

TEST REPORT

Report Number: 3182340ATL-001

July 11, 2011

Product Designation: ILS_WLM/WWM

Standard: FCC 15.247 and RSS-210, Issue 8, December 2010 Frequency Hopping and Digital Modulation Systems operatin within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

Tested by: Intertek Testing Services NA Inc. 1950 Evergreen Blvd., Suite 100 Duluth, GA 30096 Client: Onity A UTC Fire & Security Company 2232 Northmont Parkway Duluth, GA 30096 Contact: Silvia Leyva Phone: 678.512.8074 Fax: 770.248.7544

Report reviewed by:

Jeremy O. Pickens EMC Department Manager

Tests performed by:

-lh

Troy J. Ihle EMC Project Engineer

All services undertaken are subject to the following general policy: This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST, or any agency of the US Government.

Report Number: 3182340ATL-001

1.0 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 3.0. The remaining test sections are the verbatum text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complies with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2.0 Test Summary

Section	Test Full Name	Test Date	Result
4.0	System setup including cable interconnection details, support equipment and simplified block diagram. (System Setup)		
5.0	FCC Part 15.247(a)(2) / RSS-210 A8.2(1) (6 dB Bandwidth)	06/08/2009	PASS
6.0	FCC Part 15.247(b)(3) / RSS-210 A8.4(4) (Peak Output Power)	06/05/2009	PASS
7.0	FCC Part 15.247(e) / RSS-210 A8.2(2) (Power Spectral Density)	06/05/2009	PASS
8.0	FCC Part 15.247(d) / RSS-210 A8.5 - Conducted (Conducted Spurious Emissions)	06/05/2009	PASS
9.0	FCC Part 15.205 / RSS-210 2.2 (Restricted Band Radiated)	06/08/2009	PASS
10.0	Revision History (Revision History)		

3.0 Description of Equipment Under Test

Equipment Under Test					
Description	Manufacturer	Model Number	Serial Number		
Electronic Locking Solutions Onity ILS_WLM/WWM 080314CN24E					

EUT receive date:	June 5, 2009
EUT receive condition:	Good

Description of EUT provided by Client:

The electronic locking solution (ILS_WLM/WWM) has a radio module that will communicate with and update information from the door lock. Such information could be update software, program card, time and date. The ILS_WLM/WWM is sold with two different antennas. One is a dipole antenna with SMA connector and the other is a JJB antenna (ANT-2.4-JJB-ST).

Description of EUT exercising:

The EUT was powered by \new (3) AA Batteries. The EUT was continuously transmitting a modulated signal.

4.0 System setup including cable interconnection details, support equipment and simplified block diagram. (System Setup)

Method:

Record the details of EUTcabling, document the support equipment, and show the interconnections in a block diagram.

Drawing:

Block diagram of EUT

4.0 System setup including cable interconnection details, support equipment and simplified block diagram. (System Setup)

	EUT Cabling							
Connection								
ID	Description	Length	Shielding	Ferrites	s From To			
				Nc	ne			
	Support Equipment							
	Description Manufacturer Model Number Serial Number							

None

EMC Report for	Onity on the ILS	WLM/WWM

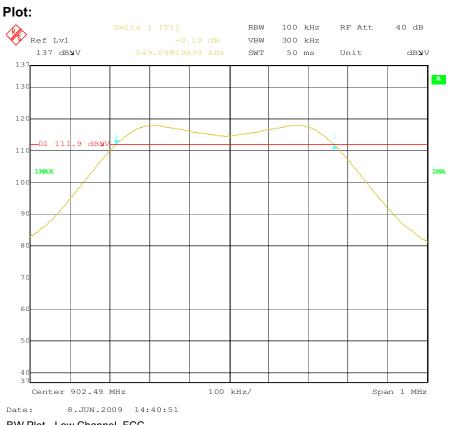
5.0 FCC Part 15.247(a)(2) / RSS-210 A8.2(1) (6 dB Bandwidth)

Method:

TEST PROCEDURE REFERENCE

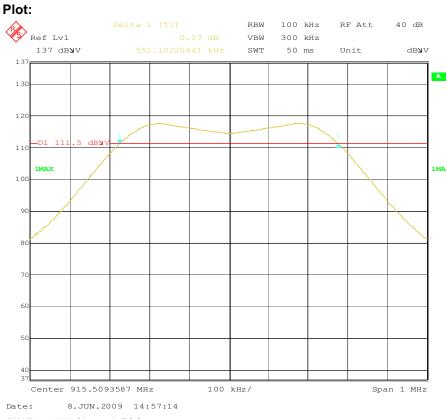
FCC's KDB Publication 558074, "Measurement of Digital Transmission Systems Operating under Section 15.247" March 23, 2005

TEST LIMIT


The minimum 6 dB bandwidth shall be at least 500 kHz.

Connect the antenna port of the EUT to the input of a spectrum analyzer. Input a referency level offset into the spectrum analyzer to account for the associated cable loss. Set the analyzer resolution and video bandwidths to 100kHz and turn on the max hold function. Use the marker peak search on the resultant trace to find the peak amplitude. Positioned the markers on either side of the peak amplitude such that they were 6dB lower than the peak amplitude. The 6dB bandwidth is the frequency difference between the marker on the lower side and the marker on the higher side of the peak amplitude. The 6dB bandwidth shall be measured for the highest data rate for each possible modulation mode on the high, middle, and low channels.

Test Equipment Used:


Description:	Manufacturer:	Model:	Asset Number:	Cal Date:	Cal Due:
Cable E203, 18 GHz, N, 3M	Megaphase	TM18 NKNK 118	E203	05/12/2009	05/12/2010
Spectrum Analyzer, 20Hz-40GHz	Rohde & Schwarz	FSEK30	200062	10/10/2008	10/10/2009

Results: The sample tested was found to Comply.

BW Plot - Low Channel, FCC

5.0 FCC Part 15.247(a)(2) / RSS-210 A8.2(1) (6 dB Bandwidth)

BW Plot - Mid Channel, FCC

5.0 FCC Part 15.247(a)(2) / RSS-210 A8.2(1) (6 dB Bandwidth)

5.0 FCC Part 15.247(a)(2) / RSS-210 A8.2(1) (6 dB Bandwidth)

	6 dB		
	Bandwidth	RWB	VWB
Channel	kHz	kHz	kHz
Low	549	100	300
Mid	551	100	300
High	541	100	300

Method:

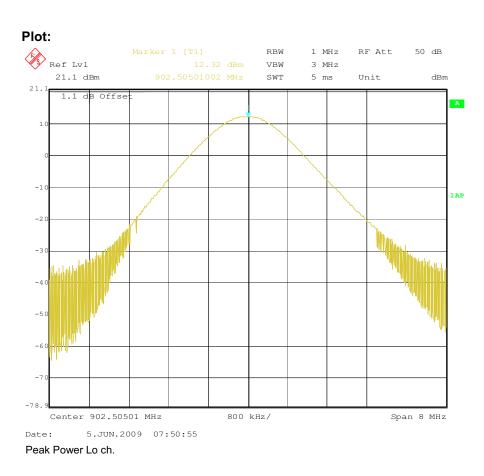
TEST PROCEDURE REFERENCE

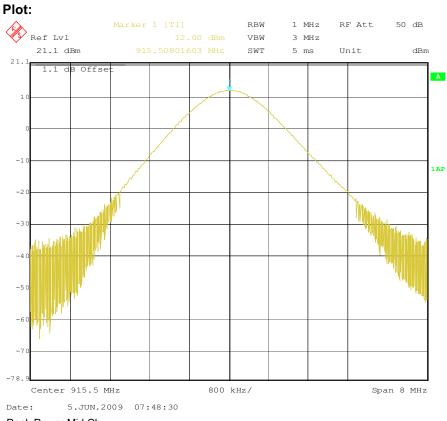
FCC's KDB Publication 558074, "Measurement of Digital Transmission Systems Operating under Section 15.247" March 23, 2005

TEST LIMIT

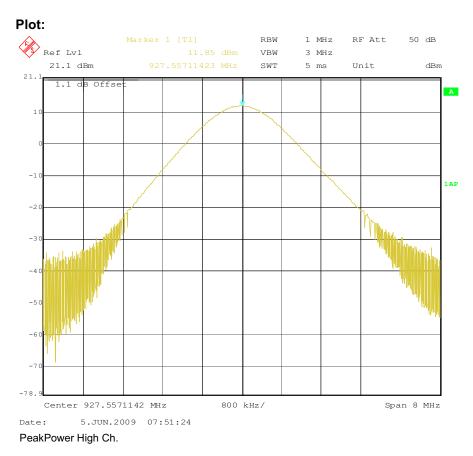
The maximum peak conducted output power of the intentional radiator shall not exceed the following: For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level.


If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.


Connect the antenna port of the EUT to the input of a peak power meter (or specturm analyzer with resolution bandwidth set greater than the emission bandwidth). Read the power directly from the power meter (or equivalent) that is corrected for cable loss to obtain the power at the antenna terminals. Measure the conducted power on the high, middle and low channels for all data rates and modulation modes.

Test Equipment Used:


Description:	Manufacturer:	Model:	Asset Number:	Cal Date:	Cal Due:
Cable E203, 18 GHz, N, 3M	Megaphase	TM18 NKNK 118	E203	05/12/2009	05/12/2010
Spectrum Analyzer, 20Hz-40GHz	Rohde & Schwarz	FSEK30	200062	10/10/2008	10/10/2009

Results: The sample tested was found to Comply.

Peak Power Mid Ch.

	Peak Output	RWB	VWB
Channel	Power (dBm)	MHz	MHz
Low	12.32	1	3
Mid	12.00	1	3
High	11.85	1	3

Method:

TEST PROCEDURE REFERENCE

FCC's KDB Publication 558074, "Measurement of Digital Transmission Systems Operating under Section 15.247" March 23, 2005

TEST LIMIT

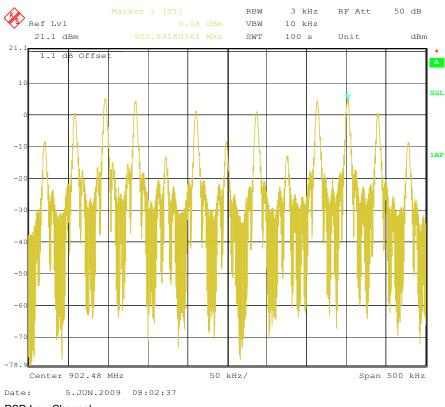
The peak level measured must be no greater than +8 dBm.

Connect the antenna port of the EUT to the input of a spectrum analyzer. Input an offset into the analyzer amplitude to account for the associated cable loss.

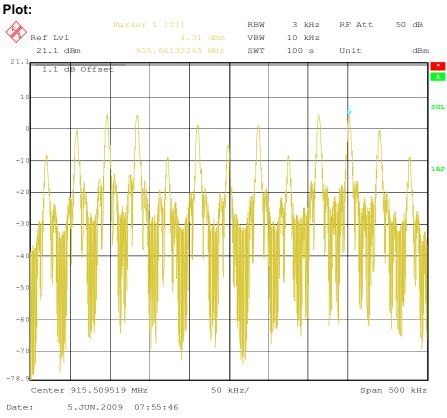
Set the span to cover the entire emission bandwidth. With a bandwidth of 100kHz or greater, set the marker to the peak emission and move that frequency to the center of the display. Set the analyzer resolution and video bandwidths to 3kHz and turn on the max hold function. Set the frequency span was set to 300kHz around the highest amplitude occurring in the peak emission envelope. The total sweep time was calculated as follows:

Sweep time (Sec.) = (Fstop - Fstart)/Resolution Bandwidth Example: Sweep time (Sec) = 300kHz / 3kHz Sweep time (Sec) = 100 Seconds

Perform a peak search on the resultant trace. Record the amplitude of that peak as the maximum power density in dBm. Measure the power density for all data rates and modulation modes on the middle channel.


For the high and low channels, measure the power density at the data rate and modulation mode that resulted in the highest and lowest conducted power for that channel.

Test Equipment Used:


Description:	Manufacturer:	Model:	Asset Number:	Cal Date:	Cal Due:
Cable E203, 18 GHz, N, 3M	Megaphase	TM18 NKNK 118	E203	05/12/2009	05/12/2010
Spectrum Analyzer, 20Hz-40GHz	Rohde & Schwarz	FSEK30	200062	10/10/2008	10/10/2009

Results: The sample tested was found to Comply.

Plot:

PSD Low Channel

PSD Mid Channel

		RWB	VWB
Channel	PSD (dBm)	kHz	kHz
Low	5.08	3	10
Mid	4.31	3	10
High	4.34	3	10

8.0 FCC Part 15.247(d) / RSS-210 A8.5 - Conducted (Conducted Spurious Emissions)

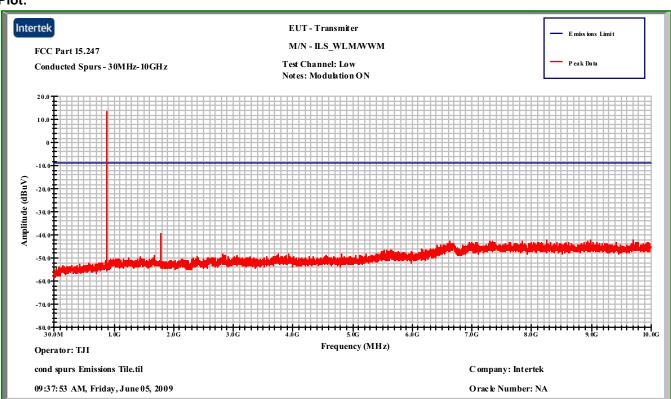
Method:

TEST PROCEDURE REFERENCE

FCC's KDB Publication 558074, "Measurement of Digital Transmission Systems Operating under Section 15.247" March 23, 2005

TEST LIMIT

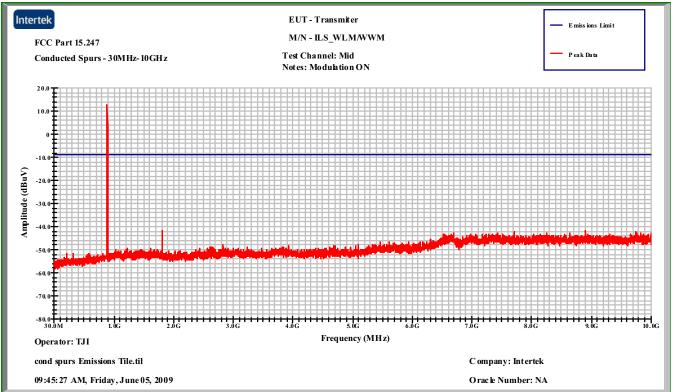
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.


If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB.

Test Equipment Used:

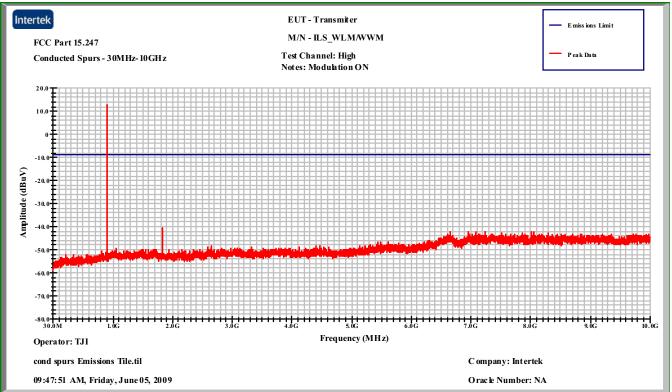
Description:	Manufacturer:	Model:	Asset Number:	Cal Date:	Cal Due:
Cable E203, 18 GHz, N, 3M	Megaphase	TM18 NKNK 118	E203	05/12/2009	05/12/2010
Spectrum Analyzer, 20Hz-40GHz	Rohde & Schwarz	FSEK30	200062	10/10/2008	10/10/2009

Results: The sample tested was found to Comply.


Plot:

Conducted Spurs Plot - Low Channel

8.0 FCC Part 15.247(d) / RSS-210 A8.5 - Conducted (Conducted Spurious Emissions)


Plot:

Conducted Spurs Plot - Mid Channel

8.0 FCC Part 15.247(d) / RSS-210 A8.5 - Conducted (Conducted Spurious Emissions)

Plot:

Conducted Spurs Plot - High Channel

Method:

TEST PROCEDURE REFERENCE ANSI C63.4: 2003

TEST LIMIT

Unwanted emissions falling into restricted bands shall meet the general field strength limits. It should also be noted that unwanted emissions falling in non-restricted bands do not need to be suppressed to a level lower than the general fieldstrength limits.

Specifically, at the restricted band frequency nearest the lowest and highest channel of each available band, the field strength shall meet the general field strength limits.

Test Equipment Used:

Description:	Manufacturer:	Model:	Asset Number:	Cal Date:	Cal Due:
Cable E01, <18GHz	Pasternack	RG214/U	E01	05/04/2009	05/04/2010
Cable E201, 18 GHz, N, 3m	Megaphase	TM18 NKNK 118	E201	01/29/2009	01/29/2010
Cable E203, 18 GHz, N, 3M	Megaphase	TM18 NKNK 118	E203	05/12/2009	05/12/2010
Cable MP3, 18 GHz, N, 10m	Megaphase	G919-NKNK-394	MP3	05/04/2009	05/04/2010
Cable ST1, 7m, N-N, 18 GHz	Storm Products Co.	PR90-206-7MTR	ST1	01/23/2009	01/23/2010
EMI Receiver	Hewlett Packard	8546A	211505	01/12/2009	01/12/2010
EMI Receiver, Preselector section	Hewlett Packard	85460A	015762	01/12/2009	01/12/2010
Preamplifier, 10 MHz to 2000 MHz, 27 dB gain	Mini-Circuits	ZKL-2	200074	10/20/2008	10/20/2009
Preamplifier, 20 MHz to 18 GHz, 40 dB	A.H. Systems	PAM-0118	200108	04/07/2009	04/07/2010
Spectrum Analyzer, 20Hz-40GHz	Rohde & Schwarz	FSEK30	200062	10/10/2008	10/10/2009

Results: The sample tested was found to Comply.

Photo:

Test Setup

Photo:

Test Setup

Photo:

Test Setup

Photo:

Test Setup

1 U	ange (MHz):								
I	Input power:	battery]	Limit: FCC15 Class B-3m Modifications for compliance (y/n): n					
А	В	С	D	Е	F	G	Н	Ι	J
Ant.			Antenna	Cable	Pre-amp		3m		Detectors /
Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW
	Dipole antenna								
v	1806.221	9.6	26.4	2.5	0.0	38.5	54.0	-15.5	AVG/1MHz/1Hz
v	2708.446	8.1	28.9	3.1	0.0	40.1	54.0	-13.9	AVG/1MHz/1Hz
v	3609.750	8.6	31.4	3.7	0.0	43.7	54.0	-10.3	AVG/1MHz/1Hz
v	4511.725	7.8	32.2	4.2	0.0	44.2	54.0	-9.8	AVG/1MHz/1Hz
v	5415.225	9.4	33.8	4.5	0.0	47.7	54.0	-6.3	AVG/1MHz/1Hz
				JJI	B antenna	-			-
v	1274.893	8.4	24.6	2.0	0.0	35.0	54.0	-19.0	AVG/1MHz/1Hz
v	1803.855	7.6	26.4	2.5	0.0	36.5	54.0	-17.5	AVG/1MHz/1Hz
v	2708.058	8.4	28.8	3.1	0.0	40.4	54.0	-13.6	AVG/1MHz/1Hz
v	3609.346	7.7	31.4	3.7	0.0	42.8	54.0	-11.2	AVG/1MHz/1Hz
v	4511.322	7.8	32.2	4.2	0.0	44.2	54.0	-9.8	AVG/1MHz/1Hz
v	5417.599	9.4	33.8	4.5	0.0	47.7	54.0	-6.3	AVG/1MHz/1Hz
Calc	ulations	G=C+	D+E-F	I=(G-H				

Note: No other emissions were above noise floor.

Radiated emissions data

Data:

· ·	ange (MHz): Input power:				Test D	stance (m): 3 Limit: FCC15 Class B-3m			
	• •		Modifications for compliance (y/n): n						
А	В	С	D	Е	F	G	Н	Ι	J
Ant.			Antenna	Cable	Pre-amp		3m		Detectors /
Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW
				JJF	B Antenna				
h	886.490	24.1	21.8	6.6	27.3	25.1	77.4	-52.3	QP/120k/300k
h	890.103	23.4	21.8	6.6	27.3	24.4	77.4	-53.0	QP/120k/300k
v	895.225	20.5	21.6	6.6	27.3	21.3	77.4	-56.1	QP/120k/300k
h	897.275	24.8	21.8	6.6	27.3	25.9	77.4	-51.5	QP/120k/300k
h	899.705	32.7	21.8	6.6	27.3	33.8	77.4	-43.6	QP/120k/300k
h	904.528	55.5	21.8	6.6	27.3	56.6	77.4	-20.8	QP/120k/300k
h	907.001	37.3	21.8	6.6	27.3	38.4	77.4	-39.0	QP/120k/300k
h	908.505	34.1	21.8	6.6	27.3	35.2	77.4	-42.2	QP/120k/300k
h	915.545	23.1	21.8	6.7	27.3	24.3	77.4	-53.1	QP/120k/300k
	Dipole Antenna								
v	901.130	53.1	21.6	6.6	27.3	53.9	77.8	-23.9	QP/120k/300k
v	903.898	52.4	21.6	6.6	27.3	53.3	77.8	-24.5	QP/120k/300k
Calc	ulations	G=C+	D+E-F	I=(G-H				

Note: No other emissions were above noise floor

Radiated emissions data

10.0 Revision History (Revision History)

Method:

Document the history of the report.

Revision Level	Date	Report Number	Notes
Original issue	June 19, 2009	3182340ATL-001	
1	July 11, 2011	3182340ATL-001	Updated standard date references