

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATE OF COMPLIANCE FCC Part 22, 24 Certification

Dates of Tests: July 9 ~ 21, 2008 Test Report S/N: DR50110807Z Test Site: DIGITAL EMC CO., LTD.

Model No.

R2NSDC-1000

APPLICANT

Epivalley CO.,LTD.

Classification : Licensed Portable Transmitter (PCB)

FCC Rule Part(s) : \$22(H), \$24(E), \$2

EUT Type : HSDPA USB Modem

Model name : SDC-1000

Serial number : Identical prototype

TX Frequency Range : GSM Cellular Band: 824.2 ~ 848.8 MHz

GSM PCS Band: 1850.2 ~ 1909.8 MHz WCDMA Cellular Band: 826.4 ~ 846.6MHz WCDMA PCS Band: 1852.4 ~ 1907.6MHz

Max. RF Output Power : GSM Cellular Band: 27.94dBm ERP(0.622W)

GSM PCS Band: 29.54dBm EIRP(0.899W)

WCDMA Cellular Band: 23.76dBm ERP(0.238W) WCDMA PCS Band: 24.44dBm EIRP(0.278W)

Max. SAR Measurement : 1.150 mW/g GSM850 GPRS Body SAR

0.677 mW/g WCDM Cell Body SAR 1.050 mW/g PCS1900 GPRS Body SAR 0.729 mW/g WCDMA PCS Body SAR

Emission Designators: : GSM Cellular Band: 246KGXW

GSM PCS Band: 249KGXW

WCDMA Cellular Band: 4M17F9W WCDMA PCS Band: 4M18F9W

Date of Issue : July 22, 2008

TABLE OF CONTENTS

	AUTHORIZATION LETTER	
	CONFIDENTIALITY LETTER(S)	
	TEST REPORT	
	1.1 SCOPE	3
	2.1 GENERAL INFORMATION	4
	3.1 DESCRIPTION OF TESTS	5
	4.1 TEST DATA	8
	4.1.1 CONDUCTED OUTPUT POWER	8
	4.1.2 EFFECTIVE RADIATED POWER OUTPUT	9
	4.1.3 CDMA RADIATED MEASUREMENTS	10
	4.1.4 FREQUENCY STABILITY(CDAM)	16
	5.1 PLOTS OF EMISSIONS	20
	6.1 LIST OF TEST EQUIPMENT	21
	7.1 SAMPLE CALCULATIONS	23
	8.1 CONCLUSION	24
	TEST PLOTS	
	FCC ID LABEL & LOCATION	
	TEST SETUP PHOTOGRAPHS	
	EXTERNAL PHOTOGRAPHS	
	INTERNAL PHOTOGRAPHS	
	BLOCK DIAGRAM(S)	
	SCHEMATIC DIAGRAM(S)	
	OPERATIONAL DESCRIPTION	
*	PARTS LIST	
*	PARTS LOCATION	
*	USER'S MANUAL	

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant: Epivalley CO.,LTD.

Address: Lordland EZ Tower #511, 153, Gumi-Dong, Bundang-Gu,

SEONGNAMCITY, GYUNGGI, KOREA

Attention: Woo Won Choung

• FCC ID: R2NSDC-1000

Quantity: Quantity production is planned
 Emission Designators: GSM Cellular Band: 246KGXW

GSM PCS Band: 249KGXW

WCDMA Cellular Band: 4M17F9W WCDMA PCS Band: 4M18F9W

Freq. Range: GSM Cellular Band: 824.2 ~ 848.8MHz(TX) / 869.2 ~ 893.8MHz(RX)

GSM PCS Band: 1850.2 ~ 1909.8MHz(TX) / 1930.2 ~ 1989.8MHz(RX)

WCDMA Cellular Band: 826.4 ~ 846.6MHz(TX) / 871.4 ~ 891.6MHz(RX)

WCDMA PCS Band: 1852.4 ~ 1907.6MHz(TX) / 1932.4 ~ 1987.6MHz(RX)

• Max. Power Rating: GSM Cellular Band: 27.94dBm

GSM PCS Band: 29.54dBm

WCDMA Cellular Band: 23.76dBm

WCDMA PCS Band: 24.44dBm

• FCC Classification(s): Licensed Portable Transmitter (PCB)

Equipment (EUT) Type: HSDPA USB Modem
 Mode: GSM / WCDMA

SSM (VEDIM

Frequency Tolerance: ± 0.00025 % (2.5ppm)
 FCC Rule Part(s): \$22(H), \$24(E), \$2

• Dates of Tests: July 9 ~ 21, 2008

• Place of Tests: DIGITAL EMC

• Test Report S/N: DR50110807Z

2.1. General Information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

This laboratory is accredited by NVLAP for NVLAP Lab. Code: 200559-0.

Test operator: engineer

July 22, 2008 Won-Jung LEE

Data Name Signature

Report Reviewed By: manager

July 22, 2008 Harvey Sung

Data Name Signature

Ordering party:

Company name : SUNGIL TELECOM CO., LTD.

Address : Loadland EZ Tower #511, 513, Gumi-dong, Bundang-Gu,

Zipcode : 463-500

City/town : SEONGNAM-CITY, KYUNGGI

Country : KOREA

Date of order : April 07, 2008

3.1 DESCRIPTION OF TESTS

3.1.1 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$.
- (b) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (c) The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

3.1.2 Occupied Bandwidth

The 99% power bandwidth was measured with a calibrated spectrum analyzer.

3.1.3 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

3.1.5 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

(Continued...)

3.1.6 Frequency Stability/Temperature Variation.

The frequency stability of the transmitter is measured by:

- a) **Temperature**: The temperature is varied from -30°C to +50°C increments using an environmental chamber.
- b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the normal voltage for non hand-carried battery equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature (25°C to 27 °C to provide a reference)
- 2. The equipment is tuned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C up to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

(Continued...)

3.1.7 Radiated Emission

Final test was performed according to ANSI C63.4-2003 at the open field test site. There are no deviations from the standard.

The EUT was placed in a 0.8m high table along with the peripherals. The turn table was separated from the antenna distance 3meters. Cables were placed in a position to produce maximum emissions as determined by experimentation, and operation mode was selected for maximum.

The frequencies and amplitudes of maximum emission were measured at varying azimuths, antenna heights and antenna polarities. Reported are maximized emission levels.

These tests were performed at 120kHz of 6dB bandwidth.

3.1.8 Conducted Emission

The power line conducted interference measurements were performed according to ANSI C63.4-2003 in a shielded enclosure with peripherals placed on a table, 0.8m high over a metal floor. It was located more than required distance away from the shielded enclosure wall. There are no deviations from the standard.

The EUT was plugged into the LISN and the frequency range of interest scanned.

Reported are maximized emission levels.

These tests were performed at 9kHz of 6dB bandwidth.

4.1 TEST DATA

4.1.1 Conducted Output Power

A base station simulator(R&S, M/N: CMU200) was used to establish communication with **HSDPA USB Modem.** The base station simulator parameters were set to produce the maximum power from the EUT. The EUT was tested under all configurations and the highest power is reported in WCDMA modes and GSM modes. The GSM and WCDMA conducted powers are reported below respectively.

		GSM Conducted Output Power(dBn				
Band	Mode	Low Channel	Middle Channel	High Channel		
	GSM	30.7	30.8	30.9		
Cellular	GPRS 10	30.6	30.7	30.8		
	GPRS 12	30.5	30.6	30.7		
	GSM	29.6	29.7	29.6		
PCS	GPRS 10	29.4	29.4	29.3		
	GPRS 12	29.3	29.3	29.2		

R	F Conduct	ed Power T	UMTS RF Con	ducted Power Table	
	EDGE Data				HSDPA inactive
Band	Channel	ennel EDGE 12 EDGE 10 [dBm]		Channel	12.2kbps RMC [dBm]
	128	28.5	28.6	4132	22.8
Cellular	190	28.6	28.7	4182	23.2
	251	28.7	28.8	4233	23.7
	512	27.8	28.0	9262	23.5
PCS	661	27.9	28.1	9400	23.6
	810	27.8	28.0	9538	23.0

3GPP Release Version	Mode Channel	Po 4132	wer (dB 4182	m) 4233	Bc	βa	Bc/βd	Sub- Test
5		22.62	23.09	23.61	2/15	15/15	2/15	1
5	HSDPA	22.62	23.08	23.61	15/15	15/15	12/15	2
5	(Cellular)	22.75	23.06	23.60	15/15	8/15	15/8	3
5		22.76	23.05	23.60	15/15	4/15	15/4	4
-	Channel	9262	9400	9538	-	-	-	
5		23.38	23.59	23.0	2/15	15/15	2/15	1
5	HSDPA	23.41	23.59	22.92	15/15	15/15	12/15	2
5	(PCS)	23.47	23.56	23.0	15/15	8/15	15/8	3
5		23.48	23.54	22.98	15/15	4/15	15/4	4

According to above power table, this device was tested following worst case modes.

-Worst case: GSM Cellular Band - GSM mode

GSM PCS Band - GSM mode

WCDMA Cellular Band - 12.2Kbps RMC Inactive mode
WCDMA PCS Band - 12.2Kbps RMC Inactive mode

4.1.2 Effective Radiated Power Output

A. POWER: **High** (Cellular Band)

Mode	Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	ERP (dBm)	ERP (W)	Supplied Power	Note
	824.20	-11.37	HOR	26.43	0.439	DC 5V	-
GSM	836.60	-10.81	HOR	27.94	0.622	DC 5V	-
	848.80	-10.24	HOR	27.67	0.584	DC 5V	-
	826.40	-15.93	VER	21.87	0.154	DC 5V	-
WCDMA	836.40	-14.56	VER	23.76	0.238	DC 5V	-
	846.60	-14.30	VER	23.34	0.216	DC 5V	-

B. POWER: High (PCS Band)

Mode	Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	EIRP (dBm)	EIRP (W)	Supplied Power	Note
	1850.20	-12.10	VER	29.32	0.855	DC 5V	-
GSM	1880.00	-11.71	VER	29.54	0.899	DC 5V	-
	1909.80	-11.89	VER	29.22	0.835	DC 5V	-
	1852.40	-17.11	VER	24.30	0.269	DC 5V	-
WCDMA	1880.00	-16.81	VER	24.44	0.278	DC 5V	-
	1907.60	-18.12	VER	23.18	0.208	DC 5V	-

NOTES:

<u>Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

The EUT was placed on a wooden table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole antenna or horn antenna was substituted in place of the EUT. This antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole antenna or horn antenna is measured. The ERP or EIRP is recorded.

Field Strength of SPURIOUS Radiation

TEST MODE : GSM

OPERATING FREQUENCY: 824.2 MHz

CHANNEL: 128(Low)

MEASURED OUTPUT POWER : $\underline{26.43}$ dBm = $\underline{0.439}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 39.43$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1648.40	-37.94	6.71	-31.23	Н	57.66
1648.40	-40.02	6.71	-33.31	V	59.74
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : GSM

OPERATING FREQUENCY: 836.6 MHz

CHANNEL: 190(Mid)

MEASURED OUTPUT POWER : $\underline{27.94}$ dBm = $\underline{0.622}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 40.94$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1673.20	-36.96	6.60	-30.36	Н	58.30
1673.20	-40.00	6.60	-33.40	V	61.34
-	-	-	-	-	1

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : GSM

OPERATING FREQUENCY: 848.8 MHz

CHANNEL: 251(High)

MEASURED OUTPUT POWER : 27.67 dBm = 0.584 W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 40.67$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1697.60	-38.28	6.48	-31.80	Н	59.47
1697.60	-39.02	6.48	-32.54	V	60.21
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : WCDMA

OPERATING FREQUENCY: 826.4 MHz

CHANNEL: 4132(Low)

MEASURED OUTPUT POWER : $\underline{21.87}$ dBm = $\underline{0.154}$ W

 $MODULATION\ SIGNAL\ :\ WCDMA\ (Internal)$

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 33.87$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1652.80	-44.23	6.70	-37.53	Н	59.40
1652.80	-45.15	6.70	-38.45	V	60.32
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : WCDMA

OPERATING FREQUENCY: 836.4 MHz

CHANNEL: 4183(Mid)

MEASURED OUTPUT POWER : $\underline{23.76}$ dBm = $\underline{0.238}$ W

MODULATION SIGNAL : WCDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 36.76$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1672.80	-36.96	6.60	-30.36	Н	54.12
1672.80	-40.00	6.60	-33.40	V	57.16
-	-	-	-	1	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : WCDMA

OPERATING FREQUENCY : 846.6 MHz

CHANNEL: 4233(High)

MEASURED OUTPUT POWER : $\underline{23.34}$ dBm = $\underline{0.216}$ W

MODULATION SIGNAL : WCDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = \underline{36.34} \text{ dBc}$

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1693.20	-44.51	6.50	-38.01	Н	61.35
1693.20	-42.63	6.50	-36.13	V	59.47
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : GSM

OPERATING FREQUENCY : 1850.2 MHz

CHANNEL: 512(Low)

MEASURED OUTPUT POWER : $\underline{29.32}$ dBm = $\underline{0.855}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 42.32$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3700.40	-43.95	9.57	-34.38	Н	63.70
3700.40	-42.81	9.57	-33.24	V	62.56
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : GSM

OPERATING FREQUENCY : 1880.0 MHz

CHANNEL: 661(Mid)

MEASURED OUTPUT POWER : $\underline{29.54}$ dBm = $\underline{0.899}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 42.54$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3760.00	-43.55	9.47	-34.08	Н	63.62
3760.00	-43.29	9.47	-33.82	V	63.36
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : GSM

OPERATING FREQUENCY : 1909.8 MHz

CHANNEL: 810(High)

MEASURED OUTPUT POWER : $\underline{29.22}$ dBm = $\underline{0.835}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 42.22$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3819.60	-43.97	9.37	-34.60	Н	63.82
3819.60	-43.61	9.37	-34.24	V	63.46
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : WCDMA

OPERATING FREQUENCY: 1852.4 MHz

CHANNEL : 9262(Low)

MEASURED OUTPUT POWER : $\underline{24.30}$ dBm = $\underline{0.269}$ W

MODULATION SIGNAL : WGSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 37.30$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3704.80	-44.25	9.57	-34.68	Н	58.98
3704.80	-42.94	9.57	-33.37	V	57.67
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : WCDMA

OPERATING FREQUENCY : 1880.00 MHz

CHANNEL: 9400(Mid)

MEASURED OUTPUT POWER : 24.44 dBm = 0.278 W

MODULATION SIGNAL : WCDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 37.44$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3760.00	-43.94	9.47	-34.47	Н	58.91
3760.00	-42.92	9.47	-33.45	V	57.89
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

(Continued...)

Field Strength of SPURIOUS Radiation

TEST MODE : WCDMA

OPERATING FREQUENCY: 1907.6 MHz

CHANNEL: 9538(High)

MEASURED OUTPUT POWER : $\underline{23.18}$ dBm = $\underline{0.208}$ W

 $MODULATION\ SIGNAL\ :\ WCDMA\ (Internal)$

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = \underline{36.18}$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3815.20	-43.37	9.38	-33.99	Н	57.17
3815.20	-43.62	9.38	-34.24	V	57.42
-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 10dB below limit.

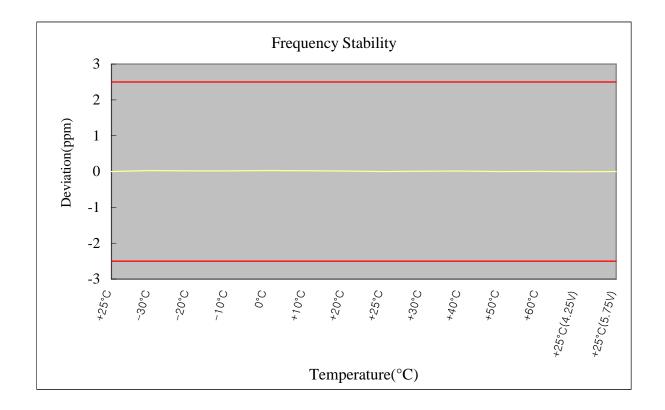
NOTE

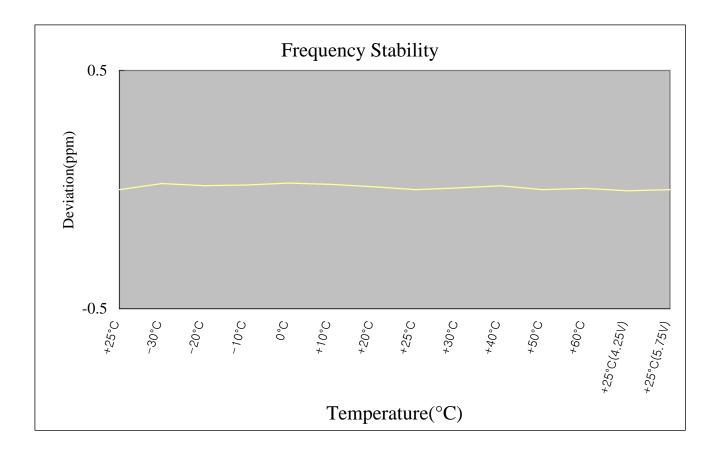
Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

4.1.4 Frequency Stability (GSM Cellular Band)

OPERATING FREQUENCY : 836,599,959 Hz

CHANNEL: 0190(Mid)


REFERENCE VOLTAGE : 5 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	5	+25(Ref)	836,599,959	0.000000
100%		-30	836,599,980	0.000003
100%		-20	836,599,973	0.000002
100%		-10	836,599,975	0.000002
100%		0	836,599,982	0.000003
100%		+10	836,599,977	0.000002
100%		+20	836,599,969	0.000001
100%		+25	836,599,959	0.000000
100%		+30	836,599,965	0.000001
100%		+40	836,599,972	0.000002
100%		+50	836,599,959	0.000000
100%		+60	836,599,963	0.000000
85%	4.25	+25	836,599,955	0.000000
115%	5.75	+25	836,599,959	0.000000
BATT.ENDPOINT	-	+25	-	-

4.1.4 Frequency Stability (GSM Cellular Band)

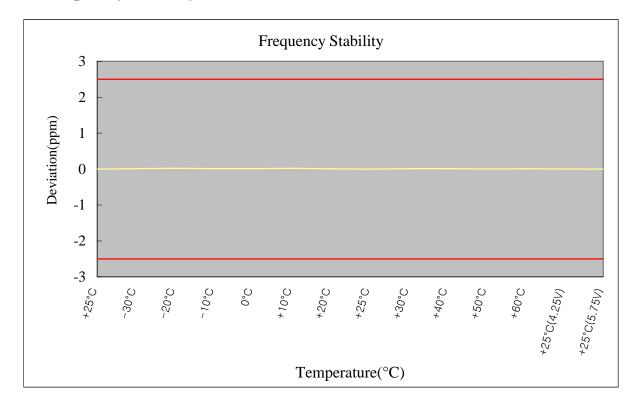
(Continued...)

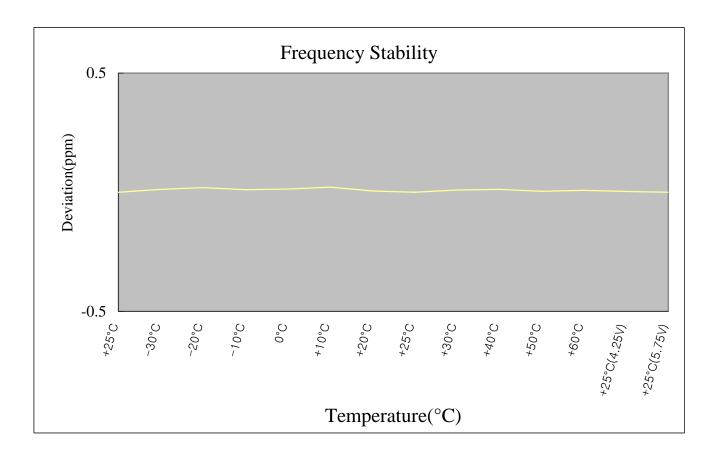
4.1.4 Frequency Stability (GSM PCS Band)

(Continued...)

OPERATING FREQUENCY : 1,879,999,929 Hz

CHANNEL: 661(Mid)


REFERENCE VOLTAGE : 5 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	5	+25(Ref)	1,879,999,929	0.000000
100%		-30	1,879,999,951	0.000001
100%		-20	1,879,999,965	0.000002
100%		-10	1,879,999,949	0.000001
100%		0	1,879,999,953	0.000001
100%		+10	1,879,999,969	0.000002
100%		+20	1,879,999,939	0.000001
100%		+25	1,879,999,929	0.000000
100%		+30	1,879,999,946	0.000001
100%		+40	1,879,999,951	0.000001
100%		+50	1,879,999,936	0.000000
100%		+60	1,879,999,943	0.000001
85%	4.25	+25	1,879,999,935	0.000000
115%	5.75	+25	1,879,999,929	0.000000
BATT.ENDPOINT	-	+25	-	-

4.1.4 Frequency Stability (GSM PCS Band)

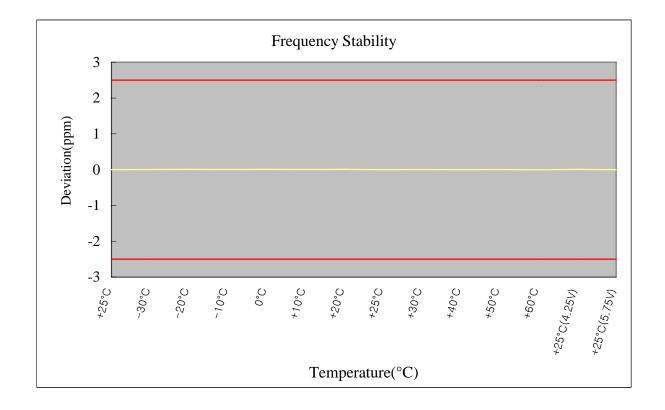
(Continued...)

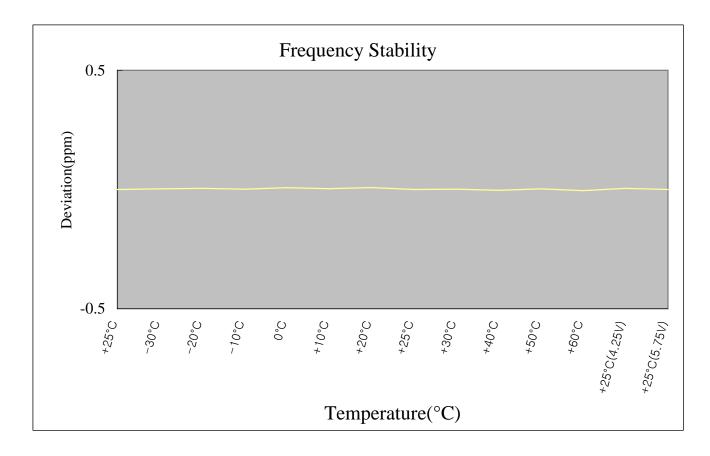
4.1.4 Frequency Stability (WCDMA Cellular Band)

(Continued...)

OPERATING FREQUENCY : 836,399,982 Hz

CHANNEL: 4182(Mid)


REFERENCE VOLTAGE : 5 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	5	+25(Ref)	836,399,982	0.000000
100%		-30	836,399,984	0.000000
100%		-20	836,399,986	0.000000
100%		-10	836,399,983	0.000000
100%		0	836,399,988	0.000001
100%		+10	836,399,985	0.000000
100%		+20	836,399,989	0.000001
100%		+25	836,399,982	0.000000
100%		+30	836,399,983	0.000000
100%		+40	836,399,979	0.000000
100%		+50	836,399,984	0.000000
100%		+60	836,399,978	0.000000
85%	4.25	+25	836,399,986	0.000000
115%	5.75	+25	836,399,982	0.000000
BATT.ENDPOINT	-	+25	-	-

4.1.4 Frequency Stability (WCDMA Cellular Band)

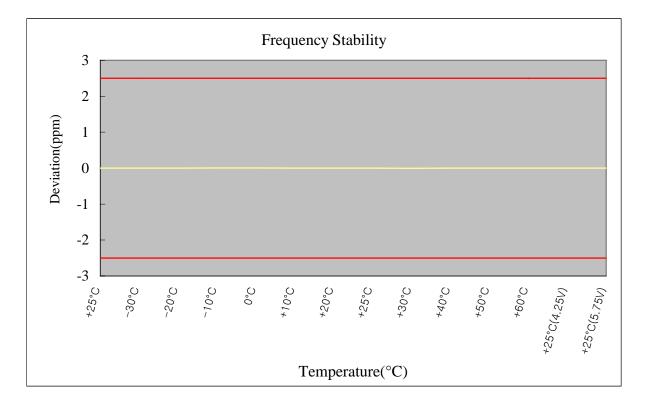
(Continued...)

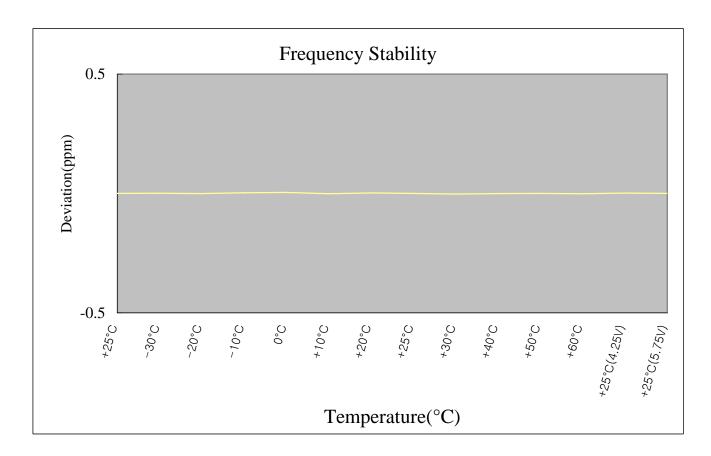
4.1.4 Frequency Stability (WCDMA PCS Band)

(Continued...)

OPERATING FREQUENCY: 1,879,999,974 Hz

CHANNEL: 9400(Mid)


REFERENCE VOLTAGE : 5 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	5	+25(Ref)	1,879,999,974	0.000000
100%		-30	1,879,999,975	0.000000
100%		-20	1,879,999,973	0.000000
100%		-10	1,879,999,979	0.000000
100%		0	1,879,999,981	0.000000
100%		+10	1,879,999,971	0.000000
100%		+20	1,879,999,978	0.000000
100%		+25	1,879,999,974	0.000000
100%		+30	1,879,999,969	0.000000
100%		+40	1,879,999,973	0.000000
100%		+50	1,879,999,974	0.000000
100%		+60	1,879,999,971	0.000000
85%	4.25	+25	1,879,999,976	0.000000
115%	5.75	+25	1,879,999,974	0.000000
BATT.ENDPOINT	-	+25	-	-

4.1.4 Frequency Stability (WCDMA PCS Band)

(Continued...)

5.1 PLOTS OF EMISSIONS

(SEE ATTACHMENT "Test Plots")

6.1 LIST OF TEST EQUIPMENT

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
01	Spectrum Analyzer	Agilent	E4404B	21/03/08	21/03/09	US41061134
02	Spectrum Analyzer	Agilent	E4440A	15/11/07	15/11/08	MY45304199
03	Spectrum Analyzer	H.P	8563E	09/10/07	09/10/09	3551A04634
04	Spectrum Analyzer	Rohde Schwarz	FSP	06/09/07	06/09/08	100385
05	Spectrum Analyzer	H.P	8591E	26/04/08	26/04/09	3649A05889
06	EMI TEST RECEIVER	R&S	ESU	11/01/08	11/01/09	100014
07	EMI TEST RECEIVER	R&S	ESCI	13/05/08	13/05/09	100364
08	Power Meter	H.P	EMP-442A	10/07/08	10/07/09	GB37170413
09	Power Sensor	H.P	8481A	14/07/08	14/07/09	3318A96566
10	Frequency Counter	H.P	5342A	06/09/07	06/09/08	2119A04450
11	Signal Generator	Rohde Schwarz	SMR20	02/04/08	02/04/09	101251
12	Signal Generator	H.P	ESG-3000A	09/07/08	09/07/09	US37230529
13	Vector Signal Generator	Rohde Schwarz	SMJ100A	17/01/08	17/01/09	100148
14	Audio Analyzer	H.P	8903B	09/07/08	09/07/09	3011A09448
15	Oscilloscope	Tektronix	TDS3052	02/11/07	02/11/08	B016821
16	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	18/07/07	18/07/09	GB43461134
17	Universal Radio communication Tester	Rohde Schwarz	CMU 200	02/04/08	02/04/09	107631
18	Bluetooth Tester	TESCOM	TC-3000A	02/11/07	02/11/08	3000A4A0121
19	Power Splitter	WEINSCHEL	1593	05/10/07	05/10/08	332
20	Power Splitter	Anritsu	K241B	19/10/07	19/10/08	020611
21	BAND Reject Filter	Microwave Circuits	N0308372	18/10/07	18/10/08	3125-01DC0312
22	BAND Reject Filter	Wainwright	WRCG1750	18/10/07	18/10/08	SN2
23	AC Power supply	DAEKWANG	5KVA	20/03/08	20/03/09	N/A
24	DC Power Supply	H.P	6622A	20/03/08	20/03/09	465487
25	HORN ANT	ETS	3115	13/06/08	13/06/09	6419
26	HORN ANT	ETS	3115	09/10/07	09/10/08	21097
27	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	154
28	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	155

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
29	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2116
30	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2117
31	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2261
32	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2262
33	TEMP & HUMIDITY Chamber	JISCO	J-RHC2	02/10/07	02/10/08	021031
34	Log Periodic Antenna	Schwarzbeck	UHALP9108A1	01/10/07	01/10/08	1098
35	Biconical Antenna	Schwarzbeck	VHA9103	01/10/07	01/10/08	2233
36	Digital Multimeter	H.P	34401A	20/03/08	20/03/09	3146A13475
37	Attenuator (10dB)	WEINSCHEL	23-10-34	05/10/07	05/10/08	BP4386
38	Attenuator (10dB)	WEINSCHEL	23-10-34	30/01/08	30/01/09	BP4387
39	High-Pass Filter	ANRITSU	MP526D	08/10/07	08/10/08	MP27756
40	Attenuator (3dB)	Agilent	8491B	15/07/08	15/07/09	58177
41	20dB Attenuator	Aeroflex/Weinschel	86-20-11	25/10/07	25/10/08	432
42	10dB Attenuator	Aeroflex/Weinschel	86-10-11	25/10/07	25/10/08	446
43	10dB Attenuator	Aeroflex/Weinschel	86-10-11	25/10/07	25/10/08	408
44	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	11/07/08	11/07/09	788
45	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	11/07/08	11/07/09	790
46	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	11/07/08	11/07/09	112
47	Amplifier (25dB)	Agilent	8447D	21/05/08	21/05/09	2944A10144
48	Amplifier (30dB)	Agilent	8449B	25/10/07	25/10/08	3008A01590
49	Amplifier (22dB)	H.P	8447E	27/02/08	27/02/09	2945A02865
50	Position Controller	TOKIN	5901T	N/A	N/A	14173
51	Driver	TOKIN	5902T2	N/A	N/A	14174
52	RFI/FIELD Intensity Meter	Kyorits	KNW-2402	06/09/07	06/09/08	4N-170-3
53	LISN	Kyorits	KNW-407	30/08/07	30/08/08	8-317-8
54	LISN	Kyorits	KNW-242	06/10/07	06/10/08	8-654-15
55	CVCF	NF Electronic	4400	N/A	N/A	344536 4420064
56	Software	ТоҮо ЕМІ	EP5/RE	N/A	N/A	Ver 2.0.800
57	Software	ТоҮо ЕМІ	EP5/CE	N/A	N/A	Ver 2.0.801
58	Software	AUDIX	e3	N/A	N/A	Ver 3.0
59	Software	Agilent	Benchlink	N/A	N/A	A.01.09 021211

7.1 SAMPLE CALCULATIONS

A. Emission Designator

- Cellular Band -

- PCS Band -

Emission Designator = 246KGXW Emission Designator = 249KGXW

GSM BW = 246.3505 KHz GSM BW = 248.5600 KHz

G = Phase Modulation G = Phase Modulation

X = Cases not otherwise covered X = Cases not otherwise covered

W = Combination (Audio/Data) W = Combination (Audio/Data)

Emission Designator = 4M17F9W Emission Designator = 4M18F9W

WCDMA BW = 4.1659MHz WCDMA BW = 4.1793Hz

F = Frequency Modulation F = Frequency Modulation

9 = Composite Digital Information 9 = Composite Digital Information

W = Combination (Audio/Data) W = Combination (Audio/Data)

8.1 CONCLUSION

The data collected shows that the **Epivalley CO., LTD.** HSDPA USB Modem (**FCC ID: R2NSDC-1000**) complies with all the requirements of Parts 2 and 22, 24 of the FCC rules.