

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATION OF COMPLIANCE FCC Part 22 Certification

Dates of Tests: April 23 ~30, 2008 Test Report S/N: DR50110805C Test Site: DIGITAL EMC CO., LTD.

Model No.

R2NSXC-1380

APPLICANT

Epivalley CO., LTD.

Classification : Licensed Non-Broadcast Station Transmitter(TNB)

FCC Rule Part(s) : §22(H), §2

EUT Type : CDMA 2000 1x USB Dongle

Model name : SXC-1380

Serial number : Identical prototype

TX Frequency Range : 824.70 ~848.31 MHz (CDMA)

RX Frequency Range : 869.70 ~893.31 MHz (CDMA)

Max. RF Output Power : 0.218W ERP CDMA (23.39 dBm)

Max. SAR Measurement : 1.40W/kg CDMA Body SAR

Emission Designators: : 1M25F9W

Date of Issue : May 6, 2008

TABLE OF CONTENTS

	AUTHORIZATION LETTER	
	CONFIDENTIALITY LETTER(S)	
	TEST REPORT	
	1.1 SCOPE	3
	2.1 GENERAL INFORMATION	4
	3.1 DESCRIPTION OF TESTS	5
	4.1 TEST DATA	8
	4.1.1 CONDUCTED OUTPUT POWER	8
	4.1.2 EFFECTIVE RADIATED POWER OUTPUT	9
	4.1.3 CDMA RADIATED MEASUREMENTS	10
	4.1.4 FREQUENCY STABILITY(CDAM)	13
	5.1 PLOTS OF EMISSIONS	15
	6.1 LIST OF TEST EQUIPMENT	16
	7.1 SAMPLE CALCULATIONS	18
	8.1 CONCLUSION	19
\oint\oint\oint\oint\oint\oint\oint\oint	TEST PLOTS	
\oint\oint\oint\oint\oint\oint\oint\oint	FCC ID LABEL & LOCATION	
\oint\oint\oint\oint\oint\oint\oint\oint	TEST SETUP PHOTOGRAPHS	
\oint\oint\oint\oint\oint\oint\oint\oint	EXTERNAL PHOTOGRAPHS	
\oint\oint\oint\oint\oint\oint\oint\oint	INTERNAL PHOTOGRAPHS	
\oint\oint\oint\oint\oint\oint\oint\oint	BLOCK DIAGRAM(S)	
\oint\oint\oint\oint\oint\oint\oint\oint	SCHEMATIC DIAGRAM(S)	
\oint\oint\oint\oint\oint\oint\oint\oint	OPERATIONAL DESCRIPTION	
\oint\oint\oint\oint\oint\oint\oint\oint	PARTS LIST	
\limits	PARTS LOCATION	
	USER'S MANUAL	
\limits	SAR TEST REPORT	
\oint\oint\oint\oint\oint\oint\oint\oint	SAR VALIDATION AND TEST PLOTS	
\oint\oint\oint\oint\oint\oint\oint\oint	SAR TEST SETUP PHOTOGRAPHS	
\oint\oint\oint\oint\oint\oint\oint\oint	SAR PROBE CALIBRATION	
\limits	SAR DIPOLE CALIBRATION	

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant: Epivalley CO., LTD.

Address: Lordland EZ Tower #511, 153, Gumi-Dong, Bundang-Gu,

Seongnam-Cit, Kyunggi-Do, KOREA

Attention: Woo Won Choung

• FCC ID: R2NSXC-1380

Quantity: Quantity production is planned

Emission Designators: 1M25F9W (CDMA)

Tx Freq. Range: 824.70 ~848.31 MHz (CDMA)
 Rx Freq. Range: 869.70 - 893.31 MHz (CDMA)
 Max. Power Rating: 0.218W ERP CDMA (23.39 dBm)

• FCC Classification(s): Licensed Non-Broadcast Station Transmitter(TNB)

• Equipment (EUT) Type: CDMA 2000 1x USB Dongle

Modulation(s): CDMA

• Frequency Tolerance: $\pm 0.00025 \% (2.5ppm)$

• FCC Rule Part(s): §22(H), §2

Dates of Tests: April 23 ~ 30, 2008
 Place of Tests: DIGITAL EMC
 Test Report S/N: DR50110805C

2.1. General Information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 http://www.digitalemc.com E-mail: harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

This laboratory is accredited by NVLAP for NVLAP Lab. Code: 200559-0.

Test operator: engineer

May 6, 2008 Dong -Chul CHA

Data Name Signature

Report Reviewed By: manager

May 6, 2008 Harvey Sung

Data Name Signature

Ordering party:

Company name : Epivalley CO., LTD.

Address : Loadland EZ Tower #511, 513, Gumi-dong, Bundang-Gu,

Zipcode : 463-500

City/town : Seongnam-City, Kyunggi-Do

Country : KOREA

Date of order : April 18, 2008

3.1 DESCRIPTION OF TESTS

3.1.1 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$.
- (b) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (c) The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

3.1.2 Occupied Bandwidth

The 99% power bandwidth was measured with a calibrated spectrum analyzer.

3.1.3 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to 10 GHz.

At the input terminals of the spectrum analyzer, an isolator(RF circulator with on port terminated with 50ohms) and an 870 MHz to 890 MHz band pass filter is connected between the test transceiver(for conducted tests)or the receive antenna(for radiated tests) and the analyzer. The rejection of the band pass filter to signals in the 825-845 MHz range is adequate to limit the transmit energy from the test transceiver which appears to a level which will allow the analyzer to measure signals less than-90dBm. Calibration of the test receiver is performed in the 870-890 MHz range to insure accuracy to allow variation in the band pass filter insertion loss to be calibrated.

3.1.4 Frequencies

At the input terminals of the spectrum analyzer, an isolator (RF pad) and a high-pass filter are connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests) and the analyzer. The high-pass filter is to limit the fundamental frequency from interfering with the measurement of low-level spurious and harmonic emissions and to ensure that the preamplifier is not saturated.

3.1.5 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

(Continued...)

3.1.6 Frequency Stability/Temperature Variation.

The frequency stability of the transmitter is measured by:

- a) **Temperature**: The temperature is varied from -30°C to + 50°C using an environmental chamber with 10°C increments.
- b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the nominal voltage at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification –The minimum frequency stability shall be +/- 0.00025% at any time during normal operation.

Specification — The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature.
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C(usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency to the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements is made at 10°C interval up to room temperature. At least a period of one and one half hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency were made at 10 intervals starting at -30°C up to +50°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

(Continued...)

3.1.7 Radiated Emission

Final test was performed according to ANSI C63.4-2003 at the open field test site. There are no deviations from the standard.

The EUT was placed in a 0.8m high table along with the peripherals. The turn table was separated from the antenna distance 3meters. Cables were placed in a position to produce maximum emissions as determined by experimentation, and operation mode was selected for maximum.

The frequencies and amplitudes of maximum emission were measured at varying azimuths, antenna heights and antenna polarities. Reported are maximized emission levels.

These tests were performed at 120kHz of 6dB bandwidth.

3.1.8 Conducted Emission

The power line conducted interference measurements were performed according to ANSI C63.4-2003 in a shielded enclosure with peripherals placed on a table, 0.8m high over a metal floor. It was located more than required distance away from the shielded enclosure wall. There are no deviations from the standard.

The EUT was plugged into the LISN and the frequency range of interest scanned.

Reported are maximized emission levels.

These tests were performed at 9kHz of 6dB bandwidth.

4.1 TEST DATA

4.1.1 Conducted Output Power

The output power was measured under all R.C.s and S.O.s which are listed below measurement data. The worst case output power is reported with RC1 and SO55.

Therefore this device was tested under RC1 and SO55.

SAR Measurement Procedures for 3G Devices(Released October 2007)

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP2 C.S0011 / TIA-98-E, Sec. 4.4.5
- Power measurement configurations
 - Test Mode 1(C.S0011 Table 4.4.5.2-1), SO55, RC1, Traffic Channel @9600bps
 - Test Mode 3(C.S0011 Table 4.4.5.2-2), SO55 or SO32, RC3, FCH @9600bps
 - Test Mode 3(C.S0011 Table 4.4.5.2-2), SO32, RC3, FCH+SCH @9600bps
 - other configurations supported by the DUT
 - power control
 - Bits Hold for FCH+SCH
 - · otherwise ALL Bits Up

- Measurement data

Band	Channel	RC1	RC1	RC3	RC3	RC3	RC3
Band		SO2	SO55	SO2	SO55	SO32 (Only FCH)	SO32 (TDSO)
	1013	24.70	24.81	24.67	24.62	24.70	24.79
Cellular	384	24.50	24.54	24.42	24.40	24.46	24.44
	777	24.38	24.41	24.31	24.31	24.35	24.35

4.1.2 Effective Radiated Power Output

A. POWER: High (CDMA Mode)

Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	ERP (W)	ERP (dBm)	Supplied Power	Note
824.70	-16.42	V	0.200	23.02	DC 5V	RC1 SO55
836.52	-16.68	V	0.197	22.94	DC 5V	RC1 SO55
848.31	-15.55	V	0.218	23.39	DC 5V	RC1 SO55

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

4.1.3 CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.70 MHz

CHANNEL : <u>1013(Low)</u>

MEASURED OUTPUT POWER : $\underline{23.02}$ dBm = $\underline{0.200}$ W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 36.02$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1649.40	-51.15	6.56	-44.59	V	67.61
1649.40	-50.98	6.56	-44.42	Н	67.44
-	-	-	-	-	-
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

4.1.3 CDMA Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.52 MHz

CHANNEL: 384(Mid)

MEASURED OUTPUT POWER : 22.94 dBm = 0.197 W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: <u>3</u> meters

LIMIT : $43 + 10 \log_{10} (W) = \underline{35.94}$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1673.04	-53.51	6.59	-46.92	V	69.86
1673.04	-56.43	6.59	-49.84	Н	72.78
-	-	-	-	-	-
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

4.1.3 CDMA Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 848.31 MHz

CHANNEL: 777(High)

MEASURED OUTPUT POWER : 23.39 dBm = 0.218 W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = \underline{36.39}$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1696.62	-52.86	6.61	-46.25	V	69.64
1696.62	-49.89	6.61	-43.28	Н	66.67
-	-	-	-	-	-
-	-	-	-	-	-

NOTE

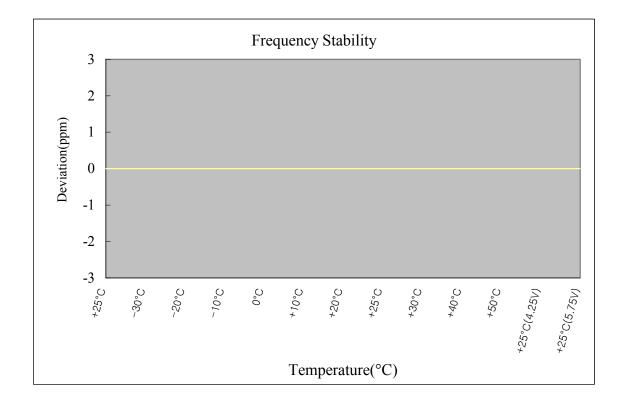
Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

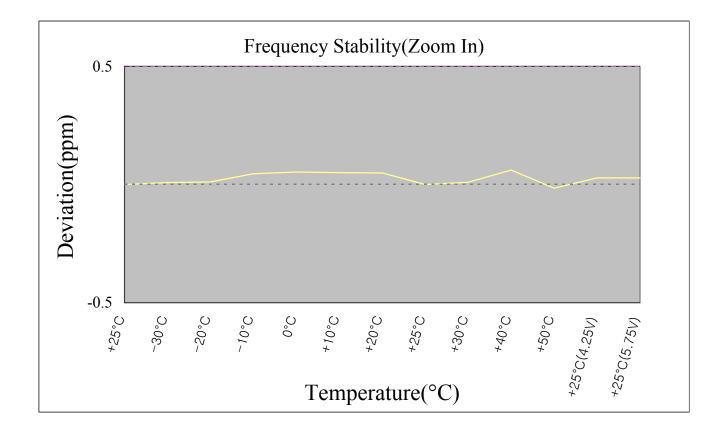
The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

4.1.4 Frequency Stability (CDMA)

OPERATING FREQUENCY: 836,519,977 Hz

CHANNEL : 0384(Mid)


REFERENCE VOLTAGE : 5 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	5	+25(Ref)	836,519,977	0.000000
100%		-30	836,519,984	0.000001
100%		-20	836,519,986	0.000001
100%		-10	836,520,015	0.000005
100%		0	836,520,021	0.000005
100%		+10	836,520,019	0.000005
100%		+20	836,520,018	0.000005
100%		+25	836,519,977	0.000000
100%		+30	836,519,985	0.000001
100%		+40	836,520,028	0.000006
100%		+50	836,519,964	-0.000002
85%	4.250	+25	836,520,000	0.000003
115%	5.750	+25	836,520,000	0.000003
BATT.ENDPOINT	-	-	-	-

4.1.4 Frequency Stability (CDMA)

(Continued...)

5.1 PLOTS OF EMISSIONS

(SEE ATTACHMENT "Test Plots")

6.1 LIST OF TEST EQUIPMENT

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
01	Spectrum Analyzer	Agilent	E4404B	21/03/08	21/03/09	US41061134
02	Spectrum Analyzer	Agilent	E4440A	15/11/07	15/11/08	MY45304199
03	Spectrum Analyzer	H.P	8563E	09/10/07	09/10/09	3551A04634
04	Spectrum Analyzer	Rohde Schwarz	FSP	06/09/07	06/09/08	100385
05	Spectrum Analyzer	H.P	8591E	16/04/08	16/04/09	3649A05889
06	EMI TEST RECEIVER	R&S	ESU	11/01/08	11/01/09	100014
07	Power Meter	H.P	EMP-442A	10/07/07	10/07/08	GB37170413
08	Power Sensor	Н.Р	8481A	11/03/08	11/03/09	3318A96566
09	Frequency Counter	H.P	5342A	06/09/07	06/09/08	2119A04450
10	Signal Generator	Rohde Schwarz	SMR20	02/04/08	02/04/09	101251
11	Signal Generator	H.P	ESG-3000A	10/07/07	10/07/08	US37230529
12	Vector Signal Generator	Rohde Schwarz	SMJ100A	17/01/08	17/01/09	100148
13	Audio Analyzer	H.P	8903B	10/07/07	10/07/08	3011A09448
14	Modulation Analyzer	H.P	8901B	14/07/07	14/07/08	3028A03029
15	Oscilloscope	Tektronix	TDS3052	02/11/07	02/11/08	B016821
16	Universal Radio Communication tester	Rohde Schwarz	CMU200	02/04/08	02/04/09	107631
17	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	18/07/07	18/07/09	GB43461134
18	Universal Radio communication Tester	Rohde Schwarz	CMU 200	02/04/08	02/04/09	107631
19	Bluetooth Tester	TESCOM	TC-3000A	02/11/08	02/11/09	3000A4A0121
20	Power Splitter	WEINSCHEL	1593	05/10/07	05/10/08	332
21	Power Splitter	Anritsu	K241B	19/10/07	19/10/08	020611
22	BAND Reject Filter	Microwave Circuits	N0308372	18/10/07	18/10/08	3125-01DC0312
23	BAND Reject Filter	Wainwright	WRCG1750	18/10/07	18/10/08	SN2
24	AC Power supply	DAEKWANG	5KVA	20/03/08	20/03/09	N/A
25	DC Power Supply	H.P	6622A	20/03/08	20/03/09	465487
26	HORN ANT	EMCO	3115	10/08/07	10/08/08	6419
27	HORN ANT	EMCO	3115	09/10/07	09/10/08	21097
28	HORN ANT	A.H.Systems	SAS-574	20/08/07	20/08/08	154
29	HORN ANT	A.H.Systems	SAS-574	20/08/07	20/08/08	155
30	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2116
31	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2117

7.1 TEST EQUIPMENT

(CONTINUED)

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
32	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2261
33	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2262
34	TEMP & HUMIDITY Chamber	JISCO	J-RHC2	02/10/07	02/10/08	021031
35	Log Periodic Antenna	Schwarzbeck	UHALP9108A1	01/10/07	01/10/08	1098
36	Biconical Antenna	Schwarzbeck	VHA9103	08/06/07	08/06/08	2233
37	Digital Multimeter	H.P	34401A	20/03/08	20/03/09	3146A13475
38	Attenuator (10dB)	WEINSCHEL	23-10-34	05/10/07	05/10/08	BP4386
39	Attenuator (10dB)	WEINSCHEL	23-10-34	30/01/08	30/01/09	BP4387
40	High-Pass Filter	ANRITSU	MP526D	08/10/07	08/10/08	MP27756
41	Attenuator (3dB)	Agilent	8491B	12/07/07	12/07/08	58177
42	20dB Attenuator	Aeroflex/Weinschel	86-20-11	25/10/07	25/10/08	432
43	10dB Attenuator	Aeroflex/Weinschel	86-10-11	25/10/07	25/10/08	446
44	10dB Attenuator	Aeroflex/Weinschel	86-10-11	25/10/07	25/10/08	408
45	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	05/07/07	05/07/08	788
46	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	05/07/07	05/07/08	790
47	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	05/07/07	05/07/08	112
48	Amplifier (25dB)	Agilent	8447D	24/04/08	24/04/09	2944A10144
49	Amplifier (30dB)	Agilent	8449B	25/10/07	25/10/08	3008A01590
50	Amplifier (22dB)	H.P	8447E	27/02/08	27/02/09	2945A02865
51	Position Controller	TOKIN	5901T	N/A	N/A	14173
52	Driver	TOKIN	5902T2	N/A	N/A	14174
53	RFI/FIELD Intensity Meter	Kyorits	KNW-2402	06/09/07	06/09/08	4N-170-3
54	LISN	Kyorits	KNW-407	30/08/07	30/08/08	8-317-8
55	LISN	Kyorits	KNW-242	06/10/07	06/10/08	8-654-15
56	CVCF	NF Electronic	4400	N/A	N/A	344536 4420064
57	Software	ТоҮо ЕМІ	EP5/RE	N/A	N/A	Ver 2.0.800
58	Software	ТоҮо ЕМІ	EP5/CE	N/A	N/A	Ver 2.0.801
59	Software	AUDIX	e3	N/A	N/A	Ver 3.0
60	Software	Agilent	Benchlink	N/A	N/A	A.01.09 021211

7.1 SAMPLE CALCULATIONS

A. Emission Designator

Emission Designator = 1M25F9W

CDMA BW = 1.2526 MHz (Measured at the 99.75% power bandwidth)

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

8.1 CONCLUSION

The data collected shows that the **Epivalley CO., LTD.** CDMA 2000 1x USB Dongle (**FCC ID: R2NSXC-1380**) complies with all the requirements of Parts 2 and 22 of the FCC rules.