert the values from dBm to mW

 $mW = 10^{dBm/10}$

[Or use the link http://www.aubraux.com/design/dbm-to-milli-watts-calculator.php]

Method 2: Based on the radiated field strength measurement at 3 meters [at a calibrated OATS site, maximizing the antenna polarity and height]

To convert the values from dBµV/m to EIRP [mW] use the link http://www.compeng.com.au/emc conversion tables power calculator.aspx

After obtaining the EIRP, the Power density is calculated and compared against the FCC and IC limits.

```
\begin{split} &S_{FCC} = Power \ density \ in \ \emph{mW/cm}^2 \ for \ FCC \\ &S_{FCC} = EIRP/4\pi \cdot R^2 \ [4\pi \cdot R^2 = 5028 \ for \ R=20 \ cm] \\ &EIRP = Equivalent \ isotropically \ radiated \ power \ (\emph{mW}) \\ &R = Distance \ to \ the \ center \ of \ radiation \ of \ the \ antenna \ (20 \ cm) \\ &S_{IC} = Power \ density \ in \ \emph{W/m}^2 \ for \ IC \\ &S_{IC} = EIRP/4\pi \cdot R^2 \ [4\pi \cdot R^2 = 0.5028 \ for \ R=0.2 \ m] \\ &EIRP = Equivalent \ isotropically \ radiated \ power \ in \ watts \ (\emph{W}) \\ &[1 \ mW = 0.001W] \\ &R = Distance \ to \ the \ center \ of \ radiation \ of \ the \ antenna \ (\textit{0.2 m}) \\ &[20 \ cm = 0.2 \ m] \end{split}
```

Radio	dBuV@3m	EIRP mW	Sfcc	Sic
260	103	5.98	.0012	.012
357	102	4.75	.00094	.0094
WiFi (B)	89	0.24	.000048	.00048
WiFi (G)	93	0.60	.00012	.0012

5.0 CONCLUSION:

- 1. Based upon the limits for Maximum Permissible Exposure (MPE) given in Table 1 of reference document (A) as 1mW/cm², this device falls under the required limits.
- 2. Based upon the limits given in section 4.2 of the reference document (C) as 10W/m², this device falls under the required limits.