

DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATION OF COMPLIANCE

CERTIFICATE OF COMPLIANCE FCC Part 22 & 24 Certification

Dates of Tests: December 21, 2009 ~ February 17, 2010 Test Report S/N:DR50111003A

Test Site : DIGITAL EMC CO., LTD.

FCC ID.

R2NSER-8189

APPLICANT

EpiValley Co., Ltd.

Purpose : Original Grant

Classification : Licensed Non-Broadcast Station Transmitter(PCB)

EUT Type : CDMA 1x EV-DO USB Modem with WLAN

Model name : SER-8189

Serial number : Identical prototype FCC Rule Part(s) : \$22(H), \$24(E), \$2

TX Frequency Range : Cellular Band: 824.70 ~ 848.31 MHz

PCS Band: 1851.25 ~ 1908.75 MHz

RX Frequency Range : Cellular Band: 869.70 ~ 893.31 MHz

PCS Band: 1931.25 ~ 1988.75 MHz

Max. RF Output Power : Cellular Band – 0.433W ERP

PCS Band – 0.321W EIRP

Date of Issue : March 2, 2010

The Test results relate only to the tested sample. It is not allowed to copy this report even partly without the allowance of DIGITAL EMC CO., LTD.

TABLE OF CONTENTS

	AUTHORIZATION LETTER	
	CONFIDENTIALITY LETTER(S)	
	TEST REPORT	
	1.1 SCOPE	3
	2.1 GENERAL INFORMATION	4
	3.1 DESCRIPTION OF TESTS	5
	3.2 SUMMARY OF TESTS	8
	4.1 TEST DATA	9
	4.1.1 CONDUCTED OUTPUT POWER	9
	4.1.2 EFFECTIVE RADIATED POWER OUTPUT	10
	4.1.3 CDMA RADIATED MEASUREMENTS	11
	4.1.4 FREQUENCY STABILITY(CDAM)	17
	5.1 PLOTS OF EMISSIONS	21
	6.1 LIST OF TEST EQUIPMENT	22
	7.1 SAMPLE CALCULATIONS	24
	8.1 CONCLUSION	25
	TEST PLOTS	
	FCC ID LABEL & LOCATION	
	TEST SETUP PHOTOGRAPHS	
	EXTERNAL PHOTOGRAPHS	
	INTERNAL PHOTOGRAPHS	
	BLOCK DIAGRAM(S)	
	SCHEMATIC DIAGRAM(S)	
	OPERATIONAL DESCRIPTION	
\oint{\oint}	PARTS LIST	
\limits	PARTS LOCATION	
	USER'S MANUAL	

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant: EpiValley Co., Ltd.

Address: Lordland EZ Tower #511, 513, Gumi-dong, Bundang-Gu, Sunganam-City, Kyunggi-Do, Korea

Attention: Woo Won Choung

• FCC ID: R2NSER-8189

• Quantity: Quantity production is planned

Emission Designators: Cellular Band: 1M29F9W

PCS Band: 1M30F9W

• Tx Freq. Range: Cellular Band: 824.70 ~ 848.31 MHz

PCS Band: 1851.25 ~ 1908.75 MHz

• Rx Freq. Range: Cellular Band: 869.70 ~ 893.31 MHz

PCS Band: 1931.25 ~ 1988.75 MHz

• Max. Power Rating: Cellular Band: 0.433W ERP(26.36dBm)

PCS Band: 0.321W EIRP(25.06dBm)

• FCC Classification(s): Licensed Portable Transmitter (PCB)

Equipment (EUT) Type: EVDO 1X USB Modem with WLAN

• Mode: CDMA

Frequency Tolerance: ± 0.00025 % (2.5ppm)
 FCC Rule Part(s): \$22(H), \$24(E), \$2

• Dates of Tests: December 21, 2009 ~ February 17, 2010

Place of Tests: DIGITAL EMC
 Test Report S/N: DR50111003A

2.1. Gener al Information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

http://www.digitalemc.com E-mail: harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

Tested by: Engineer

March 2, 2010 D.C. CHA

Date Name Signature

Reviewed by: *Manager*

March 2, 2010 W.J. Lee

Date Name Signature

Applicant:

Company name : EpiValley Co., Ltd.

Address : Lordland EZ Tower #511, 513, Gumi-dong, Bundang-Gu, Sungnam City, Kyunggi-Do, Korea

Date of order : November 24, 2009

3.1 DESCRIPTION OF TESTS

3.1.1 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB.
- (b) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (c) The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

3.1.2 Occupied Bandwidth

The 99% power bandwidth was measured with a calibrated spectrum analyzer.

3.1.3 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

3.1.5 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

(Continued...)

3.1.6 Frequency Stability/Temperature Variation.

The frequency stability of the transmitter is measured by:

- a) **Temperature**: The temperature is varied from -30°C to +50°C increments using an environmental chamber.
- b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the normal voltage for non hand-carried battery equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature (25°C to 27 °C to provide a reference)
- 2. The equipment is tuned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C up to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.1 DESCRIPTION OF TESTS

(Continued...)

3.1.7 Radiated Emission

Final test was performed according to ANSI C63.4-2003 at the open field test site. There are no deviations from the standard.

The EUT was placed in a 0.8m high table along with the peripherals. The turn table was separated from the antenna distance 3meters. Cables were placed in a position to produce maximum emissions as determined by experimentation, and operation mode was selected for maximum.

The frequencies and amplitudes of maximum emission were measured at varying azimuths, antenna heights and antenna polarities. Reported are maximized emission levels.

These tests were performed at 120kHz of 6dB bandwidth.

3.1.8 Conducted Emission

The power line conducted interference measurements were performed according to ANSI C63.4-2003 in a shielded enclosure with peripherals placed on a table, 0.8m high over a metal floor. It was located more than required distance away from the shielded enclosure wall. There are no deviations from the standard.

The EUT was plugged into the LISN and the frequency range of interest scanned.

Reported are maximized emission levels.

These tests were performed at 9kHz of 6dB bandwidth.

3.2 Summary of tests

FCC Part Section(s)	Parameter			
22.913(a) / 24.232(b), 2.1046	Power Output	C		
22.917 / 24.238, 2.1049(h)(i)	Occupied Bandwidth	C		
22.917(b) / 24.238(b)	Emission Bandwidth	C		
22.917 / 24.238 2.1051	Emission Limits Transmitter	C		
2.1053 (a)	Field Strength of Spurious Radiation	C		
2.1055	Frequency Stability	C		

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: The JBP (Computing device peripheral) portion of this device was tested and approved by FCC DOC procedure.

The sample was tested according to the following specification:

FCC Parts §22(H), §24(E), §2; ANSI C-63.4-2003

4.1 TEST DATA

4.1.1 Conducted Output Power

The output power was measured under all R.C.s and S.O.s which are listed below measurement data. The worst case output power is reported with SO55 of RC1 for CELLULAR band and PCS band. Therefore this device was tested under SO2 of RC1 for CELLULAR band and PCS band.

SAR Measurement Procedures for 3G Devices(Released October 2007)

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP2 C.S0011 / TIA-98-E, Sec. 4.4.5
- Power measurement configurations
 - 1. 1xRRT
 - Test Mode 1(C.S0011 Table 4.4.5.2-1), SO55, RC1, Traffic Channel @9600bps
 - Test Mode 3(C.S0011 Table 4.4.5.2-2), SO55 or SO32, RC3, FCH @9600bps
 - Test Mode 3(C.S0011 Table 4.4.5.2-2), SO32, RC3, FCH+SCH @9600bps
 - other configurations supported by the DUT
 - power control
 - · Bits Hold for FCH+SCH
 - · otherwise ALL Bits Up
 - 2. Ev-DO Rev.0
 - FTAP: 2 slot version of 307.2Kbps(ACK in all slots)
 - RTAP: 153.6Kbps in sub type 0/1 PHY Configuration
 - 3. Ev-DO Rev.A
 - FETAP: 2 slot version of 307.2Kbps(ACK in all slots)
 - RETAP: 4096 bits payload with 16 slot termination target In Subtype 2PHY configuration

- Measurement data

	1X RRT					Ev	Do	Ev	Do	
Band	Channel	RC1	RC1	RC3	RC3	RC3	(Re	v.0)	(Re	v.A)
Zunu		SO2	SO55	SO2	SO55	SO32 (TDSO)	FTAP	RTAP	FETAP	RETAP
	1013	24.53	24.48	24.52	24.50	24.49	24.42	24.25	24.44	24.31
Cellular	0384	24.10	24.09	23.99	24.02	23.98	23.98	23.99	23.96	24.00
	0777	24.22	24.20	24.12	24.16	24.15	24.09	24.10	24.06	24.07
	0025	24.53	24.48	24.52	24.50	24.49	24.42	24.25	24.44	24.31
PCS	0600	23.40	23.39	23.29	23.30	23.25	23.33	23.34	23.33	23.34
	1175	24.15	24.13	24.00	24.09	24.01	24.03	24.00	24.02	23.99

4.1.2 Effective Radiated Power Output

A. POWER: **High (Cellular Band)**

Band	Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	ERP (dBm)	ERP (W)	Supplied Power	Note
	824.70	-12.21	Н	26.36	0.433	Battery	RC1 & SO2
Callalan	836.52	-12.41	Н	25.91	0.390	Battery	RC1 & SO2
Cellular	848.31	-14.52	Н	24.92	0.310	Battery	RC1 & SO2
	824.70	-12.25	Н	26.24	0.421	Adapter	RC1 & SO2

B. POWER: High (PCS Band)

Band	Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	EIRP (dBm)	EIRP (W)	Supplied Power	Note
	1851.25	-13.64	Н	25.06	0.321	Battery	RC1 & SO2
DCC.	1880.00	-15.60	Н	23.82	0.241	Battery	RC1 & SO2
PCS	1908.75	-17.41	Н	22.07	0.161	Battery	RC1 & SO2
	1851.25	-13.89	Н	24.92	0.310	Adapter	RC1 & SO2

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

Field Strength of SPURIOUS Radiation

TEST MODE : Cellular

OPERATING FREQUENCY : 824.70 MHz

CHANNEL: 1013(Low)

MEASURED OUTPUT POWER : 26.36 dBm = 0.433 W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 39.36$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	
		(dBm)	(dBd)	(dBm)	(dBc)
1649.40	Н	-36.94	5.63	-31.31	57.67
1649.40	V	-47.11	5.63	-41.48	67.84
2474.10	Н	-36.21	7.01	-29.20	55.56
2474.10	V	-43.05	7.01	-36.04	62.40

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : Cellular

OPERATING FREQUENCY : 836.52 MHz

CHANNEL: 384(Mid)

MEASURED OUTPUT POWER : 25.91 dBm = 0.390 W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 38.91$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	
		(dBm)	(dBd)	(dBm)	(dBc)
1673.04	Н	-35.65	5.69	-29.96	55.87
1673.04	V	-44.41	5.69	-38.72	64.63
2509.56	Н	-31.08	7.05	-24.03	49.94
2509.56	V	-45.56	7.05	-38.51	64.42

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : Cellular

OPERATING FREQUENCY : 848.31 MHz

CHANNEL: 777(High)

MEASURED OUTPUT POWER : 24.92 dBm = 0.310 W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 37.92$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	
		(dBm)	(dBd)	(dBm)	(dBc)
1696.62	Н	-33.71	5.75	-27.96	52.88
1696.62	V	-44.74	5.75	-38.99	63.91
2544.93	Н	-32.52	7.09	-25.43	50.35
2544.93	V	-48.58	7.09	-41.49	66.41

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

Field Strength of SPURIOUS Radiation

TEST MODE : PCS

OPERATING FREQUENCY: 1851.25 MHz

CHANNEL: 0025(Low)

MEASURED OUTPUT POWER : $\underline{25.06}$ dBm = $\underline{0.321}$ W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 38.06$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	
		(dBm)	(dBd)	(dBm)	(dBc)
3702.50	Н	-32.34	9.60	-22.74	47.80
3702.50	V	-33.02	9.60	-23.42	48.48
5553.75	Н	-41.83	11.12	-30.71	55.77
5553.75	V	-40.18	11.12	-29.06	54.12

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : PCS

OPERATING FREQUENCY : 1880.00 MHz

CHANNEL: 0600(Mid)

MEASURED OUTPUT POWER : $\underline{23.82}$ dBm = $\underline{0.241}$ W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 36.82$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	
		(dBm)	(dBd)	(dBm)	(dBc)
3760.00	Н	-31.40	9.59	-21.81	45.63
3760.00	V	-33.25	9.59	-23.66	47.48
5640.00	Н	-39.87	11.15	-28.72	52.54
5640.00	V	-39.85	11.15	-28.70	52.52

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : PCS

OPERATING FREQUENCY: 1908.75 MHz

CHANNEL: 1175(High)

MEASURED OUTPUT POWER : $\underline{22.07}$ dBm = $\underline{0.161}$ W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = \underline{35.07}$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	
		(dBm)	(dBd)	(dBm)	(dBc)
3817.50	Н	-28.69	9.58	-19.11	41.18
3817.50	V	-29.11	9.58	-19.53	41.60
5726.25	Н	-39.04	11.18	-27.86	49.93
5726.25	V	-40.55	11.18	-29.37	51.44

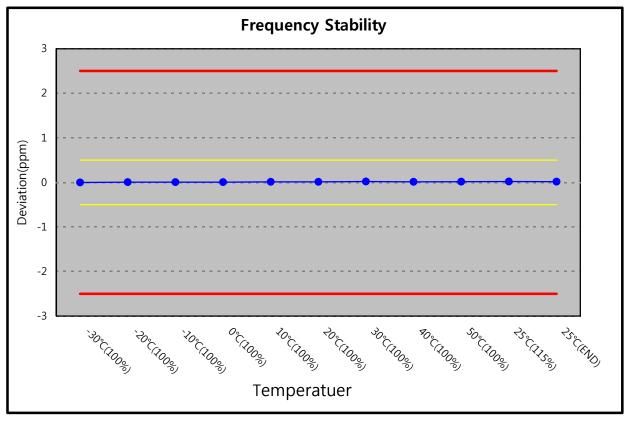
NOTE

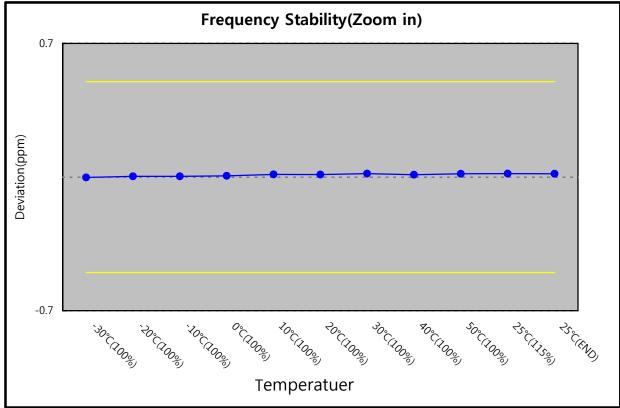
Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

4.1.4 Frequency Stability (Cellular Band)

OPERATING FREQUENCY : 836,519,992 Hz

CHANNEL: 0384(Mid)


REFERENCE VOLTAGE : 3.7 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(ppm)
100%	3.7	+25(Ref)	836,519,992	0.000
100%		-30	836,519,990	-0.002
100%		-20	836,519,995	0.004
100%		-10	836,519,995	0.004
100%		0	836,519,997	0.006
100%		+10	836,520,004	0.014
100%		+20	836,520,003	0.013
100%		+30	836,520,007	0.018
100%		+40	836,520,002	0.012
100%		+50	836,520,006	0.017
85%	3.15	+25	-	-
115%	4.26	+25	836,520,007	0.018
BATT.ENDPOINT	3.20	+25	836,520,006	0.017

4.1.4 Frequency Stability (Cellular Band)

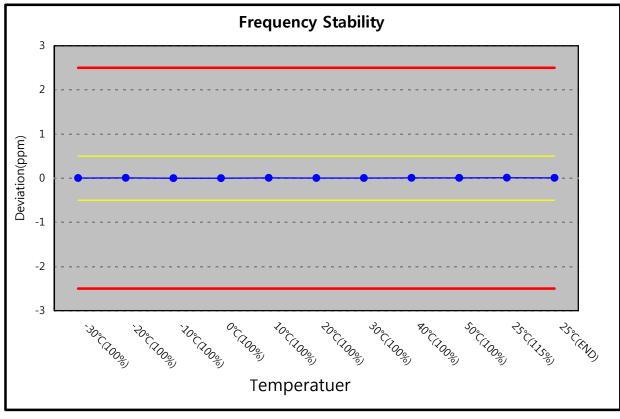
(Continued...)

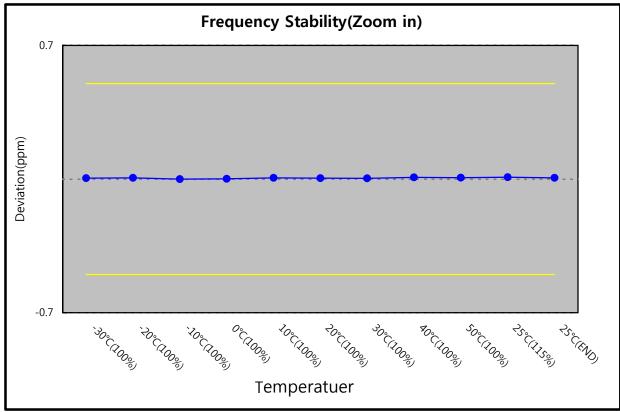
4.1.4 Frequency Stability (PCS Band)

(Continued...)

OPERATING FREQUENCY : 836,519,995 Hz

CHANNEL: 600(Mid)


REFERENCE VOLTAGE : 3.7 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(ppm)
100%	3.7	+25(Ref)	1,879,999,995	0.000
100%		-30	1,880,000,004	0.005
100%		-20	1,880,000,007	0.006
100%		-10	1,879,999,995	0.000
100%		0	1,879,999,996	0.001
100%		+10	1,880,000,007	0.006
100%		+20	1,880,000,004	0.005
100%		+30	1,880,000,003	0.004
100%		+40	1,880,000,011	0.009
100%		+50	1,880,000,009	0.007
85%	3.15	+25	-	-
115%	4.26	+25	1,880,000,013	0.010
BATT.ENDPOINT	3.20	+25	1,880,000,007	0.006

4.1.4 Frequency Stability (PCS Band)

(Continued...)

5.1 PLOTS OF EMISSIONS

(SEE ATTACHMENT "Test Plots")

6.1 TEST EQUIPMENT

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N	
\boxtimes	Spectrum Analyzer	Agilent	E4440A	25/09/09	25/09/10	MY45304199	
	Spectrum Analyzer	Rohde Schwarz	FSQ26	05/06/09	05/06/10	200445	
	Spectrum Analyzer(RE)	H.P	8563E	13/10/09	13/10/10	3551A04634	
	Power Meter	H.P	EMP-442A	02/07/09	02/07/10	GB37170413	
	Power Sensor	H.P	8481A	02/07/09	02/07/10	3318A96332	
	Power Divider	Agilent	11636B	13/10/09	13/10/10	56471	
\boxtimes	Power Splitter	Anritsu	K241B	13/10/09	13/10/10	20611	
	Power Splitter	Anritsu	K241B	02/07/09	02/07/10	017060	
	Frequency Counter	H.P	5342A	13/07/09	13/07/10	2119A04450	
	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/09	10/10/10	30604493/021031	
\boxtimes	Digital Multimeter	H.P	34401A	13/03/09	13/03/10	3146A13475, US36122178	
	Multifuction Synthesizer	HP	8904A	06/10/09	06/10/10	3633A08404	
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	13/03/09	13/03/10	101251	
	Signal Generator	H.P	ESG-3000A	02/07/09	02/07/10	US37230529	
\boxtimes	Vector Signal Generator	Rohde Schwarz	SMJ100A	11/01/10	11/01/11	100148	
	Audio Analyzer	H.P	8903B	02/07/09	02/07/10	3011A09448	
	Modulation Analyzer	H.P	8901B	02/07/09	02/07/10	3028A03029	
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	02/07/09	02/07/10	GB43461134	
	Universal Radio communication Tester	Rohde Schwarz	CMU 200	19/05/09	19/05/10	106760	
	Bluetooth Tester	TESCOM	TC-3000B	02/07/09	02/07/10	3000B000268	
	Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-3	
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-2	
	Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-4	
\boxtimes	AC Power supply	DAEKWANG	5KVA	13/03/09	13/03/10	20060321-1	
\boxtimes	DC Power Supply	НР	6622A	13/03/09	13/03/10	3448A03760	
	DC Power Supply	НР	6633A	13/03/09	13/03/10	3524A06634	
	BAND Reject Filter	Microwave Circuits	N0308372	06/10/09	06/10/10	3125-01DC0352	
	BAND Reject Filter	Wainwright	WRCG1750	06/10/09	06/10/10	2	
	High-Pass Filter	ANRITSU	MP526D	06/10/09	06/10/10	M27756	
\boxtimes	High-pass filter	Wainwright	WHKX2.1	N/A	N/A	1	
	High-Pass Filter	Wainwright	WHKX3.0	N/A	N/A	9	
	High-Pass Filter	Wainwright	WHNX5.0	N/A	N/A	8	
	High-Pass Filter	Wainwright	WHNX8.5	N/A	N/A	1	
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	32	
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40-10SSK	N/A	N/A	53	
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	30	
\boxtimes	HORN ANT	ETS	3115	17/06/09	17/06/10	6419	
\boxtimes	HORN ANT	ETS	3115	23/09/09	23/09/10	21097	

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	154
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	155
\boxtimes	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2116
\boxtimes	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2117
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2261
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2262
	LOOP Antenna	ETS	6502	14/09/09	14/09/10	3471
	Coaxial Fixed Attenuators	Agilent	8491B	02/07/09	02/07/10	MY39260700
\boxtimes	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2342
	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2370
	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/09	01/10/10	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	11/01/10	11/01/11	BP4387
	Attenuator (20dB)	WEINSCHEL	86-20-11	06/10/09	06/10/10	432
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	446
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	408
	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/09	01/10/10	NN837
	Attenuator (30dB)	JFW	50FH-030-300	13/03/09	13/03/10	060320-1
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	02/07/09	02/07/10	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	02/07/09	02/07/10	790
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	02/07/09	02/07/10	112
\boxtimes	Amplifier (30dB)	Agilent	8449B	10/10/09	10/10/10	3008A01590
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	02/11/09	02/11/10	1020
	RF Power Amplifier	OPHIRRF	5069F	02/07/09	02/07/10	1006
	EMI TEST RECEIVER	R&S	ESU	29/01/10	29/01/11	100014
	BILOG ANTENNA	SCHAFFNER	CBL6112B	02/06/09	02/06/10	2737
	Amplifier (22dB)	H.P	8447E	29/01/10	29/01/11	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	12/05/09	12/05/10	100364
\boxtimes	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A	30/05/09	30/05/10	590
\boxtimes	BICONICAL ANT.	Schwarzbeck	VHA 9103	02/06/09	02/06/10	2233
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP 9108 A-1	07/10/09	07/10/10	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	06/10/09	06/10/10	91031946
	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	13/03/09	13/03/10	1252741
\boxtimes	Amplifier (25dB)	Agilent	8447D	12/05/09	12/05/10	2944A10144
	Amplifier (25dB)	Agilent	8447D	03/07/09	03/07/10	2648A04922
	Spectrum Analyzer(CE)	H.P	8591E	26/04/09	26/04/10	3649A05889
	LISN	Kyoritsu	KNW-407	29/01/10	29/01/11	8-317-8
	LISN	Kyoritsu	KNW-242	29/01/10	29/01/11	8-654-15
	CVCF	NF Electronic	4420	13/03/09	13/03/10	304935/337980
	50 ohm Terminator	НМЕ	CT-01	12/01/10	12/01/11	N/A
	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	03/07/09	03/07/10	4N-170-3

7.1 SAMPLE CALCULATIONS

A. Emission Designator

- Cellular Band -

- PCS Band -

Emission Designator = 1M29F9W Emission Designator = 1M30F9W

CDMA BW = 1.2852 MHz

F = Frequency Modulation

9 = Composite Digital Info

CDMA BW = 1.3048 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data) W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth) (Measured at the 99.75% power bandwidth)

8.1 CONCLUSION

The data collected shows that the **EpiValley Co., Ltd. CDMA 1x EV-DO USB Modem with WLAN (FCC ID: R2NSEC-8189)** complies with all the requirements of Parts 2, 22 and 24 of the FCC rules.