

MPE Calculations

Control4 Model: C4-DSC-EN-INT Cisco Model: SCH-VDS-I

FCC ID: R33C4DSCINT IC ID: 7848A-C4DSCINT

Page 1 of 4

1.0	SCOPE	3
2.0	REVISION LEVEL	3
3.0	REFERENCE DOCUMENTS	3
4.0	CALCULATIONS	4
5.0	CONCLUSION	4

1.0 SCOPE:

This Report Demonstrates Evaluation and Compliance to the following standards:

- 1. Code of Federal Regulations Title 47, Volume 1, Section 1.1310.
- 2. Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) - RSS-102 Issue 3

2.0 **REVISION LEVEL:**

DATE	COMMENTS	REVISION
10/10/08	Created.	1.0
08/16/10	Added RSS-102 references	2.0

3.0 REFERANCE DOCUMENTS:

- (A) Limits for Maximum Permissible Exposure (MPE). Code of Federal Regulations Title 47, Volume 1, Section 1.1310.
- (B) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. OET Bulletin 67 Edition 97-01.
- (C) Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) - RSS-102 Issue 3

4.0 CALCULATIONS:

The C4-DSC-EN contains an 802.11 b/g/n Transceiver. The worst case emissions were with the C4-DSC-EN-INT transmitting on 802.11 n mode. Below is the MPE calculation for this Transceiver.

802.11 n Transceiver

The following worst case emissions was calculated by using Method 1 below

Method 1: Based on a PPt (Peak Power Total) measurement of the total power into the antenna and the worst case antenna gain.

Effective/Equivalent Isotropic Radiated Power [EIRP] dBm = Total power into the antenna [dBm] + antenna gain [dBi] To convert the values from dBm to mW $mW = 10^{dBm/10}$

Total power into the antenna (dBm) = 23.11 Antenna gain (dBi) = 1.41 EIRP (dBM) = 24.52 EIRP (mW) = 283.14 worst case while in the Wi-Fi "n" mode

Method 2: Based on the radiated field strength measurement at 3 meters [at a calibrated OATS site, maximizing the antenna polarity and height]

After obtaining the EIRP, the Power density is calculated and compared against the FCC and IC limits.

 S_{FCC} = Power density in *mW/cm*² for FCC S_{FCC} = EIRP/4 π ·R² EIRP = Equivalent isotropically radiated power 283.14 *mW* R = Distance to the center of radiation of the antenna 20 cm S_{FCC} = 0.056 mW/cm²

 S_{FCC} Limit = 1.0 mW/cm²

 S_{IC} = Power density in W/m^2 for IC S_{IC} = EIRP/4 π ·R² EIRP = Equivalent isotropically radiated power in watts 0.28314 W R = Distance to the center of radiation of the antenna 0.2 m S_{IC} = 0.563 W/m²

 S_{IC} Limit = 10 *W/m²* for IC

5.0 CONCLUSION:

- 1. Based upon the limits for Maximum Permissible Exposure (MPE) given in Table 1 of reference document (A) as 1mW/cm², this device falls under the required limits.
- 2. Based upon the limits given in section 4.2 of the reference document (C) as 10W/m², this device falls under the required limits.