

ADDENDUM TO XCEEDID TEST REPORT FC08-001

FOR THE

PROXIMITY READER, XF1200S4(T700)

FCC PART 15 SUBPART C SECTIONS 15.207, 15.209 & 15.225 AND RSS-210 ISSUE 7

TESTING

DATE OF ISSUE: APRIL 17, 2008

PREPARED FOR: PREPARED BY:

XceedID
500 Golden Ridge Road, Bldg. 1
Golden, CO 80401

Mary Ellen Clayton
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

P.O. No.: 62682 Date of test: November 8 - December 7, 2007

W.O. No.: 86212

Report No.: FC08-001A

This report contains a total of 30 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 30 Report No.: FC08-001A

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
FCC 15.31(m) Number Of Channels	5
FCC 15.33(a) Frequency Ranges Tested	5
FCC 15.35 Analyzer Bandwidth Settings	5
FCC 15.203 Antenna Requirements	5
EUT Operating Frequency	5
Temperature And Humidity During Testing	5
Equipment Under Test (EUT) Description	6
Equipment Under Test	6
Peripheral Devices	
Report of Emissions Measurements	7
Testing Parameters	7
FCC 15.207 Conducted Emissions	9
FCC 15.209 Radiated Emissions	14
FCC 15.225 Radiated Emissions	21
Occupied Bandwidth	23
FCC 15.225 (a-c) Emissions Mask	25
FCC 15.225(e) Frequency Stability	27
RSS-210 99% Bandwidth	29

ADMINISTRATIVE INFORMATION

DATE OF TEST: November 8 – **DATE OF RECEIPT:** November 8, 2007

December 7, 2007

REPRESENTATIVE: Mike Conlin

MANUFACTURER: TEST LOCATION:
XceedID CKC Laboratories, Inc.
500 Golden Ridge Road, Bldg. 1 5046 Sierra Pines Drive

Golden, CO 80401 Mariposa, CA 95338

TEST METHOD: ANSI C63.4 (2003). RSS-210 Issue 7 and RSS GEN Issue 2

PURPOSE OF TEST:

Original Report: To perform the testing of the Proximity Reader, XF1200S4(T700) with the requirements for FCC Part 15 Subpart C Sections 15.207 & 15.209 & 15.225 and RSS-210 devices.

Addendum A: To correct the FCC ID number on page 6, the test conditions on page 16 and the model number for the EUT with serial number 007.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE: TEST PERSONNEL:

Mike Wilkinson, EMC Engineer/Lab

Manager

Randy Clark, EMC Engineer

SUMMARY OF RESULTS

Test	Specification/Method	Results
Mains Conducted Emissions	FCC Part 15 Subpart C Section 15.207	Pass
Radiated Emissions	FCC Part 15 Subpart C Section 15.209	Pass
Radiated Emissions	FCC Part 15 Subpart C Section 15.225	Pass
Occupied Bandwidth	FCC	Pass
Emissions Mask	FCC 15.225 (a-c)	Pass
Frequency Stability	FCC 15.225(e)	Pass
99% Bandwidth	RSS-210	Pass
700 01 7U V	T 0.10.10	
FCC Site File No.	784962	
IC Site File No.	IC 3082A-1	

CONDITIONS DURING TESTING

EUT has additional ferrite bead around the power and ground wires at the EUT end of the cable. EUT has shield wire tied to DC common at the power supply.

Page 4 of 30 Report No.: FC08-001A

FCC 15.31(m) Number Of Channels

This device operates on a single channel.

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz 15.209 Radiated Emissions: 9 kHz – 1000 MHz

15.225 Radiated Emissions: Carrier

FCC SECTION 15.35: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz					
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					

FCC 15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

EUT Operating Frequency

The EUT was operating at 13.56 MHz.

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C.

The relative humidity was between 20% and 75%.

Page 5 of 30 Report No.: FC08-001A

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

<u>Proximity Reader</u> <u>Proximity Reader</u>

Manuf: XceedID Manuf: XceedID Model: XF1200S4 Model: XF1200W

 Serial:
 011 & 008
 Serial:
 007

 FCC ID:
 R2LXF1200 (pending)
 FCC ID:
 NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Power Supply

Manuf: Topward Model: TPS-4000 Serial: 918520 FCC ID: NA

Page 6 of 30 Report No.: FC08-001A

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

	SAMPLE CALCULA	TIONS
	Meter reading	(dBµV)
+	Antenna Factor	(dB)
+	Cable Loss	(dB)
-	Distance Correction	(dB)
-	Preamplifier Gain	(dB)
=	Corrected Reading	$(dB\mu V/m)$

Page 7 of 30 Report No.: FC08-001A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

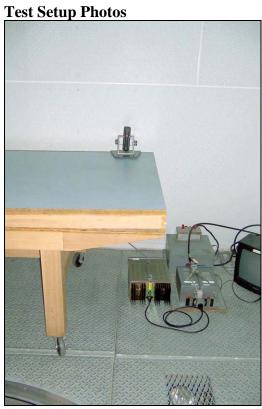
The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.


Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 8 of 30 Report No.: FC08-001A

FCC 15.207 CONDUCTED EMISSIONS

Page 9 of 30 Report No.: FC08-001A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •4933 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: XceedID

Specification: FCC 15.207 - AVE

Work Order #: 86212 Date: 11/30/2007
Test Type: Conducted Emissions Time: 17:01:22
Equipment: Proximity Reader Sequence#: 7

Manufacturer: XceedID Tested By: Randal Clark Model: XF1200S4 120V 60Hz

S/N: 007

Test Equipment:

1 csi Equipmeni.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
150kHz HP Filter TTE	G7754	03/09/2006	03/09/2008	02608
LISN, 8028-50-TS-24-BNC	8379276, 280	05/07/2007	05/07/2009	1248 & 1249
Internal LISN Cable	N/A	03/23/2007	03/23/2009	CAB-SITED-INT-LISN

Equipment Under Test (* = EUT):

(
Function	Manufacturer	Model #	S/N	
Proximity Reader*	XceedID	XF1200W	007*	
Proximity Reader	XceedID	XF1200S4	0011	

^{*}Manufacturer declares that the emissions from XF1200W represent compliance for the XF1200S4 for the purposes of this test.

Support Devices:

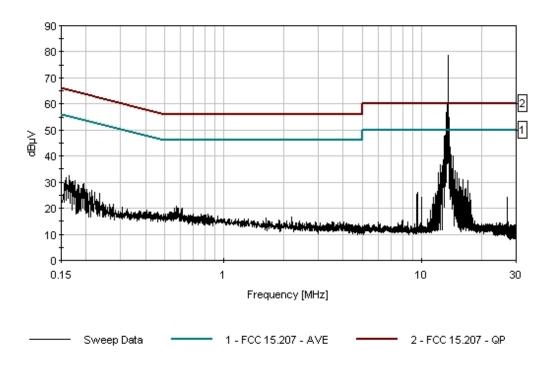
Function	Manufacturer	Model #	S/N	
Power Supply	Topward	TPS-4000	918520	

Test Conditions / Notes:

EUT is a proximity reader operating at 13.56MHz. The equipment is powered via 12VDC power supply. Frequency Range Investigated: 150kHz - 30MHz. Temperature: 18°C, Relative Humidity: 48%. EUT has lowest antenna tuning. EUT has additional ferrite bead around the power and ground wires at the EUT end of the cable. EUT has shield wire tied to DC common at the power supply.

Transducer Legend:

T1=CAB-SITED INT LISN 100k-30M	T2=Filter 150kHz HP AN02608
T3=LISN -280 - BK	


Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Black		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.560M	67.0	+10.9	+0.1	+0.8		+0.0	78.8	50.0	+28.8	Black
									Carrier En	nissions	
									with anten	na	
									attached		
2	13.560M	15.8	+10.9	+0.1	+0.8		+0.0	27.6	50.0	-22.4	Black
									Carrier En	nissions	
									with dumr	ny load	
3	171.400k	16.6	+11.7	+0.7	+0.2	•	+0.0	29.2	54.9	-25.7	Black

Page 10 of 30 Report No.: FC08-001A

4	27.121M	11.7	+11.0	+0.1	+1.3	+0.0	24.1	50.0	-25.9	Black
5	9.482M	11.4	+10.8	+0.1	+0.4	+0.0	22.7	50.0	-27.3	Black
6	9.978M	10.7	+10.8	+0.1	+0.5	+0.0	22.1	50.0	-27.9	Black

CKC Laboratories, Inc. Date: 11/30/2007 Time: 17:01:22 XceedID WO#: 86212 FCC 15.207 - AVE Test Lead: Black 120V 60Hz Sequence#: 7 XceedID M/N XF1200S4

Test Location: CKC Laboratories, Inc. •4933 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: **XceedID**

Specification: FCC 15.207 - AVE

Work Order #: 86212 Date: 11/30/2007
Test Type: Conducted Emissions Time: 17:03:07
Equipment: Proximity Reader Sequence#: 8

Manufacturer: XceedID Tested By: Randal Clark Model: XF1200S4 120V 60Hz

S/N: 007

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
150kHz HP Filter TTE	G7754	03/09/2006	03/09/2008	02608
LISN, 8028-50-TS-24-BNC	8379276, 280	05/07/2007	05/07/2009	1248 & 1249
Internal LISN Cable	N/A	03/23/2007	03/23/2009	CAB-SITED-INT-LISN

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Proximity Reader*	XceedID	XF1200W	007*	
Proximity Reader	XceedID	XF1200S4	0011	

^{*}Manufacturer declares that the emissions from XF1200W represent compliance for the XF1200S4 for the purposes of this test.

Support Devices:

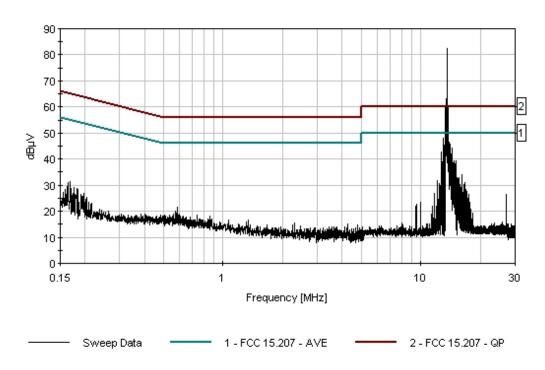
Function	Manufacturer	Model #	S/N
Power Supply	Topward	TPS-4000	918520

Test Conditions / Notes:

EUT is a proximity reader operating at 13.56MHz. The equipment is powered via 12VDC power supply. Frequency Range Investigated: 150kHz - 30MHz. Temperature: 18°C, Relative Humidity: 48%. EUT has lowest antenna tuning. EUT has additional ferrite bead around the power and ground wires at the EUT end of the cable. EUT has shield wire tied to DC common at the power supply.

Transducer Legend:

Transaucer Begena.		
T1=CAB-SITED INT LISN 100k-30M	T2=Filter 150kHz HP AN02608	
T3=LISN -276 - WT		


Measur	ement Data:	Re	Reading listed by margin.			Test Lead: White					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.560M	70.2	+10.9	+0.1	+1.2		+0.0	82.4	50.0	+32.4	White
									Carrier En	nissions	
									with anten	ına	
									attached		
2	13.560M	18.1	+10.9	+0.1	+1.2		+0.0	30.3	50.0	-19.7	White
									Carrier En	nissions	
									with dumr	ny load	
3	9.481M	16.0	+10.8	+0.1	+0.9		+0.0	27.8	50.0	-22.2	White

Page 12 of 30 Report No.: FC08-001A

4	9.975M	14.5	+10.8	+0.1	+0.8	+0.0	26.2	50.0	-23.8	White
5	27.121M	12.5	+11.0	+0.1	+1.6	+0.0	25.2	50.0	-24.8	White
6	163.520k	16.2	+11.7	+1.5	+0.1	+0.0	29.5	55.3	-25.8	White

CKC Laboratories, Inc. Date: 11/30/2007 Time: 17:03:07 XceedID WO#: 86212 FCC 15.207 - AVE Test Lead: White 120V 60Hz Sequence#: 8 XceedID M/N XF1200S4

Page 13 of 30 Report No.: FC08-001A

FCC 15.209 RADIATED EMISSIONS

Test Setup Photos

Page 14 of 30 Report No.: FC08-001A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •4933 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: XceedID Specification: FCC 15.209

 Work Order #:
 86212
 Date: 11/8/2007

 Test Type:
 Radiated Scan
 Time: 14:47:57

Equipment: **Proximity Reader** Sequence#: 8

Manufacturer: XceedID Tested By: Randal Clark

Model: XF1200W S/N: 007

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
EMCO Loop Antenna	1074	05/13/2005	05/13/2007	00226
10M SITE CBL MAST CBL	N/A	03/23/2007	03/23/2009	CAB-SITED10M

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Proximity Reader*	XceedID	XF1200W	007*	

^{*}Manufacturer declares that the emissions from XF1200W represent compliance for the XF1200S4 for the purposes of this test.

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	Topward	TPS-4000	918520	

Test Conditions / Notes:

EUT is a proximity reader operating at 13.56MHz. The equipment is powered via 12VDC power supply. Frequency Range Investigated: 9k - 30MHz. Temperature: 18°C, Relative Humidity: 48%. EUT has lowest antenna tuning. EUT has additional ferrite bead around the power and ground wires at the EUT end of the cable. EUT has shield wire tied to DC common at the power supply.

Transducer Legend:

T1=CAB-SITED10M-9k-1G	T2=Mag Loop - AN 00226 - 9kHz-30M

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	27.120M	10.9	+1.4	+7.1			-19.0	0.4	29.5	-29.1	Verti
											100
2	27.121M	8.0	+1.4	+7.1			-19.0	-2.5	29.5	-32.0	Horiz
											100

Page 15 of 30 Report No.: FC08-001A

Test Location: CKC Laboratories, Inc. •4933 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: XceedID Specification: FCC 15.209

Work Order #: 86212 Date: 12/3/2007
Test Type: Radiated Scan Time: 11:31:11
Equipment: Proving type Proving t

Equipment: **Proximity Reader** Sequence#: 1

Manufacturer: XceedID Tested By: Randal Clark

Model: XF1200S4 S/N: 008

Test Equipment:

1 csi Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
HP 8447D Preamp	1937A02604	03/14/2007	03/14/2009	00099
Chase CBL6111C Bilog	2456	12/30/2006	12/30/2008	01991
10M SITE CBL MAST CBL	N/A	03/23/2007	03/23/2009	CAB-SITED10M

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Proximity Reader	XceedID	XF1200S4	008

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	Topward	TPS-4000	918520	

Test Conditions / Notes:

EUT is a proximity reader operating at 13.56MHz. The equipment is powered via 12VDC power supply. %. EUT has lowest antenna tuning. Frequency Range Investigated: 30-1000MHz. Temperature: 18°C, Relative Humidity: 48%.

Transducer Legend:

T1=AMP AN00099	T2=ANT AN01991 25-1000MHz
T3=CAB-SITED10M-9k-1G	

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	40.680M	47.6	-27.2	+14.0	+1.7		+0.0	36.1	40.0	-3.9	Verti
	QP										101
٨	40.681M	49.4	-27.2	+14.0	+1.7		+0.0	37.9	40.0	-2.1	Verti
											100
3	54.237M	52.0	-27.1	+8.2	+2.0		+0.0	35.1	40.0	-4.9	Verti
	QP										101
٨	54.242M	58.1	-27.1	+8.2	+2.0		+0.0	41.2	40.0	+1.2	Verti
											100
5	135.602M	49.6	-27.0	+11.6	+3.4		+0.0	37.6	43.5	-5.9	Verti
											100
6	63.996M	47.1	-27.2	+6.5	+2.2		+0.0	28.6	40.0	-11.4	Verti
											122
7	599.998M	34.4	-28.0	+19.7	+8.4		+0.0	34.5	46.0	-11.5	Verti
											130

Page 16 of 30 Report No.: FC08-001A

8	813.622M	29.6	-27.7	+22.0	+10.1	+0.0	34.0	46.0	-12.0	Verti 165
9	54.243M	43.4	-27.1	+8.2	+2.0	+0.0	26.5	40.0	-13.5	Horiz 100
10	40.685M	37.4	-27.2	+14.0	+1.7	+0.0	25.9	40.0	-14.1	Horiz 265
11	192.002M	42.9	-26.7	+9.1	+4.0	+0.0	29.3	43.5	-14.2	Verti 100
12	67.801M	44.3	-27.1	+6.3	+2.3	+0.0	25.8	40.0	-14.2	Verti 100
13	47.996M	40.4	-27.1	+10.1	+1.9	+0.0	25.3	40.0	-14.7	Verti 100
14	176.288M	42.4	-26.8	+9.3	+3.9	+0.0	28.8	43.5	-14.7	Verti 100
15	325.449M	38.0	-26.6	+14.1	+5.6	+0.0	31.1	46.0	-14.9	Verti 165
16	691.578M	29.2	-27.8	+20.6	+9.0	+0.0	31.0	46.0	-15.0	Verti 161
17	718.690M	28.5	-27.8	+20.9	+9.1	+0.0	30.7	46.0	-15.3	Verti 161
18	640.000M	30.1	-27.9	+20.1	+8.3	+0.0	30.6	46.0	-15.4	Verti 117
19	176.278M	41.4	-26.8	+9.3	+3.9	+0.0	27.8	43.5	-15.7	Horiz 105
20	704.004M	27.9	-27.8	+20.8	+9.1	+0.0	30.0	46.0	-16.0	Verti 117
21	678.015M	28.4	-27.8	+20.5	+8.8	+0.0	29.9	46.0	-16.1	Verti 161
22	559.990M	30.4	-27.9	+19.1	+8.2	+0.0	29.8	46.0	-16.2	Verti 130
23	320.002M	36.8	-26.5	+14.0	+5.5	+0.0	29.8	46.0	-16.2	Verti 130
24	664.451M	28.1	-27.9	+20.4	+8.5	+0.0	29.1	46.0	-16.9	Verti 161
25	298.331M	36.6	-26.4	+13.4	+5.5	+0.0	29.1	46.0	-16.9	Verti 165
26	596.642M	29.0	-28.0	+19.7	+8.4	+0.0	29.1	46.0	-16.9	Verti 153
27	216.960M	40.5	-26.6	+10.3	+4.4	+0.0	28.6	46.0	-17.4	Horiz 145
28	664.463M	27.3	-27.9	+20.4	+8.5	+0.0	28.3	46.0	-17.7	Verti 161
29	623.774M	27.9	-28.0	+20.0	+8.4	+0.0	28.3	46.0	-17.7	Verti 153
30	637.341M	27.4	-27.9	+20.1	+8.3	+0.0	27.9	46.0	-18.1	Verti 153
31	230.522M	38.0	-26.5	+11.3	+4.7	+0.0	27.5	46.0	-18.5	Horiz 145

Page 17 of 30 Report No.: FC08-001A

32	569.523M	27.7	-27.9	+19.3	+8.3	+0.0	27.4	46.0	-18.6	Verti 161
33	192.004M	38.5	-26.7	+9.1	+4.0	+0.0	24.9	43.5	-18.6	Horiz 100
34	80.002M	38.4	-27.1	+7.6	+2.5	+0.0	21.4	40.0	-18.6	Verti 122
35	583.083M	27.5	-28.0	+19.5	+8.3	+0.0	27.3	46.0	-18.7	Verti 161
36	256.002M	36.0	-26.4	+12.6	+5.1	+0.0	27.3	46.0	-18.7	Verti 100
37	272.002M	35.4	-26.4	+12.9	+5.3	+0.0	27.2	46.0	-18.8	Verti 102
38	244.090M	36.5	-26.4	+12.1	+4.9	+0.0	27.1	46.0	-18.9	Horiz 145
39	189.847M	38.2	-26.7	+9.1	+4.0	+0.0	24.6	43.5	-18.9	Verti 100
40	81.362M	37.9	-27.1	+7.8	+2.5	+0.0	21.1	40.0	-18.9	Verti 100
41	650.899M	26.4	-27.9	+20.2	+8.3	+0.0	27.0	46.0	-19.0	Verti 153
42	128.002M	35.8	-27.0	+11.7	+3.3	+0.0	23.8	43.5	-19.7	Verti 117
43	120.002M	35.7	-27.0	+11.6	+3.2	+0.0	23.5	43.5	-20.0	Verti 117
44	203.396M	36.5	-26.7	+9.4	+4.2	+0.0	23.4	43.5	-20.1	Horiz 105
45	112.002M	35.7	-27.0	+11.0	+3.1	+0.0	22.8	43.5	-20.7	Verti 117
46	271.209M	33.4	-26.4	+12.9	+5.3	+0.0	25.2	46.0	-20.8	Horiz 145
47	162.722M	35.2	-26.8	+10.4	+3.8	+0.0	22.6	43.5	-20.9	Verti 100
48	122.045M	34.5	-27.0	+11.6	+3.3	+0.0	22.4	43.5	-21.1	Verti 100
49	284.767M	32.2	-26.4	+13.1	+5.4	+0.0	24.3	46.0	-21.7	Verti 165
50	325.436M	31.1	-26.6	+14.1	+5.6	+0.0	24.2	46.0	-21.8	Horiz 145
51	244.088M	33.6	-26.4	+12.1	+4.9	+0.0	24.2	46.0	-21.8	Verti 100
52	203.407M	34.8	-26.7	+9.4	+4.2	+0.0	21.7	43.5	-21.8	Verti 100
53	311.880M	31.3	-26.5	+13.7	+5.5	+0.0	24.0	46.0	-22.0	Verti 165
54	230.522M	34.3	-26.5	+11.3	+4.7	+0.0	23.8	46.0	-22.2	Verti 100
55	304.002M	30.9	-26.4	+13.5	+5.5	+0.0	23.5	46.0	-22.5	Verti 118

Page 18 of 30 Report No.: FC08-001A

56 352.568M 29.6 -26.7 +14.8 +5.6 +0.0 23.3 46.0 -22.7 57 339.006M 29.7 -26.6 +14.5 +5.6 +0.0 23.2 46.0 -22.8 58 320.004M 29.8 -26.5 +14.0 +5.5 +0.0 22.8 46.0 -23.2 59 135.603M 32.1 -27.0 +11.6 +3.4 +0.0 20.1 43.5 -23.4 60 256.004M 31.3 -26.4 +12.6 +5.1 +0.0 22.6 46.0 -23.4 61 352.568M 28.6 -26.7 +14.8 +5.6 +0.0 22.3 46.0 -23.7 62 336.002M 28.8 -26.6 +14.4 +5.6 +0.0 22.2 46.0 -23.8 63 298.324M 29.6 -26.4 +13.4 +5.5 +0.0 22.1 46.0 -23.9	Verti 183 Verti 100 Horiz 100 Horiz 100 Verti 183 Verti 130 Horiz 145
58 320.004M 29.8 -26.5 +14.0 +5.5 +0.0 22.8 46.0 -23.2 59 135.603M 32.1 -27.0 +11.6 +3.4 +0.0 20.1 43.5 -23.4 60 256.004M 31.3 -26.4 +12.6 +5.1 +0.0 22.6 46.0 -23.4 61 352.568M 28.6 -26.7 +14.8 +5.6 +0.0 22.3 46.0 -23.7 62 336.002M 28.8 -26.6 +14.4 +5.6 +0.0 22.2 46.0 -23.8	Verti 100 Horiz 100 Horiz 100 Verti 183 Verti 130 Horiz
59 135.603M 32.1 -27.0 +11.6 +3.4 +0.0 20.1 43.5 -23.4 60 256.004M 31.3 -26.4 +12.6 +5.1 +0.0 22.6 46.0 -23.4 61 352.568M 28.6 -26.7 +14.8 +5.6 +0.0 22.3 46.0 -23.7 62 336.002M 28.8 -26.6 +14.4 +5.6 +0.0 22.2 46.0 -23.8	Horiz 100 Horiz 100 Horiz 100 Verti 183 Verti 130 Horiz
60 256.004M 31.3 -26.4 +12.6 +5.1 +0.0 22.6 46.0 -23.4 61 352.568M 28.6 -26.7 +14.8 +5.6 +0.0 22.3 46.0 -23.7 62 336.002M 28.8 -26.6 +14.4 +5.6 +0.0 22.2 46.0 -23.8	Horiz 100 Horiz 100 Verti 183 Verti 130 Horiz
60 256.004M 31.3 -26.4 +12.6 +5.1 +0.0 22.6 46.0 -23.4 61 352.568M 28.6 -26.7 +14.8 +5.6 +0.0 22.3 46.0 -23.7 62 336.002M 28.8 -26.6 +14.4 +5.6 +0.0 22.2 46.0 -23.8	Horiz 100 Verti 183 Verti 130 Horiz
61 352.568M 28.6 -26.7 +14.8 +5.6 +0.0 22.3 46.0 -23.7 62 336.002M 28.8 -26.6 +14.4 +5.6 +0.0 22.2 46.0 -23.8	100 Verti 183 Verti 130 Horiz
62 336.002M 28.8 -26.6 +14.4 +5.6 +0.0 22.2 46.0 -23.8	Verti 183 Verti 130 Horiz
	Verti 130 Horiz
	130 Horiz
63 298.324M 29.6 -26.4 +13.4 +5.5 +0.0 22.1 46.0 -23.9	
	145
64 136.002M 31.5 -27.0 +11.6 +3.4 +0.0 19.5 43.5 -24.0	
64 136.002M 31.5 -27.0 +11.6 +3.4 +0.0 19.5 43.5 -24.0	Verti 117
65 108.482M 32.6 -27.1 +10.8 +3.0 +0.0 19.3 43.5 -24.2	Verti
	100
66 240.004M 31.4 -26.4 +11.9 +4.8 +0.0 21.7 46.0 -24.3	Horiz 100
67 366.125M 27.5 -26.9 +15.1 +5.9 +0.0 21.6 46.0 -24.4	Verti
	183
68 271.206M 29.6 -26.4 +12.9 +5.3 +0.0 21.4 46.0 -24.6	Verti 100
69 67.814M 33.9 -27.1 +6.3 +2.3 +0.0 15.4 40.0 -24.6	Horiz
	265
70 379.682M 27.0 -27.1 +15.4 +6.1 +0.0 21.4 46.0 -24.6	Verti
71 384.002M 26.5 -27.1 +15.5 +6.2 +0.0 21.1 46.0 -24.9	183 Verti
71 304.002101 20.3 -27.1 +13.3 +0.2 +0.0 21.1 40.0 -24.7	130
72 240.002M 30.8 -26.4 +11.9 +4.8 +0.0 21.1 46.0 -24.9	Verti
72 257 (47) 20 (20 4) 12 () 5 1	100
73 257.647M 29.6 -26.4 +12.6 +5.1 +0.0 20.9 46.0 -25.1	Verti 134
74 120.010M 30.1 -27.0 +11.6 +3.2 +0.0 17.9 43.5 -25.6	Horiz
77 140 170 4 20 4 20 0 111 20 0 170 170 170	100
75 149.158M 29.4 -26.9 +11.1 +3.6 +0.0 17.2 43.5 -26.3	Horiz 100
76 216.963M 31.2 -26.6 +10.3 +4.4 +0.0 19.3 46.0 -26.7	Verti
	100
77 144.002M 28.7 -26.9 +11.4 +3.5 +0.0 16.7 43.5 -26.8	Verti
78 122.050M 28.6 -27.0 +11.6 +3.3 +0.0 16.5 43.5 -27.0	117 Horiz
20.0 27.0 12.0 10.0 10.0 10.0 27.0	265

Page 19 of 30 Report No.: FC08-001A

79	160.002M	28.9	-26.9	+10.7	+3.7	+0.0	16.4	43.5	-27.1	Verti
										117
80	64.010M	31.1	-27.2	+6.5	+2.2	+0.0	12.6	40.0	-27.4	Horiz
										100
81	168.002M	27.9	-26.8	+9.9	+3.8	+0.0	14.8	43.5	-28.7	Verti
										117
82	224.004M	27.2	-26.5	+10.8	+4.6	+0.0	16.1	46.0	-29.9	Horiz
										100

Page 20 of 30 Report No.: FC08-001A

FCC 15.225 RADIATED EMISSIONS

Test Setup Photos

Page 21 of 30 Report No.: FC08-001A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •4933 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: XceedID

Specification: 47 CFR 15.225(a)

Work Order #: 86212 Date: 11/30/2007
Test Type: Radiated Scan Time: 16:31:09
Equipment: Proximity Reader Sequence#: 17

Manufacturer: XceedID Tested By: Randal Clark

Model: XF1200S4 S/N: 008

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
EMCO Loop Antenna	1074	05/13/2005	05/13/2007	00226
10M SITE CBL MAST CBL	N/A	03/23/2007	03/23/2009	CAB-SITED10M

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Proximity Reader*	XceedID	XF1200S4	008	

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Topward	TPS-4000	918520

Test Conditions / Notes:

EUT is a proximity reader operating at 13.56MHz. The equipment is powered via 12VDC power supply. Frequency Range Investigated: Carrier. Temperature: 18°C, Relative Humidity: 48%. EUT has lowest antenna tuning. EUT has additional ferrite bead around the power and ground wires at the EUT end of the cable. EUT has shield wire tied to DC common at the power supply.

Transducer Legend:

Transaucer Legena:	
T1=CAB-SITED10M-9k-1G	T2=Mag Loop - AN 00226 - 9kHz-30M

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	13.560M	42.9	+1.0	+9.6			-19.0	34.5	84.0	-49.5	Verti
											100
2	13.560M	39.1	+1.0	+9.6			-19.0	30.7	84.0	-53.3	Horiz
											100

Page 22 of 30 Report No.: FC08-001A

OCCUPIED BANDWIDTH

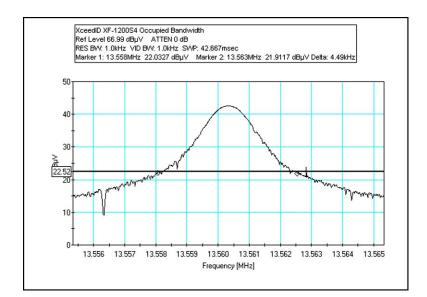
Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
EMCO Loop Antenna	1074	05/01/2007	05/01/2009	00226
10M SITE CBL MAST CBL	N/A	03/23/2007	03/23/2009	CAB-SITED10M

Test Conditions

EUT is a proximity reader operating at 13.56MHz. The equipment is powered via 12VDC power supply. Temperature: 18°C, Relative Humidity: 48%. EUT has lowest antenna tuning. EUT has additional ferrite bead around the power and ground wires at the EUT end of the cable. EUT has shield wire tied to DC common at the power supply.

Test Setup Photos



Page 23 of 30 Report No.: FC08-001A

Plots

Page 24 of 30 Report No.: FC08-001A

FCC 15.225 (a-c) EMISSIONS MASK

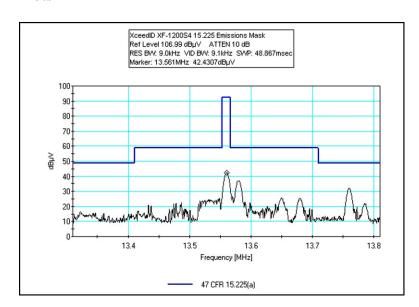
Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
EMCO Loop Antenna	1074	05/01/2007	05/01/2009	00226
10M SITE CBL MAST CBL	N/A	03/23/2007	03/23/2009	CAB-SITED10M

Test Conditions

EUT is a proximity reader operating at 13.56MHz. The equipment is powered via 12VDC power supply. Temperature: 18°C, Relative Humidity: 48%. EUT has lowest antenna tuning. EUT has additional ferrite bead around the power and ground wires at the EUT end of the cable. EUT has shield wire tied to DC common at the power supply.

Test Setup Photos



Page 25 of 30 Report No.: FC08-001A

Plots

Page 26 of 30 Report No.: FC08-001A

FCC 15.225(e) FREQUENCY STABILITY

Test Equipment

Function	S/N	Cal Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	1/3/2007	1/3/2009	2660
Solar Loop Sensor	N/A	3/4/2007	3/4/2009	170
Thermotron Temperature Chamber	11899	12/21/2006	12/21/2008	1879
HP 6205C Dual DC Power Supply	2228A01775	7/19/2007	7/19/2009	762
Fluke Multimeter	55230270	4/12/06	4/12/08	P00756

Test Conditions: Equipment is placed inside of a temperature chamber. EUT power is provided via bench supply. Power variations are performed while monitoring with a digital voltage meter.

Test Setup Photos

Page 27 of 30 Report No.: FC08-001A

Test Data

Customer:XceedIDWO#:86212Date:7-Dec-07Test Engineer:Randal Clark

Device Model #: XF1200S4

Operating Voltage: 12.00 VDC Frequency Limit: 0.01 %

Temperature Variations

		Channel 1 (MHz)	Dev. (MHz)
Channel Frequency:		13.560000	
Temp (C)	Voltage		
-30	12.00		
-20	12.00	13.56037	0.00037
-10	12.00	13.56037	0.00037
0	12.00	13.56036	0.00036
10	12.00	13.56035	0.00035
20	12.00	13.56033	0.00033
30	12.00	13.56031	0.00031
40	12.00	13.56024	0.00024
50	12.00	13.56022	0.00022

Voltage Variations (±15%)

20	10.20	13.56031	0.00031
20	12.00	13.56029	0.00029
20	13.80	13.56029	0.00029

Max Deviation (MHz)	0.00037
Max Deviation (%)	0.00273
	PASS

Page 28 of 30 Report No.: FC08-001A

RSS-210 99% BANDWIDTH

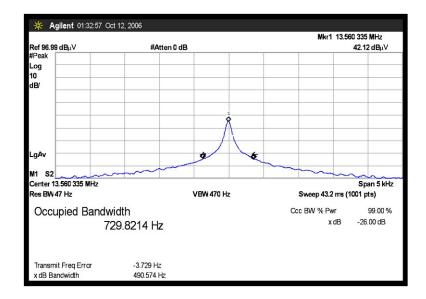
Test Equipment


Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
EMCO Loop Antenna	1074	05/01/2007	05/01/2009	00226
10M SITE CBL MAST CBL	N/A	03/23/2007	03/23/2009	CAB-SITED10M

Test Conditions

EUT is a proximity reader operating at 13.56MHz. The equipment is powered via 12VDC power supply. Temperature: 18°C, Relative Humidity: 48%. EUT has lowest antenna tuning. EUT has additional ferrite bead around the power and ground wires at the EUT end of the cable. EUT has shield wire tied to DC common at the power supply.

Test Setup Photos



Page 29 of 30 Report No.: FC08-001A

Plots

Page 30 of 30 Report No.: FC08-001A