

Onity Inc., A Division of UTCFS

Trillium RFID Reader RFID Reader Model: RH600101 RFID Host Device Models: 10104332P1, 10104333P1

> FCC 15.225:2016 13.56 MHz Radio Using RFID

> > Report # ONIT0017.1

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Last Date of Test: April 25, 2016 Onity Inc., A Division of UTCFS Trillium RFID Reader RFID Reader Model: RH600101 RFID Host Device Models: 10104332P1, 10104333P1

Radio Equipment Testing

Standards

Specification	Method
FCC 15.225:2016	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT
6.4	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions < 30 MHz	Yes	Pass	
6.5 6.8	Field Strength of Spurious Emissions > 30 MHz	Yes	Pass	
6.8	Frequency Stability	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number		Description	Date	Page Number
00	None			

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

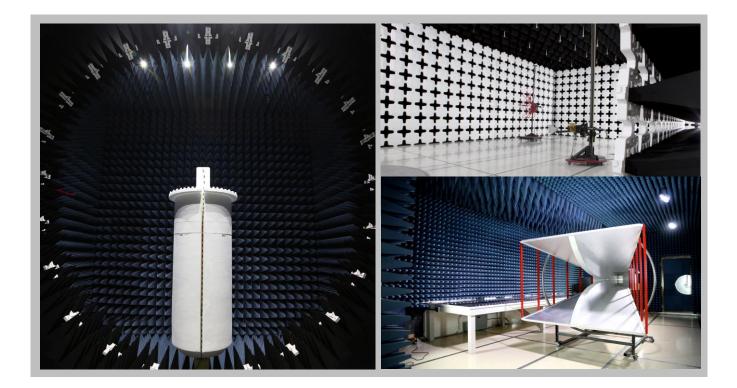
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		NV	LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Industry Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	MI			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
	VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Onity Inc., A Division of UTCFS
Address:	4001 Fairview Industrial Drive
City, State, Zip:	Salem, OR 97302-1142
Test Requested By:	Troy Klopfenstein
	Trillium RFID Reader
Model:	RFID Reader Model: RH600101
	RFID Host Device Models: 10104332P1, 10104333P1
First Date of Test:	April 18, 2016
Last Date of Test:	April 25, 2016
Receipt Date of Samples:	April 18, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

RFID lock

Client Justification

Model Equivalency Statement

The following lock regulatory model numbers are covered by this EMC test report due to similarities in their configuration:

Regulatory Model Number	Lock Marketing Name	Model Equivalency
10104332P1	Trillium RFID Lock	All electrical and mechanical parts in 10104333P1 are identical to 10104332P1 with the exception of layout changes to the lock control board to allow the
10104333P1	Trillium RFID Lock with DirectKey	mounting of the Bluetooth DirectKey Module, which enables Bluetooth connectivity.

NOTE: The DirectKey Module's certification information is:

Supra DirectKey[™] Module Model: 002220 FCC ID: TCZ-10103751G1 IC: 1175F-10103751G1

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

Configuration ONIT0017-1

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
RFID Door Lock	Onity Inc.	None	100176	

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
RFID Key card	Onity Inc.	None	None	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	4/18/2016	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	4/18/2016	Field Strength of Spurious Emissions < 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	4/18/2016	Field Strength of Spurious Emissions > 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	4/25/2016	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

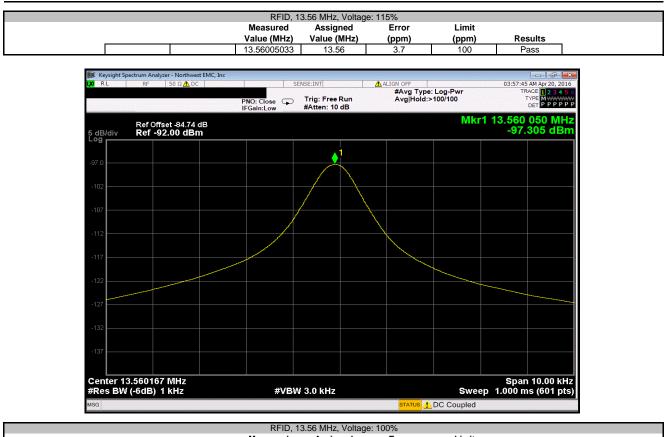
Description	Manufacturer	Model	ID	Last Cal.	Interval (mo)
Attenuator	Fairview Microwave	SA3N512-20	TWQ	5/28/2015	12
Thermometer	Omegaette	HH311	DTY	1/21/2015	36
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBI	NCR	0
Meter - Multimeter	Tektronix	DMM912	MMH	2/17/2016	36
Power Supply - DC	Topward	TPS-2000	TPD	NCR	0
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2/13/2016	12
Probe - Near Field Set	EMCO	7405	IPD	NCR	0

TEST DESCRIPTION

A near field measurement was made using a near field probe between the EUT's integral antenna and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

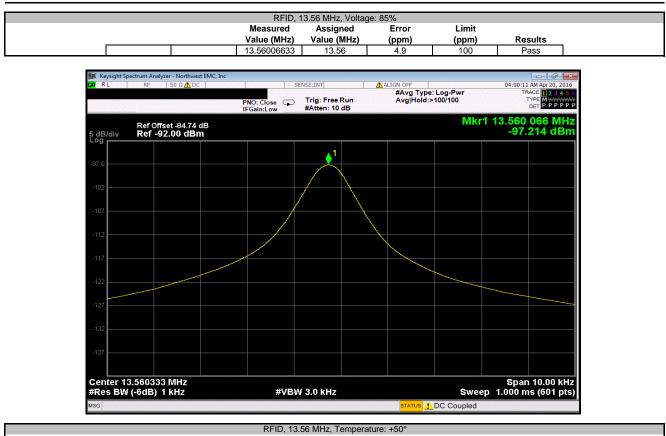
The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -30 $^{\circ}$ to +50 $^{\circ}$ C and at 10 $^{\circ}$ C intervals.


The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm The formula to check for compliance is:

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

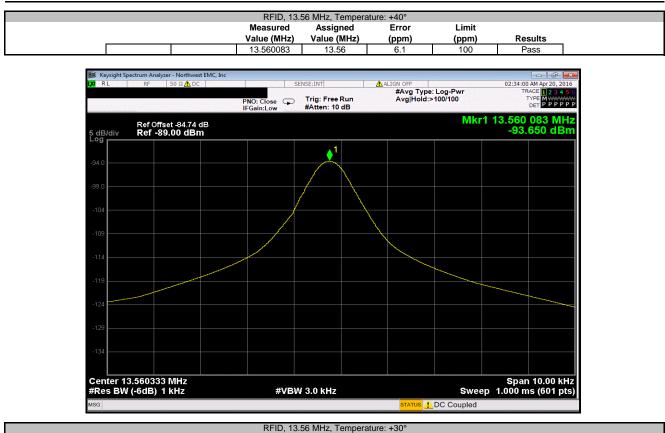
NOR	THW	/EST
F	M	
	XMit	2015.01.14

EUT.								
	HTRFID Lock					Work Order:		
Serial Number:							04/25/16	
	Onity Inc., A Division of U	TCFS				Temperature:		
Attendees:						Humidity:		
Project:	None					Barometric Pres.:		
	Brandon Hobbs		Power:	Battery		Job Site:	EV01	
TEST SPECIFICAT	IONS			Test Method				
FCC 15.225:2016				ANSI C63.10:2013				
COMMENTS								
The EUT was RFID	tag driven							
	ag arron							
DEVIATIONS FROM	M TEST STANDARD							
None								
				/				
Configuration #	1	1	that	1-1				
-		Signature	\sim					
				Measu	ed Assigned	Error	Limit	
				Measu Value (N		Error (ppm)	Limit (ppm)	Results
RFID, 13.56 MHz								Results
RFID, 13.56 MHz	Voltage: 115%				Hz) Value (MHz)			Results Pass
RFID, 13.56 MHz	Voltage: 115% Voltage: 100%			Value (N	Hz) Value (MHz) 033 13.56	(ppm)	(ppm)	
RFID, 13.56 MHz	Voltage: 115% Voltage: 100% Voltage: 85%			Value (N 13.56005	Hz) Value (MHz) 033 13.56 067 13.56	(ppm) 3.7	(ppm) 100	Pass
RFID, 13.56 MHz	Voltage: 100%			Value (N 13.56005 13.56010	Hz) Value (MHz) 033 13.56 067 13.56 633 13.56	(ppm) 3.7 7.4	(ppm) 100 100	Pass Pass
RFID, 13.56 MHz	Voltage: 100% Voltage: 85%			Value (N 13.56005 13.56010 13.56000	Hz Value (MHz) 0033 13.56 0067 13.56 6633 13.56 684 13.56	(ppm) 3.7 7.4 4.9	(ppm) 100 100 100	Pass Pass Pass
RFID, 13.56 MHz	Voltage: 100% Voltage: 85% Temperature: +50°			Value (N 13.56005 13.56010 13.56000 13.56000 13.56000	Hz) Value (MHz) 0033 13.56 0067 13.56 6633 13.56 84 13.56 83 13.56	(ppm) 3.7 7.4 4.9 6.2	(ppm) 100 100 100 100 100	Pass Pass Pass Pass
RFID, 13.56 MHz	Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40°			Value (N 13.56005 13.56010 13.56000 13.56000 13.56000 13.56000	Hz) Value (MHz) 0033 13.56 0067 13.56 6633 13.56 84 13.56 83 13.56 83 13.56	(ppm) 3.7 7.4 4.9 6.2 6.1	(ppm) 100 100 100 100 100	Pass Pass Pass Pass Pass Pass
RFID, 13.56 MHz	Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40° Temperature: +30°			Value (N 13.56005 13.56010 13.56000 13.56000 13.56000 13.56000 13.56000 13.56000	Hz) Value (MHz) 0033 13.56 0067 13.56 6633 13.56 84 13.56 83 13.56 83 13.56 83 13.56 967 13.56	(ppm) 3.7 7.4 4.9 6.2 6.1 6.1 6.1	(ppm) 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass
RFID, 13.56 MHz	Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40° Temperature: +30° Temperature: +20° Temperature: +10°			Value (N 13.5600 13.5601 13.5600 13.5600 13.5600 13.5601 13.5601	Hz Value (MHz) 033 13.56 067 13.56 633 13.56 84 13.56 83 13.56 83 13.56 83 13.56 83 13.56 83 13.56 83 13.56 83 13.56	(ppm) 3.7 7.4 4.9 6.2 6.1 6.1 6.1 7.4	(ppm) 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass
RFID, 13.56 MHz	Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40° Temperature: +20° Temperature: +10° Temperature: 0°			Value (N 13.5600 13.5600 13.5600 13.5600 13.5600 13.5600 13.5601 13.5601	Hz) Value (MHz) 033 13.56 067 13.56 633 13.56 84 13.56 83 13.56 83 13.56 83 13.56 83 13.56 83 13.56 83 13.56 83 13.56 83 13.56 83 13.56	(ppm) 3.7 7.4 4.9 6.2 6.1 6.1 7.4 6.1	(ppm) 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
RFID, 13.56 MHz	Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40° Temperature: +30° Temperature: +20° Temperature: +0° Temperature: 0°			Value (N 13.5600 13.5601 13.5601 13.5601 13.5601 13.5601 13.5601 13.5601 13.5601 13.5601 13.5601 13.560	Hz Value (MHz) 033 13.56 067 13.56 633 13.56 184 13.56 183 13.56 183 13.56 183 13.56 183 13.56 133 13.56 133 13.56 133 13.56 133 13.56 133 13.56 14 13.56	(ppm) 3.7 7.4 4.9 6.2 6.1 6.1 7.4 6.1 6.1 7.4	(ppm) 100 100 100 100 100 100 100 10	Pass Pass Pass Pass Pass Pass Pass Pass
RFID, 13.56 MHz	Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40° Temperature: +20° Temperature: +10° Temperature: 0°			Value (N 13.56005 13.56010 13.5600 13.5600 13.5600 13.5600 13.5600 13.5600 13.5600 13.5600 13.5600	Hz Value (MHz) 033 13.56 067 13.56 633 13.56 184 13.56 183 13.56 183 13.56 183 13.56 183 13.56 183 13.56 183 13.56 183 13.56 191 13.56 11 13.56	(ppm) 3.7 7.4 4.9 6.2 6.1 6.1 6.1 6.1 6.1 6.1	(ppm) 100 100 100 100 100 100 100 10	Pass Pass Pass Pass Pass Pass Pass Pass



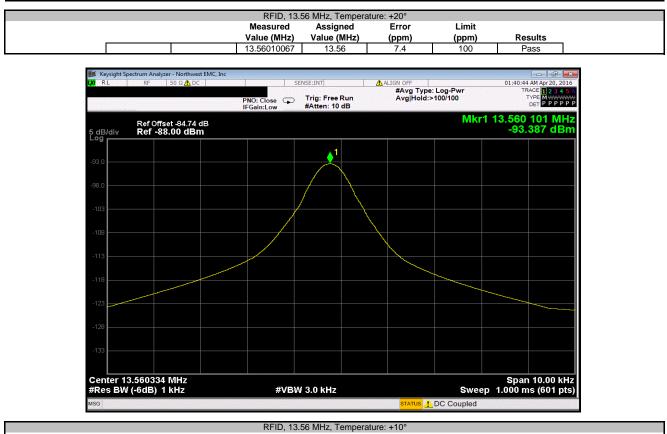
		oroo min iz, romag	0. 10070		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.56010067	13.56	7.4	100	Pass

RL RF 50 Ω 🚹 DC		SENSE:INT	ALIGN OFF		01:40:08 AM Apr 20, 20
	PNO: Close 🕞 IFGain:Low	⊃ Trig: Free Run #Atten: 10 dB	#Avg Type Avg Hold:		TRACE 1 2 3 4 TYPE M WWWW DET P P P P
Ref Offset -84.74 dB B/div Ref -88.00 dBm				Mkr1	13.560 101 MH -93.390 dB
-		▲1			
.0					
.0		/			
~		1	\mathbf{X}		
8					
13					
8					
23					
28					
33					
enter 13.560334 MHz es BW (-6dB) 1 kHz	#VE	3W 3.0 kHz		Sweep	Span 10.00 kl 1.000 ms (601 pt



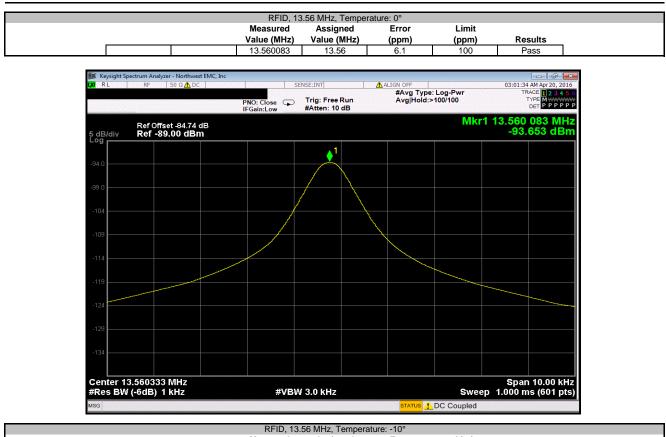
	RFID, 13.	56 MHZ, Tempera	ature: +50°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560084	13.56	6.2	100	Pass

RL	RF 50 Ω 🚹 DC			SENSE:INT	<u>∧</u> A	LIGN OFF			AM Apr 20, 201
		Pi IF	NO: Close 😱 Gain:Low	Trig: Free #Atten: 10		#Avg Type: Avg Hold:>		TF	ACE 1 2 3 4 5 TYPE M DET P P P P P
dB/div	Ref Offset -84.74 dl Ref -89.00 dBm	3					Mkr	1 13.560 -93.	084 MH 699 dBr
				♦ ¹					
4.0									
3.0									
04									
09									
14									
19									
24									
29									
34									
	.560334 MHz		4VD	W 3.0 kHz			0:	Spar p 1.000 m	10.00 kl
Ces DW	(-6dB) 1 kHz		#VD	W 3.0 KHZ		STATUS !		p 1.000 ff	ις του ι br



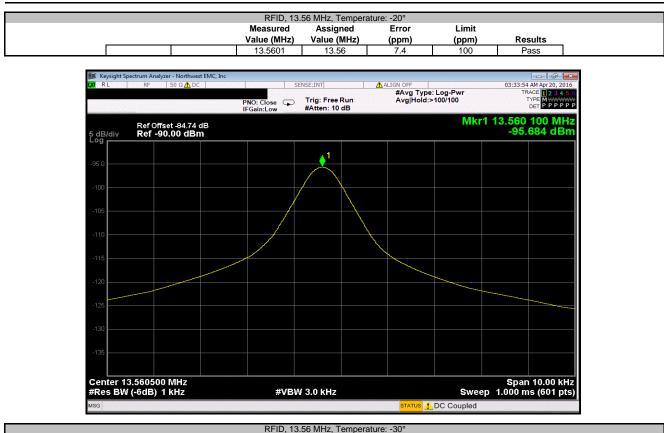
RFID, 13.56 MHz, Temperature: +30°										
		Measured	Assigned	Error	Limit					
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		13.560083	13.56	6.1	100	Pass				

RL RF 50 Ω ADC	Inc	ENSE:INT	ALIGN OFF	02:25:52 AM Apr 20, 2010
	PNO: Close 😱 IFGain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 12345 TYPE MWWW DET PPPP
Ref Offset -84.74 dB dB/div Ref -89.00 dBm			MI	kr1 13.560 083 MH -93.582 dBr
94.0		▲ ¹		
9.0				
109				
14				
19				
24				
29				
134				
enter 13.560333 MHz Res BW (-6dB) 1 kHz	#VBV	N 3.0 kHz	Sw	Span 10.00 kH eep 1.000 ms (601 pt
G			STATUS / DC Coupled	



RFID, 13.56 MHz, Temperature: +10°									
		Measured	Assigned	Error	Limit				
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
		13.560083	13.56	6.1	100	Pass			

🛛 RL 🛛 RF 50 Ω 🧥 DC		SENSE:INT	ALIGN OFF	02:51:08 AM Apr 20, 201
	PNO: Close 🖵 IFGain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type: Log-P\ Avg Hold:>100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET P P P P P
Ref Offset -84.74 dB dB/div Ref -89.00 dBm				Mkr1 13.560 083 MH -93.638 dBn
		♦ ¹		
34.0				
9.0				
104				
09				
14				
19				
24				
29				
34				
enter 13.560333 MHz Res BW (-6dB) 1 kHz	#VB	N 3.0 kHz		Span 10.00 kH Sweep 1.000 ms (601 pt
G			STATUS / DC Co	· · ·



	RFID, 13.	56 MHZ, Tempera	ature: -10°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.5601	13.56	7.4	100	Pass

			ALIGN OFF		3:19:00 AM Apr 20, 201
	PNO: Close 🖵 IFGain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type: Lo Avg Hold:>100	7100	TRACE 1 2 3 4 5 TYPE M WWW DET P P P P P
Ref Offset -84.74 dB B/div Ref -89.00 dBm				Mkr1 13.	560 100 MH -94.507 dBr
0		↓ 1			
		\wedge			
4					
9					
4					
9					
4					
9					
4					
nter 13.560500 MHz es BW (-6dB) 1 kHz	#VBV	V 3.0 kHz		Sweep 1.0	Span 10.00 kH 100 ms (601 pt

RFID, 13.56 MHz, Temperature: -30°										
Measured Assigned Error Limit										
	•	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		13.56006667	13.56	4.9	100	Pass				

RL RF 50 Ω 🚹 DC		SENSE:INT	ALIGN OFF		03:50:28 AM Apr 20, 2016
	PNO: Close 🖵 IFGain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type: Log Avg Hold:>100/	I-Pwr 100	TRACE 1 2 3 4 5 TYPE M WWWW DET P P P P P
Ref Offset -84.74 dB dB/div Ref -92.00 dBm				Mkr1 13	.560 067 MH: -97.018 dBn
97.0		↓ ¹			
		\frown			
102					
107					
112					
17					
22					
27					
32					
37					
enter 13.560500 MHz Res BW (-6dB) 1 kHz	#VB	W 3.0 kHz		Sween 1	Span 10.00 kH 000 ms (601 pt
	#VD	A 667 MIL			see ins (eer pt

ENC

FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On Transmitting at 13.56 MHz, RFID

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

ONIT0017 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 12 MHz

Stop Frequency 15 MHz

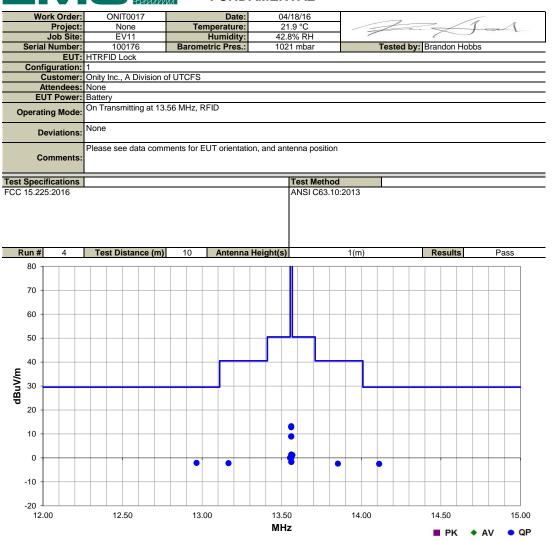
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mo)
Cable	None	10m Test Distance Cable	EVL	5/11/2015	12
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2/13/2016	12
Antenna	EMCO	6502	AOA	6/24/2014	24

TEST DESCRIPTION


The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, fundamental carrier from the EUT was maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDAMENTAL

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
12.965	6.2	10.8	1.0	300.0	10.0	0.0	See Commets	QP	-19.1	-2.1	29.5	-31.6	Ant perp to GND, Ant perp to EUT, EUT On Side
14.112	5.8	10.8	1.0	138.0	10.0	0.0	See Commets	QP	-19.1	-2.5	29.5	-32.0	Ant perp to GND, Ant perp to EUT, EUT On Side
13.165	6.1	10.8	1.0	246.0	10.0	0.0	See Commets	QP	-19.1	-2.2	40.5	-42.7	Ant perp to GND, Ant perp to EUT, EUT On Side
13.853	5.9	10.8	1.0	275.0	10.0	0.0	See Commets	QP	-19.1	-2.4	40.5	-42.9	Ant perp to GND, Ant perp to EUT, EUT On Side
13.567	9.5	10.8	1.0	106.0	10.0	0.0	See Commets	QP	-19.1	1.2	50.5	-49.3	Ant perp to GND, Ant perp to EUT, EUT On Side
13.553	8.3	10.8	1.0	94.0	10.0	0.0	See Commets	QP	-19.1	0.0	50.5	-50.5	Ant perp to GND, Ant perp to EUT, EUT On Side
13.560	21.5	10.8	1.0	109.0	10.0	0.0	See Commets	QP	-19.1	13.2	84.0	-70.8	Ant perp to GND, Ant perp to EUT, EUT On Side
13.560	21.1	10.8	1.0	120.0	10.0	0.0	See Commets	QP	-19.1	12.8	84.0	-71.2	Ant perp to GND, Ant perp to EUT, EUT Vertical
13.560	17.3	10.8	1.0	47.0	10.0	0.0	See Commets	QP	-19.1	9.0	84.0	-75.0	Ant perp to GND, Ant para to EUT, EUT On Side
13.560	17.2	10.8	1.0	40.0	10.0	0.0	See Commets	QP	-19.1	8.9	84.0	-75.1	Ant perp to GND, Ant para to EUT, EUT Vertical
13.560	9.7	10.8	1.0	325.0	10.0	0.0	See Commets	QP	-19.1	1.4	84.0	-82.6	Ant para to GND, Ant perp to EUT, EUT Vertical
13.560	9.6	10.8	1.0	351.0	10.0	0.0	See Commets	QP	-19.1	1.3	84.0	-82.7	Ant para to GND, Ant perp to EUT, EUT On Side
13.560	8.3	10.8	1.0	143.0	10.0	0.0	See Commets	QP	-19.1	0.0	84.0	-84.0	Ant perp to GND, Ant para to EUT, EUT Horizontal
13.560	6.6	10.8	1.0	177.0	10.0	0.0	See Commets	QP	-19.1	-1.7	84.0	-85.7	Ant perp to GND, Ant perp to EUT, EUT Horizontal
13.560	6.6	10.8	1.0	151.0	10.0	0.0	See Commets	QP	-19.1	-1.7	84.0	-85.7	Ant para to GND, Ant perp to EUT, EUT Horizontal

Г

ENC

FIELD STRENGTH OF SPURIOUS EMISSIONS < 30MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On Transmitting at 13.56 MHz, RFID

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

ONIT0017 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 10 kHz

Stop Frequency 30 MHz

SAMPLE CALCULATIONS

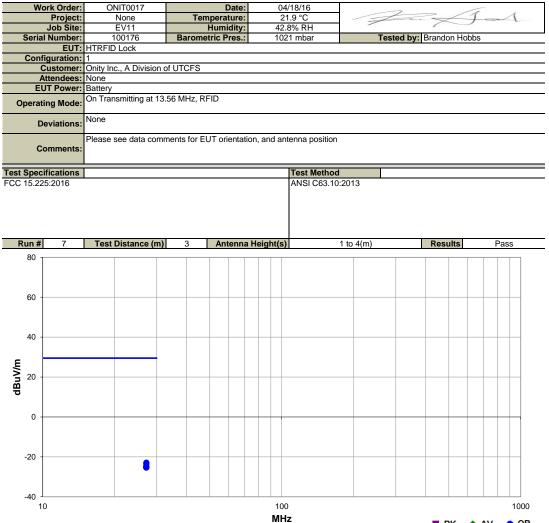
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mo)
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2/13/2016	12
Antenna	EMCO	6502	AOA	6/24/2014	24
Cable	None	3m Test Distance Cable	EVM	5/11/2015	12

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.


While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF SPURIOUS EMISSIONS < 30MHz

PSA-ESCI 2016.03.11 EmiR5 2016.03.11

MHz										PK	◆ AV	o QP	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
27.121	7.9	9.2	1.0	81.0	3.0	0.0	See Comments	QP	-40.0	-22.9	29.5	-52.4	Ant perp to GND, Ant perp to EUT, EUT Horizontal
27.121	7.6	9.2	1.0	87.0	3.0	0.0	See Comments	QP	-40.0	-23.2	29.5	-52.7	Ant para to GND, Ant perp to EUT, EUT Horizontal
27.121	7.1	9.2	1.0	316.0	3.0	0.0	See Comments	QP	-40.0	-23.7	29.5	-53.2	Ant para to GND, Ant perp to EUT, EUT Vertical
27.120	6.2	9.2	1.0	161.0	3.0	0.0	See Comments	QP	-40.0	-24.6	29.5	-54.1	Ant perp to GND, Ant perp to EUT, EUT Vertical
27.120	5.9	9.2	1.0	258.0	3.0	0.0	See Comments	QP	-40.0	-24.9	29.5	-54.4	Ant para to GND, Ant perp to EUT, EUT On Side
27.119	5.7	9.2	1.0	133.0	3.0	0.0	See Comments	QP	-40.0	-25.1	29.5	-54.6	Ant perp to GND, Ant perp to EUT, EUT On Side
27.120	5.7	9.2	1.0	59.0	3.0	0.0	See Comments	QP	-40.0	-25.1	29.5	-54.6	Ant perp to GND, Ant para to EUT, EUT Vertical
27.152	5.5	9.2	1.0	58.0	3.0	0.0	See Comments	QP	-40.0	-25.3	29.5	-54.8	Ant perp to GND, Ant para to EUT, EUT On Side
27.091	5.4	9.2	1.0	239.0	3.0	0.0	See Comments	QP	-40.0	-25.4	29.5	-54.9	Ant perp to GND, Ant para to EUT, EUT Horizontal

FIELD STRENGTH OF SPURIOUS EMISSION > 30MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On Transmitting at 13.56 MHz, RFID

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

ONIT0017 - 1

FREQUENCY RANGE INVESTIGATED

Stop Frequency 1000 MHz

SAMPLE CALCULATIONS

Start Frequency 30 MHz

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mo)
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2/13/2016	12
Cable	None	3m Test Distance Cable	EVM	5/11/2015	12
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	3/11/2016	12
Antenna - Biconilog	EMCO	3141	AXL	NCR	0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009).

FIELD STRENGTH OF SPURIOUS EMISSION > 30MHz

Work Order: **ONIT0017** Date: 04/18/16 7 1 Project: None Temperature: 21.9 °C Job Site: EV11 Humidity: 42.8% RH Serial Number: 100176 Barometric Pres.: 1021 mbar Tested by: Brandon Hobbs EUT: HTRFID Lock **Configuration:** Customer: Onity Inc., A Division of UTCFS Attendees: None EUT Power: Battery On Transmitting at 13.56 MHz, RFID **Operating Mode:** None **Deviations:** Please see data comments for EUT orientation Comments: Test Specifications **Test Method** FCC 15.225:2016 ANSI C63.10:2013 Run # 8 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass 80 70 60 50 dBuV/m 40 30 20 10 0 10 100 1000 MHz • QP PK AV Polarity External Transducer Distance Compared to

(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)	Type	Detector	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
(11112)		(, ,	(···· ·/	(11311)		(, ,						(, ,	Comments
40.685	55.2	-26.1	1.0	272.0	3.0	0.0	Vert	QP	0.0	29.1	40.0	-10.9	EUT Vert
40.683	55.0	-26.1	1.0	106.0	3.0	0.0	Vert	QP	0.0	28.9	40.0	-11.1	EUT On Side
40.683	49.0	-26.1	4.0	-5.0	3.0	0.0	Horz	QP	0.0	22.9	40.0	-17.1	EUT Vert
40.682	48.7	-26.1	3.9	180.0	3.0	0.0	Horz	QP	0.0	22.6	40.0	-17.4	EUT On Side
67.802	52.8	-31.1	1.0	261.0	3.0	0.0	Vert	QP	0.0	21.7	40.0	-18.3	EUT Vert
40.682	47.3	-26.1	2.7	192.0	3.0	0.0	Horz	QP	0.0	21.2	40.0	-18.8	EUT Horz
40.682	46.0	-26.1	1.0	131.0	3.0	0.0	Vert	QP	0.0	19.9	40.0	-20.1	EUT Horz
67.803	47.5	-31.1	2.7	159.0	3.0	0.0	Horz	QP	0.0	16.4	40.0	-23.6	EUT Vert
54.248	33.9	-30.1	3.8	298.0	3.0	0.0	Horz	QP	0.0	3.8	40.0	-36.2	EUT Vert
54.247	33.0	-30.1	3.1	258.0	3.0	0.0	Vert	QP	0.0	2.9	40.0	-37.1	EUT Vert