

## **MPE Calculations**

# R33050110011

| 1.0 | SCOPE               | 3 |
|-----|---------------------|---|
| 2.0 | REVISION LEVEL      | 4 |
| 3.0 | REFERENCE DOCUMENTS | 4 |
| 4.0 | CALCULATIONS        | 5 |
| 5.0 | CONCLUSION          |   |

#### 1.0 SCOPE:

This Report Demonstrates Evaluation and Compliance for Human Exposure to Radiofrequency Electromagnetic Fields as Outlined by the Federal Communications Commission Office of Engineering and Technology Bulletin 65.

#### 2.0 REVISION LEVEL:

| DATE       | COMMENTS | REVISION |
|------------|----------|----------|
| 11/22/2004 | Created. | 1.0      |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |

#### 3.0 REFERANCE DOCUMENTS:

- (A) Limits for Maximum Permissible Exposure (MPE). Code of Federal Regulations Title 47, Volume 1, Sections 1.1310
- (B) Limits for Maximum Permissible Exposure (MPE). Code of Federal Regulations Title 47, Volume 1, Sections 2.1093
- (C) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. OET Bulletin 67 Edition 97-01.

#### 4.0 CALCULATIONS:

The following worst case emissions are based on a PPt (Peak Power Total) measurement of 10.40 dBm into the antenna. And the worst case antenna gain on axis is found to be 3.64 dBi.

**Total power into antenna:** 

A) 
$$Pt = 10.40 \text{ dBm} = 10^{(10.40 \text{ dBm}/10)} = 10.96 \text{ mW}$$

Total effective isotropic radiated power at the Transmitter:

Power density at a distance of 20 centimeters is:

C) 
$$S = \frac{EIRP}{4\pi R^2} = 5.04 \ \mu W/cm^2$$

Where  $S = Power density (mW/cm^2)$ , EIRP = Equivalent isotropic radiated power (mW), R = Distance to the center of radiation of the antenna (cm)

### 5.0 CONCLUSION:

Based on the FCC Limits for Maximum Permissible Exposure (MPE) given in Table 1 of reference document (A) as 1 mW/cm<sup>2</sup> this device falls under the required limits.