

PCTEST Engineering Laboratory, Inc.

6660-B Dobbin Road · Columbia, MD 21045 · U.S.A. TEL (410) 290-6652 · FAX (410) 290-6654 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE FCC Part 27 Certification

FLARION TECHNOLOGIES, INC. 135 Route 202/206 South Bedminster, NJ 07921 Dates of Tests: April 27, 2005 Test Report S/N: 0502250143

Test Site: PCTEST Lab, Columbia MD

FCC ID

QZX99171001

APPLICANT

FLARION TECHNOLOGIES, INC.

Classification: Non-Broadcast Transmitter Worn on Body (TNT)

FCC Rule Part(s): §27

EUT Type: PCMCIA Wireless Network Card

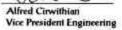
Model: FPC-1000

Tx Frequency Range: 710.96 MHz - 715.05 MHz (OFDM)
Rx Frequency Range: 740.96 MHz - 745.05 MHz (OFDM)

Max. RF Output Power: 0.308 W ERP OFDM (24.883 dBm) / 24.0 dBm Conducted

Max. SAR Measurement: 0.24 W/kg OFDM Body SAR

Emission Designator(s): 1M25W7D


Test Device Serial No. Identical Prototype [S/N: # 870018]

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant conditions: Output power is ERP. SAR compliance has been established in the notebook computer(s) with PCMCIA slot configuration(s) as tested in this filing, and applies for use in notebook computers with substantially similar physical dimensions, construction, and electrical and RF characteristics. SAR compliance has also been established in IBM ThinkPad R30 Series notebook with PCMCIA slot configuration as tested in this filing. Use with other notebook computer(s) is not allowed. Compliance of this device in all final host configurations is the responsibility of the Grantee. End-users must be provided with specific information required to satisfy RF exposure compliance for all final host devices. The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter with a host device.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

PCTESTÔ PT. 27 REPORT	POTERT FCC	and the state of t		Reviewed By: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 1 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

TABLE OF CONTENTS

ATTACHMENT A: COVER LETTER(S)	
ATTACHMENT B: ATTESTATION STATEMENT(S)	
ATTACHMENT C: TEST REPORT	
1.1 SCOPE	3
2.1 INTRODUCTION	4
3.1 INSERTS	5
4.1 DESCRIPTION OF TESTS	6-8
5.1 EFFECTIVE RADIATED POWER OUTPUT	9-10
6.1 EQUIVALENT ISOTROPIC RADIATED POWER	11
7.1 RADIATED MEASUREMENTS	12-14
8.1 FREQUENCY STABILITY	15
9.1 PLOTS OF EMISSIONS	16
10.1 LIST OF TEST EQUIPMENT	17
11.1 SAMPLE CALCULATIONS	18
12.1 CONCLUSION	19
ATTACHMENT D: TEST PLOTS	
ATTACHMENT E: FCC ID LABEL / LOCATION	
ATTACHMENT F: TEST SETUP PHOTOGRAPHS	
ATTACHMENT G: EXTERNAL PHOTOGRAPHS	
ATTACHMENT H: INTERNAL PHOTOGRAPHS	
ATTACHMENT I: BLOCK DIAGRAM(S)	
ATTACHMENT J: SCHEMATIC DIAGRAM(S)	
ATTACHMENT K: OPERATIONAL / CIRCUIT DESCRIPTION	

ATTACHMENT L: PARTS LIST/TUNE UP PROCEDURE

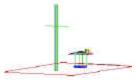
ATTACHMENT P: SAR TEST SETUP PHOTOGRAPHS

ATTACHMENT N: SAR MEASUREMENT REPORT

ATTACHMENT M: USER'S MANUAL


ATTACHMENT O: SAR TEST DATA

ATTACHMENT Q: DIPOLE VALIDATION ATTACHMENT R: PROBE CALIBRATION


PCTESTÔ PT. 27 REPORT	PCTERT			Reviewed By: Quality Manager
Test Report S/N: 0502250143	Test Dates: April 27, 2005	EUT Type: PCMCIA Wireless Network Card	FCC ID: QZX99171001	Page 2 of 19

© 2005 PCTEST ENGINEERING LABORATORY, INC.

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant Name: FLARION TECHNOLOGIES, INC.

Address: 135 Route 202/206 South Bedminster, NJ 07921

FCC ID: QZX99171001

Quantity: Quantity production is planned

Emission Designators: 1M25W7D

• Tx Freq. Range: 710.96 MHz – 715.05 MHz (OFDM)

• Rx Freq. Range: 740.96 MHz – 745.05 MHz (OFDM)

Max. Power Rating: 0.308 W ERP OFDM (24.883 dBm)

• FCC Classification(s): Non-Broadcast Transmitter Worn on Body (TNT)

Equipment (EUT) Type: PCMCIA Wireless Network Card

Modulation(s): OFDM

• Frequency Tolerance: ± 100% (Hz)

FCC Rule Part(s): § 27

Dates of Tests: April 27, 2005

Place of Tests: PCTEST Lab, Columbia, MD U.S.A.

• Test Report S/N: 0502250143

• Deviation from measurement procedure - None

PCTESTÔ PT. 27 REPORT			Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 3 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

2.1 INTRODUCTION

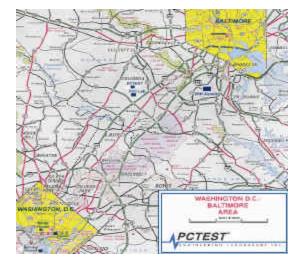


Figure 1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

These measurement tests were conducted at **PCTEST Engineering**

Open Area Test Site

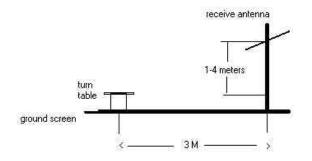


Figure 2. Diagram of 3-meter outdoor test range

Measurement Procedure

The radiated and spurious measurements were made outdoors at a 3-meter test range (see Figure 2). The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A halfwave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

PCTESTÔ PT. 27 REPORT	PCTERT	FCC MEASUREMENT REPORT		Reviewed By: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 4 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

3.1 INSERTS

Function of Active Devices (Confidential)

The Function of active devices are shown in Attachment K.

Block & Schematic Diagrams (Confidential)

The block diagrams are shown in Attachment I, and the schematic diagrams are shown in Attachment J.

Operating Instructions

The instruction manual is shown in Attachment M.

Parts List & Tune-Up Procedure (Confidential)

The parts list & tune-up procedure is shown in Attachment L.

Description of Freq. Stabilization Circuit (Confidential)

The description of frequency stabilization circuit is shown in Attachment K.

Description for Suppression of Spurious Radiation, for Limiting Modulation, and Harmonic Suppression Circuits (Confidential)

The description of suppression stabilization circuits is shown in Attachment K.

PCTESTÔ PT. 27 REPORT			Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 5 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

4.1 DESCRIPTION OF TESTS

4.2 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB.
- (b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- (c) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (d) The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

4.3 Designated Entites

- (a) Eligibility for small business provisions.
 - (1) An entrepreneur is an entity that, together with its controlling interests and affiliates, has average gross revenues not exceeding \$3 million for the preceding three years. This definition applies only with respect to licenses in Block C (710–716 MHz and 740–746 MHz) as specified in § 27.5(c)(1).
 - (2) (2) A very small business is an entity that, together with its controlling interests and affiliates, has average gross revenues not exceeding \$15 million for the preceding three years.
 - (3) A small business is an entity that, together with its controlling interests and affiliates, has average gross revenues not exceeding \$40 million for the preceding three years.
- (b) *Bidding credits*. A winning bidder that qualifies as an entrepreneur, as defined in this section, or a consortium of entrepreneurs may use the bidding credit specified in § 1.2110(f)(2)(i) of this chapter. A winning bidder that qualifies as a very small business, as defined in this section, or a consortium of very small businesses may use the bidding credit specified in § 1.2110(f)(2)(ii) of this chapter. A winning bidder that qualifies as a small business, as defined in this section, or a consortium of small businesses may use the bidding credit specified in § 1.2110(f)(2)(iii) of this chapter.

[67 FR 5512, Feb. 6, 2002, as amended at 68 FR 43000, July 21, 2003]

PCTESTÔ PT. 27 REPORT	PGTERT FC			Reviewed By: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 6 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

4.1 DESCRIPTION OF TESTS (CONTINUED)

4.7 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to at least the 10th harmonic. The transmitter is modulated with a 2500Hz tone at a level of 16dB greater than that required to provided 50% modulation.

At the input terminals of the spectrum analyzer, an isolator (RF circulator with on port terminated with 50 ohms) and an 870 MHz to 890 MHz bandpass filter is connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests) and the analyzer. The rejection of the bandpass filter to signals in the 825 – 845 MHz range is adequate to limit the transmit energy from the test transceiver which appears to a level which will allow the analyzer to measure signals less than –90dBm. Calibration of the test receiver is performed in the 870 – 890 MHz range to insure accuracy to allow variation in the bandpass filter insertion loss to be calibrated.

4.8 Frequencies

At the input terminals of the spectrum analyzer, an isolator (RF pad) and an high-pass filter are connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests) and the analyzer. The high-pass filter (signals below 1.6 GHz) is to limit the fundamental frequency from interfering with the measurement of low-level spurious and harmonic emissions and to ensure that the preamplifier is not saturated.

4.9 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTESTÔ PT. 27 REPORT	PGTERT FC			Reviewed By: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 7 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

5.0 Frequency Stability/Temperature Variation.

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +60°C using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ± 0.00025 (± 2.5 ppm) of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (22°C to 25°C to provide a reference).
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C (usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements are made at 10°C interval up to room temperature. At least a period of one and one half-hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency measurements are at 10 intervals starting at -30°C up to +50°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after re-applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

NOTE: The EUT is tested down to the battery endpoint.

PCTESTÔ PT. 27 REPORT	PCTERT FC	- Control of the Cont		Reviewed By: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 8 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

5.1 Test Data

5.2 Effective Radiated Power Output

A. POWER: High OFDM

Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	ERP (W)	ERP (dBm)	BATTERY
710.96	-16.500	V	0.300	24.773	Standard
713.03	-16.550	V	0.308	24.883	Standard
715.05	-16.700	V	0.308	24.883	Standard

Note: Standard and extended batteries are options for this phone

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

PCTESTÔ PT. 27 REPORT	PGTERT FC			Reviewed By: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 9 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

7.1 Test Data

7.2 OFDM Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 710.96 MHz

CHANNEL: 19 (Low)

MEASURED OUTPUT POWER: 24.883 dBm = 0.308 W

MODULATION SIGNAL: OFDM

DISTANCE: _____ a ___meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = \underline{37.89}$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1421.92	-73.88	6.10	-67.78	V	92.7
2132.88	-70.78	6.70	-64.08	V	89.0
2843.84	-67.68	6.80	-60.88	V	85.8
3554.80	-65.28	6.50	-58.78	V	83.7
4265.76	-64.18	7.00	-57.18	V	82.1

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTESTÔ PT. 27 REPORT	PGTERT FC	FCC MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 10 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

7.1 Test Data (Continued)

7.3 OFDM Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 713.03 MHz

CHANNEL: 60 (Mid)

MEASURED OUTPUT POWER: _____ 24.883 ____ dBm = ____ 0.308 _ W

MODULATION SIGNAL: OFDM

DISTANCE: _____ meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = \underline{37.88}$ dBd

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS	SUBSTITUTE ANTENNA GAIN	CORRECT GENERATOR LEVEL	POL (H/V)	(dBc)
	(dBm)	(dBd)	(dBm)		
1426.05	-74.78	6.10	-68.68	Н	93.6
2139.08	-70.08	6.70	-63.38	Н	88.3
2852.10	-66.98	6.80	-60.18	Н	85.1
3565.13	-65.68	6.50	-59.18	Н	84.1
4278.15	-64.18	7.00	-57.18	Н	82.1

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTESTÔ PT. 27 REPORT			Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 11 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

7.1 Test Data (Continued)

7.4 OFDM Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 715.05 MHz

CHANNEL: 101 (High)

MEASURED OUTPUT POWER: 24.883 dBm = 0.308 W

MODULATION SIGNAL: OFDM (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43} + 10 \log_{10} (W) = \underline{37.88}$ dBd

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1430.10	-71.68	6.10	-65.58	V	90.5
2145.15	-68.08	6.70	-61.38	V	86.3
2860.20	-67.08	6.80	-60.28	V	85.2
3575.25	-65.58	6.50	-59.08	V	84.0
4290.30	-63.58	7.00	-56.58	V	81.5

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTESTÔ PT. 27 REPORT			Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 12 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

8.1 Test Data

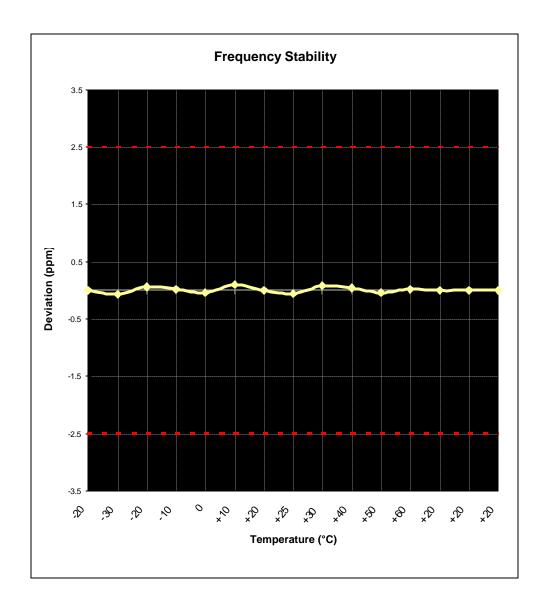
8.2 FREQUENCY STABILITY (PCS CDMA)

OPERATING FREQUENCY: 715,050,000 Hz

CHANNEL: 0101

REFERENCE VOLTAGE: 5.0 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm


VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQ. (Hz)	Freq. Dev.	Deviation (%)
100 %	5.00	+ 20 (Ref)	715,050,000	0.00	0.000000
100 %		- 30	715,050,050	-50.05	-0.000007
100 %		- 20	715,049,957	42.90	0.000006
100 %		- 10	715,049,986	14.30	0.000002
100 %		0	715,050,029	-28.60	-0.000004
100 %		+ 10	715,049,928	71.50	0.000010
100 %		+ 20	715,050,000	0.00	0.000000
100 %		+ 25	715,050,043	-42.90	-0.000006
100 %		+ 30	715,049,943	57.20	0.000008
100 %		+ 40	715,049,971	28.60	0.000004
100 %		+ 50	715,050,029	-28.60	-0.000004
100 %		+ 60	715,049,986	14.30	0.000002
85 %	3.15	+ 20	715,050,000	0.00	0.000000
115 %	5.75	+ 20	715,050,000	0.00	0.000000
BATT. ENDPOINT	3.10	+ 20	715,050,000	0.00	0.000000

PCTESTÔ PT. 27 REPORT			Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 13 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

8.1 Test Data (Continued)

8.3 FREQUENCY STABILITY (PCS CDMA)

PCTESTÔ PT. 27 REPORT			Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 14 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

9.1 PLOT(S) OF EMISSIONS

(SEE ATTACHMENT D)

PCTESTÔ PT. 27 REPORT	FCC MEASUREMENT REPORT		Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 15 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

10.1 TEST EQUIPMENT

Туре	Model	Cal. Due Da	ate S/N
Microwave Spectrum Analyzer	8566B (100Hz-22GHz) HP	08/15/05	3638A08713
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	04/17/06	2542A11898
Spectrum Analyzer/Tracking Gen.	HP 8591A (100Hz-1.8GHz)	08/10/05	3144A02458
Signal Generator*	HP 8640B` (500Hz-1GHz)	06/03/05	2232A19558
Signal Generator*	HP 8640B (500Hz-1GHz)	1851A09816	
Signal Generator*	Rohde & Schwarz (0.1-1000MHz)	09/11/05	894215/012
Ailtech/Eaton Receiver	NM 37/57A-SL (30-1000MHz)	04/12/06	0792-032
Ailtech/Eaton Receiver	NM 37/57A (30-1000MHz)	03/11/06	0805-03334
Ailtech/Eaton Receiver	NM17/27A (O.1-32MHz)	09/17/05	0608-03241
Quasi-Peak Adapter	HP 85650A	08/15/05	2043A00301
Ailtech/Eaton Adapter	CCA-7 CISPR/ANSI QP Adapter	03/11/06	0194-04082
Gigatronics Universal Power Meter	8657A		1835256
Gigatronics Power Sensor	80701A (0.05-18GHz)		1833460
Signal Generator	HP 8648D (9kHz-4GHz)		3613A00315
Amplifier Research	5S1G4 (5W, 800MHz-4.2GHz)		22322
Network Analyzer	HP 8753E (30kHz-3GHz)		JP38020182
Audio Analyzer	HP 8903B		3011A09025
Modulation Analyzer	HP 8901A		2432A03467
Power Meter	HP 437B		3125U24437
Power Sensor	HP 8482H (3QuW-3W)		2237A02084
Harmonic/Flicker	Test System HP 6841A (IEC 555-2/3)		3531A00115
Broadband Amplifier (2)	HP 8447D		1145A00470, 1937A0334
Broadband Amplifier	HP 8447F		2443A03784
Hom Antenna	EMCO Model 3115 (1-18GHz)		9704-5182
Hom Antenna	EMCO Model 3115 (1-18GHz)		9205-3874
Hom Antenna	EMCO Model 3116 (18-40GHz)		9203-2178
Biconical Antenna (4)	Eaton94455/Eaton94455-VSinger94455-VO	mplanceDesign	1295, 1332, 0355
Log-Spiral Antenna (3)	Ailtech/Eaton 93490-1	1. 1	0608, 1103, 1104
Roberts Dipoles	Compliance Design (1 set)		
Ailtech Dipoles	DM-105A (1 set)		33448-111
EMCOLISN (6)	3816/2		1079
Microwave Preamplifier 40dB	Gain HP 83017A (0.5-26.5GHz)		3123A00181
Microwave Cables	MicroCoax (1.0-26.5GHz)		
Ailtech/Eaton Receiver	NM37/57A-SL		0792-03271
Spectrum Analyzer	HP 8594A		3051A00187
Spectrum Analyzer (2)	HP 8591A		3034A01395, 3108A020
Microwave Survey Meter	Holaday Model 1501 (2.450GHz)		80931
Digital Thermometer	Extech Instruments 421305		426966
Attenuator	HP 8495A (0-70dB) DC-4GHz		
Bi-Directional Coax Coupler	Narda 3020A (50-1000MHz)		
Shielded Screen Room	RF Lindgren Model 26-2/2-0		6710 (PCT270)
Shielded Semi-Anechoic Chamber	Ray Proof Model S81		R2437 (PCT278)
Enviromental Chamber	Associated Systems Model 1025 (Tem		PCT285

PCTESTÔ PT. 27 REPORT	POTENT	FCC MEASUREMENT REPO	Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 16 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

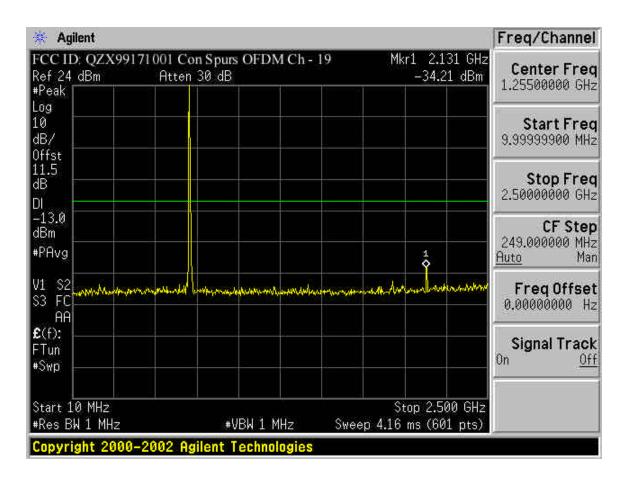
11.1 SAMPLE CALCULATIONS

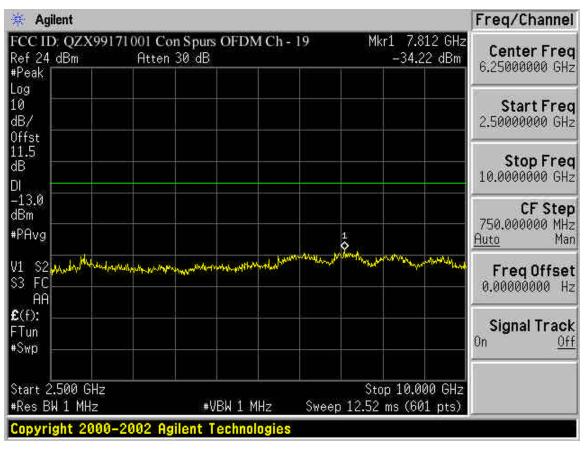
A. Emission Designator

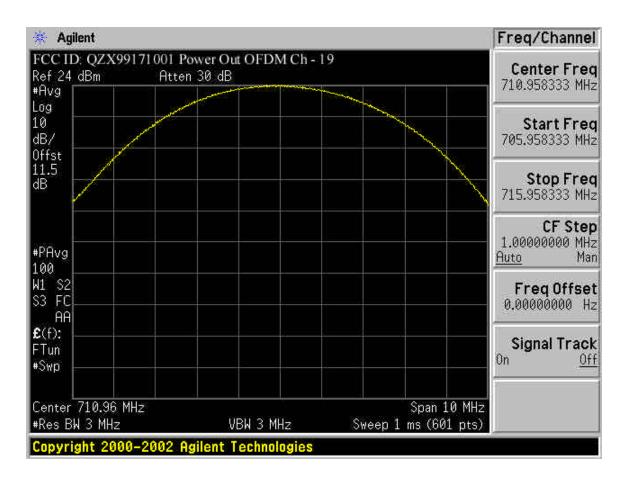
Emission Designator = 1M25W7D

OFDM BW = 1.25 MHz

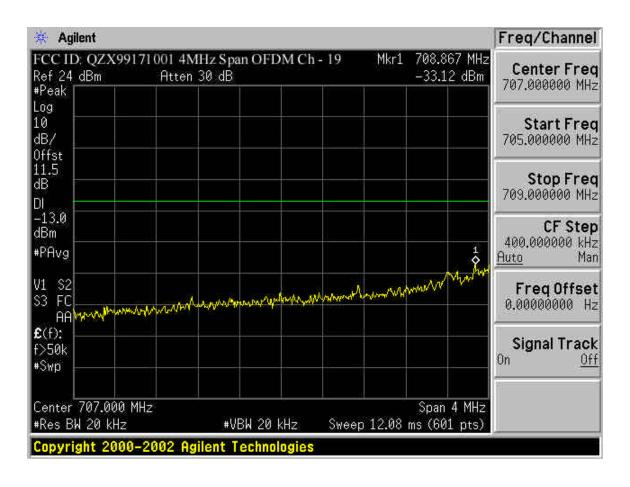
- W = Cases not covered above, in which an emission consists of the main carrier modulated, either simultaneously or in pre-established sequence, in a combination of two or more of the following modes: amplitude, angle, pulse
- 7 = Two or more channels containing quantized or digital information
- D = Data transmission, telemetry, telecommand


PCTESTÔ PT. 27 REPORT			Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 17 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	




12.1 CONCLUSION


The data collected shows that the Flarion Technologies PCMCIA Wireless Network Card FCC ID: QZX99171001 complies with all the requirements of Part 27 of the FCC rules.


PCTESTÔ PT. 27 REPORT	FCC MEASUREMENT REPORT		Reviewed By: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: PCMCIA	FCC ID:	Page 18 of 19
0502250143	April 27, 2005	Wireless Network Card	QZX99171001	

