

MPE Calculations

Control4 Model: C4-THERM

FCC ID: R33C4THERM IC ID: 7848A-C4THERM

1.0	SCOPE	3
2.0	REVISION LEVEL	3
3.0	REFERENCE DOCUMENTS	3
4.0	CALCULATIONS	4
5.0	CONCLUSION	4

1.0 SCOPE:

This Report Demonstrates Evaluation and Compliance to the following standards:

- 1. Code of Federal Regulations Title 47, Volume 1, Section 1.1310.
- 2. Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) RSS-102 Issue 3

2.0 REVISION LEVEL:

DATE	COMMENTS	REVISION
10/10/08	Created.	1.0
08/16/10	Added RSS-102 references	2.0

3.0 REFERANCE DOCUMENTS:

- (A) Limits for Maximum Permissible Exposure (MPE). Code of Federal Regulations Title 47, Volume 1, Section 1.1310.
- (B) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. OET Bulletin 67 Edition 97-01.
- (C) Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) - RSS-102 Issue 3

4.0 CALCULATIONS:

The following worst case emissions was calculated by using Method 2 below

Method 1: Based on a PPt (Peak Power Total) measurement of the total power into the antenna, worst case antenna gain and manufacturing variance.

$$\begin{split} &Effective/Equivalent\ Isotropic\ Radiated\ Power\ [EIRP]\ dBm = Total\ power\\ &into\ the\ antenna\ [dBm]\ +\ antenna\ gain\ [dBi]\ +\ manufacturing\\ &variance/tolerance\ [dB]\\ &To\ convert\ the\ values\ from\ dBm\ to\ mW\\ &mW=10^{dBm/10} \end{split}$$

The EIRP was calculated to be 4.66 dBm (see calculation below). This is based on the worst case conducted output power as reported in UL test report 14U19506-E2 section 8.3, declared antenna gain and Control4 has declared that the maximum variation for the output power during manufacturing testing is \pm 0.5 dB; therefore, +0.5 dB was added to the measured output power to calculate the MPE.

Total power into the antenna [dBm] = 2.06
antenna gain [dBi] = 2.1
Tune-up procedure variance[dB] = 0.5
EIRP (dBm) = 4.66

EIRP (mW) = 2.92
EIRP (W) = 0.00292

Method 2: Based on the radiated field strength measurement at 3 meters [at a calibrated OATS site, maximizing the antenna polarity and height]

After obtaining the EIRP, the Power density is calculated and compared against the FCC and IC limits.

```
\begin{split} S_{FCC} &= Power \ density \ in \ \textit{mW/cm}^2 \ for \ FCC \\ S_{FCC} &= EIRP/4\pi \cdot R^2 \\ EIRP &= Equivalent \ isotropically \ radiated \ power \ 2.92 \ \textit{mW} \\ R &= Distance \ to \ the \ center \ of \ radiation \ of \ the \ antenna \ 20 \ \textit{cm} \\ S_{FCC} &= 0.000582 \ mW/cm^2 \end{split}
```

 S_{FCC} Limit = 1.0 mW/cm²

 S_{IC} = Power density in W/m^2 for IC

 $S_{IC} = EIRP/4\pi \cdot R^2$

EIRP = Equivalent isotropically radiated power in watts 0.00292 W

R = Distance to the center of radiation of the antenna 0.2 m

 $S_{IC} = 0.006 \text{ W/m}^2$

 S_{IC} Limit = 10 W/m^2 for IC

5.0 CONCLUSION:

- 1. Based upon the limits for Maximum Permissible Exposure (MPE) given in Table 1 of reference document (A) as 1mW/cm², this device falls under the required limits.
- 2. Based upon the limits given in section 4.2 of the reference document (C) as $10W/m^2$, this device falls under the required limits.