

# DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

## CERTIFICATION OF COMPLIANCE

# CERTIFICATE OF COMPLIANCE FCC Part 22 Certification

Dates of Tests: November 12 ~ 19, 2009 Test Report S/N: DR50110911X Test Site: DIGITAL EMC CO., LTD.

Model No.

**R2NSEC-8380** 

**APPLICANT** 

EpiValley Co., Ltd.

Classification : Licensed Non-Broadcast Station Transmitter (TNB)

FCC Rule Part(s) : §22(H), §2

EUT Type : CDMA 1x EV-DO USB Modem

Model name : SEC-8380

Serial number : Identical prototype
TX Frequency Range : 824.70 ~848.31 MHz
RX Frequency Range : 869.70 ~893.31 MHz

Max. RF Output Power : 0.378 W ERP(25.77 dBm)

**Emission Designators:** : 1M29F9W

Date of Issue : November 23, 2009

The Test results relate only to the tested sample. It is not allowed to copy this report even partly without the allowance of DIGITAL EMC CO., LTD.

# TABLE OF CONTENTS

| <b></b>                                         | AUTHORIZATION LETTER                  |    |
|-------------------------------------------------|---------------------------------------|----|
| <b></b>                                         | CONFIDENTIALITY LETTER(S)             |    |
| <b></b>                                         | TEST REPORT                           |    |
|                                                 | 1.1 SCOPE                             | 3  |
|                                                 | 2.1 GENERAL INFORMATION               | 4  |
|                                                 | 3.1 DESCRIPTION OF TESTS              | 5  |
|                                                 | 4.1 TEST DATA                         | 8  |
|                                                 | 4.1.1 CONDUCTED OUTPUT POWER          | 8  |
|                                                 | 4.1.2 EFFECTIVE RADIATED POWER OUTPUT | 9  |
|                                                 | 4.1.3 CDMA RADIATED MEASUREMENTS      | 10 |
|                                                 | 4.1.4 FREQUENCY STABILITY(CDAM)       | 13 |
|                                                 | 5.1 PLOTS OF EMISSIONS                | 15 |
|                                                 | 6.1 LIST OF TEST EQUIPMENT            | 16 |
|                                                 | 7.1 SAMPLE CALCULATIONS               | 18 |
|                                                 | 8.1 CONCLUSION                        | 19 |
| <b></b>                                         | TEST PLOTS                            |    |
| <b></b>                                         | FCC ID LABEL & LOCATION               |    |
| <b></b>                                         | TEST SETUP PHOTOGRAPHS                |    |
| <b></b>                                         | EXTERNAL PHOTOGRAPHS                  |    |
| <b></b>                                         | INTERNAL PHOTOGRAPHS                  |    |
| <b></b>                                         | BLOCK DIAGRAM(S)                      |    |
| <b></b>                                         | SCHEMATIC DIAGRAM(S)                  |    |
| <b></b>                                         | OPERATIONAL DESCRIPTION               |    |
| <b></b>                                         | PARTS LIST                            |    |
| <b></b>                                         | PARTS LOCATION                        |    |
| <b>\oint\oint\oint\oint\oint\oint\oint\oint</b> | USER'S MANUAL                         |    |

#### MEASUREMENT REPORT

#### **1.1 Scope**

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

### §2.1033 General Information

Applicant: EpiValley Co., Ltd.

Address: Lordland EZ Tower #511, 513, Gumi-dong, Bundang-Gu,

Sunganam-City, Kyunggi-Do, Korea

**Attention: Woo Won Choung** 

• FCC ID: R2NSEC-8380

Quantity: Quantity production is planned

Emission Designators: 1M29F9W

Tx Freq. Range: 824.70 ~ 848.31 MHz
 Rx Freq. Range: 869.70 ~ 893.31 MHz

• Max. Power Rating: 0.378 W ERP(25.77 dBm)

• FCC Classification(s): Licensed Non-Broadcast Station Transmitter (TNB)

• Equipment (EUT) Type: CDMA 1x EV-DO USB Modem

• Frequency Tolerance:  $\pm 0.00025 \% (2.5ppm)$ 

• FCC Rule Part(s): §22(H), §2

Dates of Tests: November 12 ~ 19, 2009

Place of Tests: DIGITAL EMCTest Report S/N: DR50110911X

#### 2.1. General Information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

http://www.digitalemc.com E-mail: harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

Tested by: Engineer

November 23, 2009 Sun-Kyu Ryu

Date Name Signature

Reviewed by: Manager

November 23, 2009 W.J. Lee

Date Name Signature

Applicant:

Company name : EpiValley Co., Ltd.

Address : Lordland EZ Tower #511, 513, Gumi-dong, Bundang-Gu, Sungnam City, Kyunggi-Do, Korea

Date of order : October 26, 2009

#### 3.1 DESCRIPTION OF TESTS

#### 3.1.1 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least  $43 + 10 \log(P) dB$ .
- (b) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (c) The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

#### 3.1.2 Occupied Bandwidth

The 99% power bandwidth was measured with a calibrated spectrum analyzer.

#### 3.1.3 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10<sup>th</sup> harmonic.

#### 3.1.5 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the

receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

(Continued...)

#### 3.1.6 Frequency Stability/Temperature Variation.

The frequency stability of the transmitter is measured by:

- a) **Temperature**: The temperature is varied from -30°C to +60°C increments using an environmental chamber.
- b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the normal voltage for non hand-carried battery equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.
- **Specification** The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within  $\pm 0.00025(\pm 2.5 \text{ppm})$  of the center frequency.

#### **Time Period and Procedure:**

- 1. The carrier frequency of the transmitter is measured at room temperature (25°C to 27 °C to provide a reference)
- 2. The equipment is tuned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C up to +60°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

#### 3.1 DESCRIPTION OF TESTS

(Continued...)

#### 3.1.7 Radiated Emission

Final test was performed according to ANSI C63.4-2003 at the open field test site. There are no deviations from the standard.

The EUT was placed in a 0.8m high table along with the peripherals. The turn table was separated from the antenna distance 3meters. Cables were placed in a position to produce maximum emissions as determined by experimentation, and operation mode was selected for maximum.

The frequencies and amplitudes of maximum emission were measured at varying azimuths, antenna heights and antenna polarities. Reported are maximized emission levels.

These tests were performed at 120kHz of 6dB bandwidth.

#### 3.1.8 Conducted Emission

The power line conducted interference measurements were performed according to ANSI C63.4-2003 in a shielded enclosure with peripherals placed on a table, 0.8m high over a metal floor. It was located more than required distance away from the shielded enclosure wall. There are no deviations from the standard.

The EUT was plugged into the LISN and the frequency range of interest scanned.

Reported are maximized emission levels.

These tests were performed at 9kHz of 6dB bandwidth.

### 4.1 TEST DATA

### **4.1.1 Conducted Output Power**

The output power was measured under all R.C.s and S.O.s which are listed below measurement data.

The worst case output power is reported with SO55 of RC3.

Therefore this device was tested under SO55 of RC3.

#### - Measurement data

|          |         |       |       | 1X RRT |       |                | Ev      | Do    | Ev      | Do    |
|----------|---------|-------|-------|--------|-------|----------------|---------|-------|---------|-------|
|          |         | RC1   | RC1   | RC3    | RC3   | RC3            | (Rev.0) |       | (Rev.A) |       |
| Band     | Channel | SO2   | SO55  | SO2    | SO55  | SO32<br>(TDSO) | FTAP    | RTAP  | P FETAP | RETAP |
|          | 1013    | 23.18 | 23.17 | 23.22  | 23.27 | 23.20          | 23.14   | 23.27 | 23.09   | 23.08 |
| Cellular | 0384    | 23.21 | 23.19 | 23.21  | 23.23 | 23.20          | 23.18   | 23.22 | 23.17   | 23.14 |
|          | 0777    | 22.80 | 22.81 | 22.82  | 22.84 | 22.78          | 22.79   | 22.82 | 22.77   | 22.71 |

### **4.1.2 Effective Radiated Power Output**

A. POWER: High (Cellular Mode)

| Freq. Tuned (MHz) | REF.<br>LEVEL<br>(dBm) | POL<br>(H/V) | ERP<br>(W) | ERP<br>(dBm) | Supplied<br>Power | Note        |
|-------------------|------------------------|--------------|------------|--------------|-------------------|-------------|
| 824.70            | -11.34                 | Н            | 0.378      | 25.77        | USB               | RC3<br>SO55 |
| 836.52            | -12.06                 | Н            | 0.360      | 25.56        | USB               | RC3<br>SO55 |
| 848.31            | -13.88                 | Н            | 0.317      | 25.01        | USB               | RC3<br>SO55 |

#### NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

#### **4.1.3 CDMA Radiated Measurements**

#### Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.70 MHz

CHANNEL: 1013(Low)

MEASURED OUTPUT POWER :  $\underline{25.77}$  dBm =  $\underline{0.378}$  W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT :  $43 + 10 \log_{10} (W) = 38.77$  dBc

| Freq.   | LEVEL@    | SUBSTITUTE | CORRECT   | POL   |       |
|---------|-----------|------------|-----------|-------|-------|
| (MHz)   | ANTENNA   | ANTENNA    | GENERATOR | (H/V) |       |
|         | TERMINALS | GAIN       | LEVEL     |       | (dBc) |
|         | (dBm)     | (dBd)      | (dBm)     |       |       |
| 1649.40 | -32.98    | 7.78       | -27.35    | Н     | 53.12 |
| 1649.40 | -32.05    | 7.78       | -26.42    | V     | 52.19 |
| -       | -         | -          | -         | -     | -     |
| -       | -         | -          | -         | -     | -     |
| -       | -         | -          | -         | -     | -     |

#### NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

#### **4.1.3 CDMA Radiated Measurements**

(Continued...)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.52 MHz

CHANNEL: 384(Mid)

MEASURED OUTPUT POWER :  $\underline{25.56}$  dBm =  $\underline{0.360}$  W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: <u>3</u> meters

LIMIT :  $43 + 10 \log_{10} (W) = 38.56$  dBc

| Freq.   | LEVEL@    | SUBSTITUTE | CORRECT   | POL   |       |
|---------|-----------|------------|-----------|-------|-------|
| (MHz)   | ANTENNA   | ANTENNA    | GENERATOR | (H/V) |       |
|         | TERMINALS | GAIN       | LEVEL     |       | (dBc) |
|         | (dBm)     | (dBd)      | (dBm)     |       |       |
| 1673.04 | -41.08    | 7.84       | -35.39    | Н     | 60.95 |
| 1673.04 | -40.98    | 7.84       | -35.29    | V     | 60.85 |
| -       | -         | -          | -         | -     | -     |
| -       | -         | -          | -         | -     | -     |
| -       | -         | -          | -         | -     | -     |

#### NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

#### **4.1.3 CDMA Radiated Measurements**

(Continued...)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 848.31 MHz

CHANNEL: 777(High)

MEASURED OUTPUT POWER :  $\underline{25.01}$  dBm =  $\underline{0.317}$  W

MODULATION SIGNAL : CDMA (Internal)

DISTANCE: 3 meters

LIMIT :  $43 + 10 \log_{10} (W) = 38.01$  dBc

| Freq.   | LEVEL@    | SUBSTITUTE | CORRECT   | POL   |       |
|---------|-----------|------------|-----------|-------|-------|
| (MHz)   | ANTENNA   | ANTENNA    | GENERATOR | (H/V) |       |
|         | TERMINALS | GAIN       | LEVEL     |       | (dBc) |
|         | (dBm)     | (dBd)      | (dBm)     |       |       |
| 1696.62 | -46.81    | 7.90       | -41.06    | Н     | 66.07 |
| 1696.62 | -46.11    | 7.90       | -40.36    | V     | 65.37 |
| -       | -         | -          | -         | -     | -     |
| -       | -         | -          | -         | -     | -     |
| -       | -         | -          | -         | -     | -     |

#### NOTE

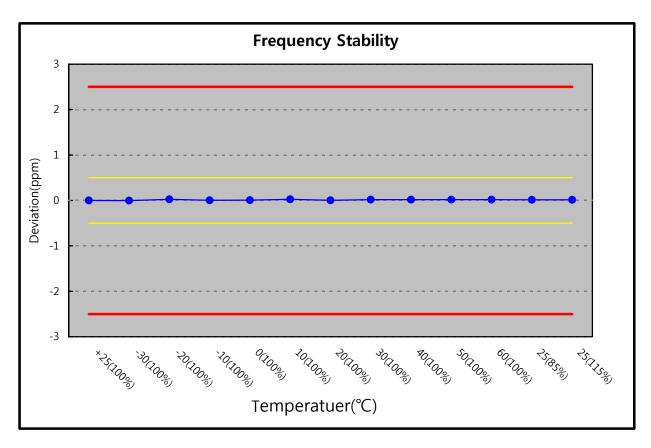
Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

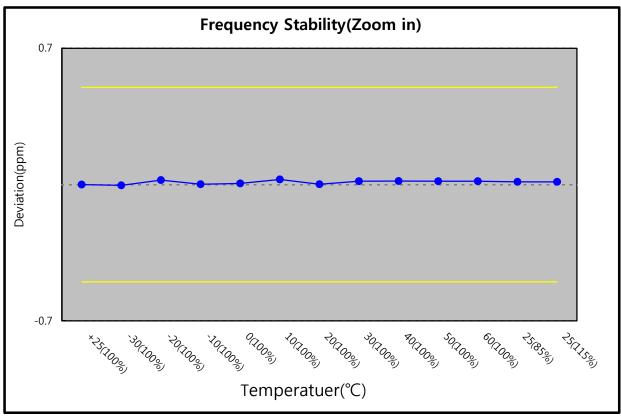
The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

# **4.1.4 Frequency Stability (CDMA)**

OPERATING FREQUENCY : 836,519,990 Hz

CHANNEL: 0384(Mid)


REFERENCE VOLTAGE : 5 VDC


DEVIATION LIMIT :  $\pm 0.00025$  % or 2.5 ppm

| VOLTAGE       | POWER | TEMP     | FREQ        | Deviation |
|---------------|-------|----------|-------------|-----------|
| (%)           | (VAC) | (dB)     | (Hz)        | (ppm)     |
| 100%          | 5.00  | +25(Ref) | 836,519,990 | 0.000     |
| 100%          |       | -30      | 836,519,987 | -0.004    |
| 100%          |       | -20      | 836,520,009 | 0.023     |
| 100%          |       | -10      | 836,519,992 | 0.002     |
| 100%          |       | 0        | 836,519,995 | 0.006     |
| 100%          |       | +10      | 836,520,012 | 0.026     |
| 100%          |       | +20      | 836,519,992 | 0.002     |
| 100%          |       | +30      | 836,520,004 | 0.012     |
| 100%          |       | +40      | 836,520,005 | 0.017     |
| 100%          |       | +50      | 836,520,004 | 0.018     |
| 100%          |       | +60      | 836,520,004 | 0.017     |
| 85%           | 4.25  | +25      | 836,520,002 | 0.017     |
| 115%          | 5.75  | +25      | 836,520,002 | 0.014     |
| BATT.ENDPOINT | -     | -        | -           | -         |

# **4.1.4 Frequency Stability (CDMA)**

(Continued...)





# **5.1 PLOTS OF EMISSIONS**

(SEE ATTACHMENT "Test Plots")

# **6.1 LIST OF TEST EQUIPMENT**

|             | Туре                                       | Manufacturer          | Model                              | Cal.Due.Date (dd/mm/yy) | Next.Due.Date<br>(dd/mm/yy) | S/N                    |
|-------------|--------------------------------------------|-----------------------|------------------------------------|-------------------------|-----------------------------|------------------------|
| $\boxtimes$ | Spectrum Analyzer                          | Agilent               | E4440A                             | 25/09/09                | 25/09/10                    | MY45304199             |
|             | Spectrum Analyzer                          | Rohde Schwarz         | FSQ26                              | 05/06/09                | 05/06/10                    | 200445                 |
|             | Spectrum Analyzer(RE)                      | H.P                   | 8563E                              | 13/10/09                | 13/10/10                    | 3551A04634             |
| $\boxtimes$ | Power Meter                                | H.P                   | EMP-442A                           | 02/07/09                | 02/07/10                    | GB37170413             |
| $\boxtimes$ | Power Sensor                               | H.P                   | 8481A                              | 02/07/09                | 02/07/10                    | 3318A96332             |
|             | Power Divider                              | Agilent               | 11636B                             | 13/10/09                | 13/10/10                    | 56471                  |
| $\boxtimes$ | Power Splitter                             | Anritsu               | K241B                              | 13/10/09                | 13/10/10                    | 20611                  |
|             | Power Splitter                             | Anritsu               | K241B                              | 02/07/09                | 02/07/10                    | 017060                 |
|             | Frequency Counter                          | H.P                   | 5342A                              | 13/07/09                | 13/07/10                    | 2119A04450             |
| $\boxtimes$ | TEMP & HUMIDITY<br>Chamber                 | JISCO                 | KR-100/J-RHC2                      | 10/10/09                | 10/10/10                    | 30604493/021031        |
| $\boxtimes$ | Digital Multimeter                         | H.P                   | 34401A                             | 13/03/09                | 13/03/10                    | 3146A13475, US36122178 |
|             | Multifuction Synthesizer                   | HP                    | 8904A                              | 06/10/09                | 06/10/10                    | 3633A08404             |
| $\boxtimes$ | Signal Generator                           | Rohde Schwarz         | SMR20                              | 13/03/09                | 13/03/10                    | 101251                 |
| $\boxtimes$ | Signal Generator                           | H.P                   | ESG-3000A                          | 02/07/09                | 02/07/10                    | US37230529             |
|             | Vector Signal Generator                    | Rohde Schwarz         | SMJ100A                            | 02/02/09                | 02/02/10                    | 100148                 |
|             | Audio Analyzer                             | H.P                   | 8903B                              | 02/07/09                | 02/07/10                    | 3011A09448             |
|             | Modulation Analyzer                        | H.P                   | 8901B                              | 02/07/09                | 02/07/10                    | 3028A03029             |
| $\boxtimes$ | 8960 Series 10<br>Wireless Comms. Test Set | Agilent               | E5515C                             | 02/07/09                | 02/07/10                    | GB43461134             |
|             | Universal Radio communication Tester       | Rohde Schwarz         | CMU 200                            | 19/05/09                | 19/05/10                    | 106760                 |
|             | Bluetooth Tester                           | TESCOM                | TC-3000B                           | 02/07/09                | 02/07/10                    | 3000B000268            |
|             | Thermo hygrometer                          | BODYCOM               | BJ5478                             | 06/02/09                | 06/02/10                    | 090205-3               |
| $\boxtimes$ | Thermo hygrometer                          | BODYCOM               | BJ5478                             | 06/02/09                | 06/02/10                    | 090205-2               |
|             | Thermo hygrometer                          | BODYCOM               | BJ5478                             | 06/02/09                | 06/02/10                    | 090205-4               |
|             | AC Power supply                            | DAEKWANG              | 5KVA                               | 13/03/09                | 13/03/10                    | 20060321-1             |
|             | DC Power Supply                            | HP                    | 6622A                              | 13/03/09                | 13/03/10                    | 3448A03760             |
| $\boxtimes$ | DC Power Supply                            | HP                    | 6633A                              | 13/03/09                | 13/03/10                    | 3524A06634             |
| $\boxtimes$ | BAND Reject Filter                         | Microwave<br>Circuits | N0308372                           | 06/10/09                | 06/10/10                    | 3125-01DC0352          |
|             | BAND Reject Filter                         | Wainwright            | WRCG1750                           | 06/10/09                | 06/10/10                    | 2                      |
|             | High-Pass Filter                           | ANRITSU               | MP526D                             | 06/10/09                | 06/10/10                    | M27756                 |
|             | High-pass filter                           | Wainwright            | WHKX2.1                            | N/A                     | N/A                         | 1                      |
|             | High-Pass Filter                           | Wainwright            | WHKX3.0                            | N/A                     | N/A                         | 9                      |
|             | Tunable Notch Filter                       | Wainwright            | WRCT800.0<br>/960.0-0.2/40-8SSK    | N/A                     | N/A                         | 10                     |
|             | Tunable Notch Filter                       | Wainwright            | WRCD1700.0<br>/2000.0-0.2/40-10SSK | N/A                     | N/A                         | 27                     |
|             | Tunable Notch Filter                       | Wainwright            | WRCT1900.0/<br>2200.0-5/40-10SSK   | N/A                     | N/A                         | 7                      |
|             | HORN ANT                                   | ETS                   | 3115                               | 17/06/09                | 17/06/10                    | 6419                   |
| $\boxtimes$ | HORN ANT                                   | ETS                   | 3115                               | 23/09/09                | 23/09/10                    | 21097                  |
|             | HORN ANT                                   | A.H.Systems           | SAS-574                            | 10/06/09                | 10/06/10                    | 154                    |
|             | HORN ANT                                   | A.H.Systems           | SAS-574                            | 10/06/09                | 10/06/10                    | 155                    |

|             | Туре                         | Manufacturer   | Model            | Cal.Due.Date<br>(dd/mm/yy) | Next.Due.Date (dd/mm/yy) | S/N           |
|-------------|------------------------------|----------------|------------------|----------------------------|--------------------------|---------------|
| $\boxtimes$ | Dipole Antenna               | Schwarzbeck    | VHA9103          | 06/10/09                   | 06/10/10                 | 2116          |
| $\boxtimes$ | Dipole Antenna               | Schwarzbeck    | VHA9103          | 06/10/09                   | 06/10/10                 | 2117          |
|             | Dipole Antenna               | Schwarzbeck    | UHA9105          | 05/10/09                   | 05/10/10                 | 2261          |
|             | Dipole Antenna               | Schwarzbeck    | UHA9105          | 05/10/09                   | 05/10/10                 | 2262          |
|             | LOOP Antenna                 | ETS            | 6502             | 14/09/09                   | 14/09/10                 | 3471          |
|             | Coaxial Fixed Attenuators    | Agilent        | 8491B            | 02/07/09                   | 02/07/10                 | MY39260700    |
| $\boxtimes$ | Coaxial Fixed Attenuators    | Agilent        | 8491B            | 02/07/09                   | 02/07/10                 | MY39260699    |
| $\boxtimes$ | Attenuator (10dB)            | WEINSCHEL      | 23-10-34         | 01/10/09                   | 01/10/10                 | BP4386        |
|             | Attenuator (10dB)            | WEINSCHEL      | 23-10-34         | 19/01/09                   | 19/01/10                 | BP4387        |
|             | Attenuator (20dB)            | WEINSCHEL      | 86-20-11         | 06/10/09                   | 06/10/10                 | 432           |
|             | Attenuator (10dB)            | WEINSCHEL      | 31696            | 06/10/09                   | 06/10/10                 | 446           |
|             | Attenuator (10dB)            | WEINSCHEL      | 31696            | 06/10/09                   | 06/10/10                 | 408           |
|             | Attenuator (40dB)            | WEINSCHEL      | 57-40-33         | 01/10/09                   | 01/10/10                 | NN837         |
|             | Attenuator (30dB)            | JFW            | 50FH-030-300     | 13/03/09                   | 13/03/10                 | 060320-1      |
|             | Type N<br>Coaxial CIRCULATOR | NOVA MICROWAVE | 0088CAN          | 02/07/09                   | 02/07/10                 | 788           |
|             | Type N Coaxial CIRCULATOR    | NOVA MICROWAVE | 0185CAN          | 02/07/09                   | 02/07/10                 | 790           |
|             | Type N<br>Coaxial CIRCULATOR | NOVA MICROWAVE | 0215CAN          | 02/07/09                   | 02/07/10                 | 112           |
| $\boxtimes$ | Amplifier (30dB)             | Agilent        | 8449B            | 10/10/09                   | 10/10/10                 | 3008A01590    |
| $\boxtimes$ | Amplifier                    | EMPOWER        | BBS3Q7ELU        | 02/02/09                   | 02/02/10                 | 1020          |
|             | RF Power Amplifier           | OPHIRRF        | 5069F            | 02/07/09                   | 02/07/10                 | 1006          |
|             | EMI TEST RECEIVER            | R&S            | ESU              | 02/02/09                   | 02/02/10                 | 100014        |
|             | BILOG ANTENNA                | SCHAFFNER      | CBL6112B         | 02/06/09                   | 02/06/10                 | 2737          |
|             | Amplifier (22dB)             | H.P            | 8447E            | 05/02/09                   | 05/02/10                 | 2945A02865    |
|             | EMI TEST RECEIVER            | R&S            | ESCI             | 12/05/09                   | 12/05/10                 | 100364        |
|             | LOG-PERIODIC ANT.            | Schwarzbeck    | UHALP9108A       | 30/05/09                   | 30/05/10                 | 590           |
|             | BICONICAL ANT.               | Schwarzbeck    | VHA 9103         | 02/06/09                   | 02/06/10                 | 2233          |
|             | LOG-PERIODIC ANT.            | Schwarzbeck    | UHALP9108A1      | 07/10/09                   | 07/10/10                 | 1098          |
|             | BICONICAL ANT.               | Schwarzbeck    | VHA 9103         | 06/10/09                   | 06/10/10                 | 91031946      |
|             | Low Noise Pre Amplifier      | TSJ            | MLA-100K01-B01-2 | 13/03/09                   | 13/03/10                 | 1252741       |
| $\boxtimes$ | Amplifier (25dB)             | Agilent        | 8447D            | 12/05/09                   | 12/05/10                 | 2944A10144    |
|             | Amplifier (25dB)             | Agilent        | 8447D            | 03/07/09                   | 03/07/10                 | 2648A04922    |
|             | Spectrum Analyzer(CE)        | H.P            | 8591E            | 26/04/09                   | 26/04/10                 | 3649A05889    |
|             | LISN                         | Kyoritsu       | KNW-407          | 03/07/09                   | 03/07/10                 | 8-317-8       |
|             | LISN                         | Kyoritsu       | KNW-242          | 13/10/09                   | 13/10/10                 | 8-654-15      |
|             | CVCF                         | NF Electronic  | 4420             | 13/03/09                   | 13/03/10                 | 304935/337980 |
|             | DC BLOCK                     | Hyuplip        | KEL-007          | N/A                        | N/A                      | 7-1581-5      |
|             | 50 ohm Terminator            | НМЕ            | CT-01            | 22/01/09                   | 22/01/10                 | N/A           |
|             | RFI/FIELD Intensity<br>Meter | Kyoritsu       | KNM-2402         | 03/07/09                   | 03/07/10                 | 4N-170-3      |

### 7.1 SAMPLE CALCULATIONS

#### A. Emission Designator

Emission Designator = 1M29F9W

CDMA BW = 1.2853 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

### **8.1 CONCLUSION**

The data collected shows that the **EpiValley Co., Ltd. CDMA 1x EV-DO USB Modem** (**FCC ID: R2NSEC-8380**) complies with all the requirements of Parts 2 and 22 of the FCC rules.